
CTH-IEFT/PP-1990-03 ISSN

PRESTUDY OF BURN CONTROL IN NET
Second Intermediate Report, February 1990

D. Anderson, T. Elevant, H. Hamnen, M. Lisak, J. Lorenzen,

H. Persson

INSTITUTIONEN FÖR ELEKTROMAGNETISK FÄLTTEORI

CHALMERS TEKNISKA HÖGSKOLA

CTH-IEFT/PP-1990-03



PRESTUDY OF BURN CONTROL IN NET
Second Intermediate Report, February 1990

By

D. Anderson, T. Elevant1', H. Hamnen, M. Lisak, J. Lorenzen2',

H. Persson2^

Chalmers University of Technology

Institute for Electromagnetic Field Theory and Plasma Physics

S-412 96 Göteborg, Sweden

l)The Royal Institute for Technology

Plasma Physics and Fusion Research

S-100 44 Stockholm, Sweden

2)Studsvik Nuclear

S-611 82 Nyköping, Sweden



Contents

1. Introduction 3

2. Introductory analysis of a simple zerodimensional system 6
2.1 Introduction 6
2.2 Equations used 7
2.3 Stability against pure temperature variations 10
2.4 Stability against coupled temperature and density

variations 1 2
2.5 Nonlinear numerical calculations 1 4
2.6 Work in progress 1 9
2.7 Plans for the future 1 9

3. Approximate analysis of the energy balance equation of a
burning fusion plasma 2 7
3.1 Introduction 2 7
3.2 Thermal balance equation 2 8
3.3 Space-averaged analysis 3 0
3.4 Profile analysis 3 3
3.5 Extension to density profiles 3 7
3.6 Application 3 8

4. Some emerging thoughts on burn control 4 1
4.1 On the maximum Q in subignited operation 4 1
4.2 Conditions for the. initial development of the temperature 4 5
4.3 Some implications of sawtooth activity for.burn control .. 5 0
4.4 Thoughts on alternat v̂e control actions 5 5

.5. Requiremei' * on diagnostics 6 1
5.1 / r :i racy and time resolution 6 1
5.2 t rile measurements 6 3
5.3 -imary of diagnostic requirements 6 3

6. Process K ,D lfication 6 4
6.1 > scription 6 4
6.2 Applications for fusion 6 4
6.3 Present preparative activities 6 7
6.4 Process identification and physical models 6 8

7. Future -ork 70
Acknc iedgements 7 1



- 3 -

1. Introduction
In the first intermediate report [1] we collected information on burn

control in general, including a survey of control methods, and of the

properties and limitations of various plasma diagnostics to be used in this

connection. A direction for our work was given - among things

emphasized were the importance of studying profile effects, the impact of

diagnostics, and the need for a closer contact between plasma physics and

control.

Since then, several interesting papers on burn control have appeared,

including such with particular application to ITER [2,3].

The present report describes our ongoing work on a number of selected

topics, and the plans for the nearest future.

In a zerodimensional model the key entity to linear stability of a working

point and the nature of the trajectories near it is the matrix of the

derivatives of the right-hand members with respect to the dependent

variables, evaluated at the working point. Notably, stability prevails if the

real parts of all eigenvalues of this matrix are negative.

In chapter 2 we have specialized the system (1) - (2) of the previous

report to form an easily tractable, second-order system. In this case one

can give an explicit, analytical condition for stability: the point is stable

when the matrix has a negative trace and a positive determinant. A code

providing quick answers regarding stability, time scales and eigenvectors

has been written and tested.

To illustrate the properties of the multitude of solutions in a finite region,

there hardly exists any better method than a qualitative phase-plane

analysis, based upon equilibrium point classification, determination of

various manifolds (fast, slow, stable, unstable), together with a suitably

dense set of trajectories. We have implemented our system of equations
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on an efficient ODE solver, providing such information. Time functions of

various quantities can also be obtained. Feedback control of unstable

working points has been tested in a number of cases. It is found that

linear stability can often be obtained by simple means. However,

nonlinear effects are sometimes quite important.

The zerodimensional modelling of a burning plasma described by space

dependent equations is often done in a heuristic way, with no clear

relation between the two systems of equations. We have tried to put the

approximation procedure involved in the transition to 0-D models on a

more formal basis. This is the topic of chapter 3. Simple and useful

approximations of the radial equilibrium temperature profiles are derived

for a class of nonlinear transport and heating models. The 1-D equilibrium

solution is also investigated with respect to its stability properties, which

•are shown to be the same as those derived from the simplest 0-D space

averaged model.

Chapter 4 contains a few emerging thoughts on burn control. First, the

limited swing of the auxiliary heating gives rise to limitations on the

possibilities to intervene against temperature excursions by an auxiliary

heating modulation. This problem becomes severe when one operates at

high Q values. Even a moderate temperature error, which one may well

have due to the limited accuracy of the temperature measurements, may

then lead to temperature runaway because there is perhaps not

sufficiently much additional heating to reduce. This problem has been

analysed in detail by Bromberg et al [4], it leads to a maximum allowable Q

for given working temperature To and given temperature perturbation 8T.

We have found that the essential features of the results of these authors

can be understood qualitatively, without much involved analysis.

Another analysis concerns the problem of selecting a proper control action

wnen a temperature profile differs from the equilibrium shape.
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Clearly, the change in axial temperature only is not • ufficient to consider,

but instead some sort of integral criterion is needed. One finds that

thermal runaway is determined roughly by whether or not the

instantaneous thermal energy content is more or less than that of the

equilibrium. This is analysed in some detail, and a reasonably good

criterion for thermal runaway is obtained.

The presence of sawteeth complicates active feedback control of an un-

stable equilibrium profile. Two aspects of this problem are tentatively

discussed: (i) the profile change involved complicates interpretation of

neutron emission signals and (ii) the sawtooth temperature variation

implies an inherent Q-limitation for subignited situations. Distinguishing

between the sawtooth excursions and real thermal runaway may be very

difficult, because the time scales may be similar. This could lead to

maximum achievable Q of 10-15.

A couple of alternative schemes for burn control, minor radius alterations

and dynamic stabilization are tentatively discussed; no definite answers on

their feasibility are obtained.

The problem of diagnosing the plasma with respect to burn conditions is

the topic of chapter 5. The influence on the energy distribution of control

actions and the reliability of neutron measurements are discussed, and the

question of how to handle sawteeth is briefly revisited.

Chapter 6 is a description of process identification and how it could be

used for burn control. It exists in different forms, and is already in use in

fusion research. A particular advantage is that it can be combined with

physical knowledge based on first principles. A couple of digital

simulations of identification have been prepared and will soon be run.

Chapter 7, finally, is a brief description of our current plans.
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2. Introductory analysis of a simple zerodimensional

system

2.1 Introduction
In order to deepen the insight into the thermal instability of a burning

fusion plasma and its control the simplest possible, yet physically

meaningful, zerodimensional system of equations has been considered.

Linear analyses around different working points, with different assumed

scaling laws, have been made. First, it has been assumed that there exists

an independent control of the density, later the interplay between the n-

and T-variations has been considered. In a number of cases, the nonlinear

equations have been solved numerically. Straightforward control actions,

based upon a variation of the injection of neutral particles, have been

looked at, linearly and nonlinearly. The control is either P-, PD-, or state-

space.

In the general, zerodimensional plasma evolution equations (See e.g.

Ref. fl), we have assumed that
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the deuterium and tritium densities are equal. Control by for

instance dilution may be looked into at a later stage.

• heavy impurities have only been regarded by their influence on Zeff

but their contribution to plasma charge balance, and energy losses by

line radiation have been neglected.

• ohmic heating has been disregarded

• no details of the energy deposition from energetic alpha or neutral

beam particles have been considered, including the distribution of

energy to electrons and ions, or the delay in the deposition

• no magnetic compression is considered

2.2 Equations used
The equations become

dn o n

„ „ „ 3nT
= P« + paux - P b - — ( 1 )

Here, S is the particle source term, Pa is the heat from fusion-generated

alphas, Paux the auxiliary heating power, and Pb the Bremsstrahlung loss.

Use has been made of the standard assumption concerning the form of the

energy and particle confinement times:
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Here, we expect that the interval [-4, 4] for 1 and m will cover all cases of

interest. The constant K 2 is assumed to fulfil 1 < K; < 10. typically, a value

K2 = 3 has been chosen.

The multiplicative constant Ki is kept as one of the parameters of the

problem. When a particular scaling law is applied to a particular machine,

like NET or ITER, Ki will get a particular numerical value.

At the working point (index 0), the LHS in (1) become zero. Subtracting

the resulting equations from (1), we obtain

In the case of an uncontrolled plasma (an "open system"), the supply of

particles and the auxiliary heating are kept at the values corresponding to

the working point:

- S o = 0; Paux-P3UX.o

A change of units is made: particle temperatures are given in keV, and

densities in units of 1020/m3. Transforming the equations accordingly, and

dividing the energy equation by 3, we obtain the following system for the

dynamics of the uncontrolled plasma:

dn _ _ !
T,

P i 0

= (Pa" Pa,,) " (Pb - Pb.o) - (P. - Pf,o)
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Here, the transformed Bremsstrahlung losses are given by

Pb = 0.1 n : \ T Z.ff; typically 1.3 < Zel, < 5

For P a , approximated by one fifth of the fusion power, we adopt a formula

based on the expression S5** of Hively [2], for the reactivity. This is

claimed by the author to be accurate within a few per cent, up to 80 keV.

We get

(a A
Pa = 2.917 x 1016 n2 exp — + a2 + a3T + a4T: j

where ai = - 20.779964

a2 = - 25.813871

a3 = - 6.625135 x 10-2

a4 = 3.0934551 x 10"4

r = 0.30366647

Furthermore,

nT

Pertinent equilibrium temperatures are believed to lie between 8 and 25

keV, and densities between 0.5 and 5, with the units chosen.

For a subignited plasma, we shall most of the time use the Q-value at the

working point,

_ _ 'fus.o J r q , o
^^o p p

"aux.o raux,o
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instead of the multiplicative constant Ki. This is because Qo is felt to be a

more illustrative physical and technical quantity. The equilibrium energy

balance condition furnishes the simple relation between those two

numbers:

K.- — i

Q o can be expressed as

5Pn

—P
o r a K, ni"1 "C

Typically, we have \<QO<°°.

2.3 Stability against pure temperature variations
To study the temperature instability in the simplest possible way, it may

be instructive to assume that the density is maintained at its working

point value, n = n0, by a separate density control system. We then only

need to consider temperature variations. The faster time scale of the

energy variation than thaf of the density may be an argument in favour of

this view.

Dividing the energy equation by the constant density, we may write

The stability is analysed by linearizing around an equilibrium To. F(TO) = 0.

F(T) = (T-To) •
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Integration then gives

T-To = [T(0)-To]-eFn>

where T(0) is the temperature at time zero. Clearly, we have exponential

growth or decay of a perturbation, according to whether F(TO) > 0 or

F'(T0) < 0.

Inserting the actual expressions and differentiating, we get

The first term corresponds to the tendency towards growth, due to the

alpha particle heating, and the second to the (modest) stabilizing influence

of the Bremsstrahlung (e.g., with Zeff = 2; To = 10 keV; n0 = 1 ( 1020/m3),

the Bremsstrahlung time constant becomes 32 seconds). . We observe that

the influence of the last term, from transport, becomes marginal for m = 1.

For larger values of m, it becomes destabilizing; this is then due to an

energy confinement that is sufficiently much improved when the tempera-

ture goes up.

Summing up the different contributions, we conclude that the conditions

for stability against purely thermal perturbations, with the density

assumed to be constant becomes

^ r _ J ^ + a3 + 2a4To]-0.05no-^--ll^l>_<0 (4)

This gives a limitation on the magnitude of the multiplicative constant K],

or, alternatively, on the magnitude of Qo-

A simple program code (LOCAL2) has been written that calculates the

characteristic times corresponding to the various terms in F'(T0), as wrll as
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the value of 1/F'(TO). Furthermore, it gives the highest possible Qo-value

for which the burn is thermally stable in the present sense. It also

generates the eigenvalue and eigenvector information to be described in

the next paragraph.

2.4 Stability against coupled temperature and density
variations

Without assuming the density to be constant, the coupled variation of n

and T has been studied in the linear approximation, using elementary

theory of differential equations [3]. The system behaviour around a

working point (n o ,T o) is then characterized by a matrix of the partial

derivatives of the right-hand members, evaluated at the working point.

Specifically with

dn
—r— = f! (n, T; parameters)

AT*

- j - = f2 (n, T; parameters)

we get

3f,
if

o U T , 0

The topological character of the solutions in the vicinity of (no,To) is then

obtained from the eigenvalues of this matrix, and stable and unstable

manifolds of saddle points or fast and slow manifolds of nodes are

obtained from the eigenvectors.
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To implement this, in the second equation of the system (3), we differen-

tiate the product, subtract T dn/dt, using the expression for dn/dt in the

first equation, and divide by n. We then obtain the system

( F F )

dT Pq-Pco Pb-Pb.o PrPf.o , T
n ~ + n

n
where F

P = — .

Differentiating, we obtain after some algebra

1-1
H ~ " T ~ ; 1 2 ~

pao f a l r _ _ I pbo 1-m m

In A22 we recognize the earlier used quantity F'(T0), but there is also an

additional, stabilizing (for m > 0) con'ribution from the energy loss by

particle transport.

The quantities decisive for stability are the trace and the determinant of

this matrix:

Trace: = An + A22

Det: = A11A22 - A12A21

The stability condition oecomes [3]
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Trace < O

Det>0

If it is fulfilled, one either gets two negative eigenvalues, in which case the

working point is a stable node, or two complex roots with a common,

negative real pan, corresponding to a stable spiral. The choice between

real and complex eigenvalues is given by discriminant

Disc: = Trace2 - 4 Det

and the eigenvalues may be written

Trace ±V Disc
A.- 2

The earlier mentioned code (LOCAL2) also calculates these eigenvalues and

the corresponding eigenvectors, for arbitrary working points ' (n 0 , T o ) ,

physically allowable Q0-values, and various assumptions (1, m) on the

scaling law. This has been made in a number of cases.

In general, these eigenmodes include a variation of both n and T, but in

some cases, notably for m = 0, one eigenvector is parallel to the T-axis.

Many cases have been observed, in which a pure T-variation is stable, but

where the added degree of freedom by allowing n to vary gives instability

in the phase plane. It appears that a fairly accurate constancy of n would

be necessary in order to suppress thermal instability in these cases.

2.5 Nonlinear numerical calculations

The system of equations (5), describing the nonlinear evolution of the

uncontrolled plasma in nT-space, has been solved numerically in a number

of cases. The "DOPEX" program package by Dahlqvist and Littmarck [4] has
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been used, which includes a Turbopascal translation of the Fortran code of

Hairer, Norsett and Wanner [5], implementing the optimized Runge-Kutta

algorithm of Dormand and Prince [6].

In Figs. 1-3, the burn instability is nicely demonstrated. There are

exceptional cases with intrinsically stable burn (see Figs. 4a-c), but in

general feedback control must be applied. The case of the scaling 1=2;

m=0, is quite interesting. Since the confinement improves strongly with

increasing density, there is an unstable development of the density, and in

Fig. 2, with a high Q-value of 30, the density instability is more striking

than the temperature instability, especially for high n. With an initial

point to the right of and below the working point, T first goes down a little,

while n increases to a not very well defined value, at which the density

stays essentially constant, while T rushes upwards.

Fig. 3 is but one of many examples when the temperature varies stably for

n = n0, but where any density deviation will lead to an unstable develop-

ment of both n and T.

\ttempts have been made to stabilize unstable burn by feedback control,

with a variation of the supply of fast neutral particles. This then both

involves a modulation of the source of particles and of the auxiliary

heating.

Putting the additional term in the right-hand member of the particle

balance equation in (2) equal to 8S:

5S = S-So

SS will show up in the corresponding equation in (5). The temperature

balance equation in (5) hereby gets an extra term
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M i l 8S
n

Here, Eo is the neutral particle energy; the factor 3 is due to the division

by 3 used to arrive at (5).

In the simplest possible case, we try a control proportional to the devia-

tions of n and T from their values at the working point. In this

preliminary exercise, all delays are neglected, and it is assumed that both

density and temperature are measured and used for the control:

5S = -o(n-no)-p(T-To)

The constants a and P are then to be determined to give the closed system

"good" properties.

In the linear approximation additional terms are obtained. Let us by

primed quantities identify those obtained, with control applied.

Differentiation gives

An = A n - a ; A12= A12-P

A E Q / 3 0

A 2 I = A2 1 a
uo

A22 = A22

This then also gives expressions for the new trace Trace' and determinant

Det'-

The further analysis of the closed system shows that it is always possible

to stabilize the situation linearly. A pole location of + and - 135 degrees
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has been used; this is an often used location giving a time variation in the

linear approximation of

eXt(A cos Xt + B sin Xi); X<0

which is often suitably much oscillatory. This is obtained by putting Det' =

2X2, Trace' = Ik. One gets a linear system of equations for a and (3, which

can be solved and expressed in the old matrix A and X. It turns out that X

can be chosen essentially at will.

In a practical situation, determinations of average density and

temperature may take too long time to carry out. Therefore, we have

looked into the possibilities of instead using the neutron flux, which is

proportional to the Pa-signal. We then put 8S = - K(Pa - P a o) . The

additional terms appearing in the linear analysis now involve the partial

derivatives of P a with respect to a and T. There is one parameter less at

hand than in the preceding problems, but one may try to locate the poles

at + and -135 degrees. This leads to a second degree equation for X, which

may or may not have negative solutions.

A number of examples of feedback control have been run. We have

assumed Eo = 300 keV. This is still ongoing work; here, we mainly wish to

illustrate the Qo-limitation analysed in chapter 4. Fig. 5a shows the

unstable workin ^-point/scaling law n0 = 1;TO = 18; Zeff = 2; Qo = 50; 1 = 1;

m= 0.1. If there were no limitations on the NBI-injection swing, we

would have the well-controlled situation shown in Fig. 5b. The NBI

modulation is determined by the deviations in density and temperature.

The poles have been placed at - 0.2 ± 0.2i. However, imposing the

condition Pa u x ^ 0, we obtain the diagram in Fig. 5c. The thermal runaway

is clearly shown, especially for high initial densities. In spite of the high

Qo-value of 50, however, the control system can handle a 20% pure T-

perturbation (curve A in the figure), but it appears as if a 25%

perturbation (curve B) would lead to a temperature excursion.
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The same curves have also been produced for Qo = 10. In this case, they

are identical to each other within the nT-window shown; thus more than a

33% positive 5T can readily be handled in this case.

This underlines that the phenomenon is important. Qualitatively, the

linear, simplified analysis does not give accurate answers. The discrepancy

may be due to the interplay between n and T and/or the nonlinearity.

The same curves have also been produced with control based on the Pa-

signal, (Qo = 50). The "best" 135-degTee feedback then gives poles at -

0.1954 * 0.1954 i. Clearly, the linear approximation is almost identical

with the previous case. Nonlinearly, the diagrams are quite similar.

With 1 = 2, the density tends to be quite unstable. It is still possible, in the

linear approximation, to find suitable pole locations, but the nonlinearities

become quite strong. In some cases, the region of validity may shrink to

about 1%. Outside this region, the plasma is still unstable.

This difficulty seems to express the fact that with 1 = 2, we get a strongly

unstable density, and injection of energetic neutral particles only is an

inefficient way of influencing the density; the temperature gets too much

upset.

2 .6 Work in progress

There are some natural extensions of the work just reported. A machinery

for analyzing unstable burn and its control has been built up and tested,

and work with its application to several other cases is under way.

Specifically, the linear stability analyses should be carried out for more

situations. The stability conditions found on Qo should be presented in a

clear way, using suitable graphic representations. One would then both

represent the condition on the working point for different scaling laws, as
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well as conditions on the scaling laws for a number of selected working

points, among which those of ITER will be found.

Once the differential equations have been solved, it is easy and straight-

forward to compute additional curves of technical and physical interest,

e.g., fusion power, additional heating power, Q-value, etc. as functions of

time. Whenever the magnetic field strength is given, a beta limit, e.g. that

of Troyon, can readily be introduced into the diagram.

Work on a code for POPCON construction has been started; it will in the

present model not include any sophistication regarding different heating of

electrons and ions [7].

2 .7 Plans for the future

In addition to the items described in the paragraph 2.6 the plans include

the following aspects.

The study of the Pa-signal as a basis for control should be pursued. The

natural continuation seems to be to reconstruct the "state" of the plasma;

e.g. as given by n and T, using what in control theory is called an

"observer", a procedure for estimating the state of the system from input

and output. This is then combined with state-space control.

Especially for high energy of the injected particles, and for scaling laws

giving rise to a strong density instability, a combination of changes in the

neutral beam injection and the supply of gas or pellets has to be used.

This has been illustrated in one of the examples above. An optimum

choice of control actions for these two actuators will then have to be based

upon a suitable principle of optimizarion.

It is well-known [8] that minimizing the integrated quadratic error with

bounds on the absolute value of the * ontrol signal leads to control algo-
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rithms that are either nonlinear or expliciJy time-dependent. However,

linear-quadratic optimization is still at hand; a suitable functional to be

minimized by chosing the linear approximaion to the controlled system

may be of the form

f [a,y2(t) + a2u
2(t)]dt; a , > 0 ; a 2>0

where u is the input and y the output. It is expected that one will also

have to study the optimization on the basis of the full, nonlinear system.

The choice of cci and a 2 will involve questions of technical judgement con-

cerning the desirability of avoiding excessive or long-time deviations of n

and T from their proper values, in comparison with the power and energy

restrictions on the actuators. Generally, these judgements have to appear

in close contact with the NET/ITER team; at the present time our ambition

is to provide options, between which it is possible to choose..

A burning fusion plasma is expected to be partially known and understood

theoretically, partially unknown, particularly with respect to its transport

scaling laws. This suggests use of process identification as a basis for the

description and control of the plasma and for determining values of

unknown parameters. This will be further discussed in Sec. 6, here we

only wish to point out that the empirical element of process identification

can be elegantly combined with the theoretical knowledge at hand.
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Fig.l. Phase plane trajectories for an uncontrolled plasma, (n0 = 2; To = 15; Z e f f=2; Qo

= 10; 1 = 2; m = 0).
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Fig. 2. Same diagram as in Fig. 1, but with Qo = 30.
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Fig. 3. nT-diagram (n0 = 1; T o = 12; Zeff = 3; Qo = 3; 1 = 2, m = 0): uncontroHcd plasma.
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Fig. 4a. Phase plane diagram of an intrinsically stable plasma (n0 = 0.8; T o = 20; Zeff =
2 ; Q o = 10;l = 2;m = -l) .
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Fig. 4b. T(t) (and n(t)) for this case; n(0) = 0.5; T(0) = 30.
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Fig. 4c. n(t) for this case.
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Fig. 5a. Uncontrolled plasma (no = 1; To = 18; Zeff = 2: Qo = 50; 1 = 1; m = 0.1).
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Fig. 5b. Controlled plasna, (proportional control based on the n and T signals)
disregarding limited NBI swing.
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Fig. 5c. Controlled plasma with NBI limitations included.
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3. Approximate analysis of the energy balance equation
of a burning fusion plasma

3.1. Introduction
In an ignited DT fusion plasma, the plasma temperature is sustained

against power losses by the collisional heating during slowing down of the

fusion produced alpha particles. The corresponding plasma energy balance

equation is strongly nonlinear and in general allows for two different equi-

librium solutions corresponding to a "low" temperature and a "high"

temperature mode of operation. Technical and physical constraints favour

the low temperature equilibrium, at temperatures T > 10 keV, even

though this equilibrium is unstable to temperature perturbations and must

be stabilized by external control mechanisms [1].

A significant effort has been made to study the heating to burn, the subse-

quent equilibrium and stability properties of the burning plasma, and

possible means of stabilization [1,2]. Most of these efforts have been based

on 0-D models or extensive numerical codes to describe the space

dependence of plasma parameters like density and temperature.

Furthermore the 0-D modelling is often done in a heuristic way, which

does not clearly relate to the space dependent equations. The purpose of

the present work is to put the approximation procedure involved in the

transition to 0-D models on a more formal basis. Secondly, simple and

useful approximations of the radial equilibrium temperature profiles will

be derived for a class of nonlinear transport and heating models. These

approximations should be useful, e.g. when investigating various Lchemes

for feedback control of the equilibrium. The 1-D equilibrium solution is

also investigated with respect to its stability properties, which are shown

to be the same as those derived from the simplest 0-D space averaged

model.
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Finally, an application of the approximate solution is made to determine

the equilibrium properties for a particular transport model.

3.2 Thermal balance equation

The basic mechanism for thermal equilibrium and stability of a fusion

reactor plasma can be understood by considering the energy balance

equation:

(1)

where n is the plasma density, T is the plasma temperature, and Ps and Pi

denote the heating power and the power loss respectively. Planned opera-

tion temperatures in future DT Tokamak reactors are restricted by p-

limitations to be T > 10 keV. In this temperature range Ps and Pi are

dominated by alpha particle deposition heating and transport losses

respectively, i.e.

where <ov> is the DT reaction rate, Ea = 3.5 MeV, an••'. K is the thermal

conductivity.

The reaction rate, which depends strongly on temperature, is modelled as

<ov> ~ Tp, where p = d In <ov>/d lnT. The power law exponent, p, decreases

with increasing temperature, cf Figs. 1 and 2.
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101 102

TEMP, (div)

Fig. 1. Fusion rate <av> for a thermal fusion plasma.

d ln«rv>

10

d In T

10 15 keV

Fig. 2. The power law exponent for <av>, viz. p = dln<av>/dlnT as a function of
temperature.

A crucial problem in present-day fusion plasma research is the proper

modelling of K and the extrapolability of these models to fusion reactor

conditions. In the present analysis we will approximate the temperature

dependence of K in the form of a power law: K ~ T5- For simplicity we will

first assume the density, n, to be constant in time as well as in space. With

these restrictions eq. (1) can be written

9T 1 K 3T
(3)
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The evolution of the temperature T(r,t) is subject to the boundary condi-

tions

•g- (O.t) = 0

T(a,t) = 0 (4)

where a denotes the plasma minor radius.

3.3. Space-averaged analysis

Most investigations of the problem of igniting and then controlling the sub-

sequent burn of a fusion reactor plasma have relied on 0-dimensional

simplifications of more or less complete dynamic plasma equations [2].

Eq. (3) represents the simplest dynamic equation modelling the self-

sustained burn of a fusion reactor plasma.

Generally, the reduction of the system to eliminate the space dependence

can be done in a heuristic way by replacing the effect of the diffusion

operator in eq. (3) with an energy confinement time, x%, according to

1 d ( K 3T

where xE = 3L̂ ff/K and Leff is an effective radius of the order of the plasma

minor radius a. We will begin our investigation by demonstrating a formal

averaging procedure, which reduces eq. (3) to a time dependent problem

for the average temperature. The confinement time can then be given

explicitly in terms of the properties of the averaged quantities and the

properties of the thermal conductivity. The system is then easily analyzed

for equilibrium and stability.
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In order to space average eq. (3), an assumption about the temperature

profile must be made. A convenient model compatible with the boundary

conditions, is T = T(0) ( l-r2 /a2) a . Define a formal averaging procedure as

<f> = - | - f rfdr (6)
a ^°

and apply it to eq. (3). This yields

(7)

where KQ and So are defined by

S = SOTP (8)

together with

4 K /•3J- '? ' \® + 1

<-^ | r K^ 0^]> = --r^^rT<T>8

a2 (5+l)5+2

SJP> = - % - (5+2)P, <T>P
 S So <T>P (9)

P+S+l (5DP-1

In deriving eqs. (8) and (9) we have made use of the fact that the

averaging of the diffusion yields a finite result only if a = 1/(8+1). This

implies that the thermal conductivity has a dominating influence on the

temperature profile, much stronger than the heating term. Note in

particular that the profile peaking factor, R, is determined solely by the

power law exponent of the thermal conduct ivi ty, viz.

R = T(0)/<T> =

Comparing with eq. (5) we identify the confinement time as
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i.e.

The equilibrium solution of eq. (7) is

<TS> = S° (12)

The stability of the equilibrium solution is determined by the linearized

equation for the perturbation A<T>, viz.

dA<T> 3H

where

H = KO<T>**1 - SO<T>P (14)

and consequently

-^r) (15)

Thus, the perturbations are stable or unstable depending upon whether

p < 5+1 or p > 8+1 respectively, as is well-known, e.g [1,2].

Since p actually depends on T, most considered models for the thermal

conductivity lead to two equilibrium solutions, one for moderate tempera-

tures T - 10 keV, which is unstable (p = 2), and another for high
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temperatures T - 30 keV, which is stable (P<1), cf Fig. 3. However,

physical and technological constraints favour the low temperature equili-

brium even though this necessitates the use of active burn control methods

for stabilization.

A /

/ :

B,

1
. jhigh

'ign

t i

10 20 30 40 50
Temperature (keV)

60 70

Fig. 3. Plasma heating and power loss as a function of plasma temperature with
plasma power loss assumed to be linearly dependent on temperature. Two confine-
ment scalings are denoted by A and B.

3.4. Profile analysis
In the present section we will consider in more detail the properties of eq.

(3) with special emphasis on the profile characteristics of the equilibrium

solutions. Introducing the normalization x = r/a, y(x) = T(r)/T(0), and X =

So T(0)p /Ko the properties of the equilibrium solution are determined

by the nonlinear eigenvalue problem:

i r 8 y
x dx v ' dx

y(0) = 1

y'(O) = (16)
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where the eigenvalue, X, determines the temperature on axis and the

eigenfunction, y(x), determines the radial profile of the temperature.

Exact analytical solutions of eq. (16) can only be obtained for particularly

simple choices of p and 8. Although obviously eq. (16) can be solved

numerically, we are here looking for simple analytical approximations

which should be useful, e.g. in evaluating derived global quantities like

fusion output, p-values etc.

The simplest approximate solution can be obtained by averaging

eq. (16) using the weighting function w(x) = x. This yields for the eigen-

value

(17)
(6+1)2

where again a finite loss flow at the boundary only occurs for a = 1/(8+1).

A somewhat better approximation can be expected if the physical

condition of finite flow at x = 1 is used to determine a, i.e. the form of the

eigenfunction, but a different weighting function is used for the

determination of the eigenvalue, e.g. w(x) = xy8+1. This implies

8 + 1 f'xy-d
Jo

The weighting function used in eq. (18) leads to a functional form for the

eigenvalue, which is reminiscent of a variational formulation. In order to

use the full power of optimization of a variational approach we

reformulate eq. (16) in order to allow a variational formulation. Introduce

y 8 + 1 = z, i.e. y = z1^5"1"1). Eq. (16) can then be written as the nonlinear

Sturm Liouville problem
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1 d f dz i - q A

x — + ?iz4 = 0x d x \ dx

Z'(O) = 0 = 2(1)

z(0)=l (19)

where q = p/(5+l) and A.= (8+l)k Eq. (19) can be rewritten as the varia-

tional problem corresponding to the Lagrangian

. 1 fdz] \ q

L = — x — xz4

2 \d\) q+1

(20)

Using Raleigh-Ritz optimization based on trial functions of the form y(x)

( l -x 2 ) a , it is straightforward to find the following optimal approximation:

p+3(8+l)

8(8+1)'
1+ 1 +•

1/2

(21)

The agreement between the numerical solutions and the approximations is

good, especially for the variationally obtained solutions, cf. Figs. 4 and 5.
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» C l

ou

0.2

0.8

Figs 4. Comparison between numerically obtained solution ( ) and approximate
solutions according to a = 1/(5 + 1) (—) and the variationally determined a (-.-.-)
respectively for the case p = 0.5 and 8 = - 0.5 (p = 1+8).

0. -

0.2

Fig. 5. Comparisons between numerically obtained solutions and approximate solu-
tions according to a = 1/(6+1) (—) and the variationally determined a (-.-.-) respec-
tively for p = 1.5 and 5 = 1.

Having established the properties of the stationary solution, its linear

stability can be investigated by considering the linear inhomogeneous

eigenvalue problem for a small perturbation of the equilibrium solution.

Again, using a variational approximation for the eigenvalue, the perturba-
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tions are found to be stable or unstable depending on whether p < 8+1 or p

> 8+1 respectively, i.e. in complete agreement with the 0-D analysis. This

condition is in fact equivalent to that obtained by other means, e.g. [5,61,

where the profile is stable or unstable when da/dT > 0 or da/dT < 0

respectively where a = a(T) is the equilibrium radius as a function of

•emperature on axis.

3.5. Extension to density profiles

The present approximate analysis can be generalized to include a fixed

density radial profile as well as to incorporate a density dependent

thermal conductivity. Thus we assume that the density is given by

n = n(0)(l-x2)Y and the thermal conductivity by nic/3 = ko n 5 n T 5 T . The

energy balance equation reads

where Ea <av>/12 = SOTP. Averaging as before assuming T(r) =

T(0)(l-x2)<x w e obtain

<n>2 <T>P (23)

where the condition of finite loss flow at r = a determines the temperature

profile exponent a to be a = (l-y6n)/( 1+8T)-

and

S° s° p+8T+l+Y(2+28^p8n)
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The stationary average temperature is

(25)

The stability properties of the equilibrium are the same as before.

A profile analysis analogous to that of the previous section can also be

performed. The eigenvalue, X, which determines the temperature on axis

according to A. = a2son(0)2-5n T(0)5T 5-r/k0 is given approximately by

X = 4(1~y5") f Cr>IK&i-H) + f (l-y5n)1 (26)

3.6 Application

As an illustration of the application of the present analysis we will

consider a thermonuclear plasma satisfying the INTGR scaling for the

thermal conductivity, viz.

(27)

We will furthermore assume n(r) = n(0)(l-r2/a2), n(0) = 21014cm 3 and a =

150 cm. In the temperature range 10<TkeV we approximate, cf Figs. 1 and

2, <ov> = 610"19T22cmVI where T is in keV. The characteristic profile

factors are 5n = 8T = 0, y = 1, p = 2.2 which implies that a = 1 and from eq.

(26) X = 12.4. The peak temperature T(0) is found to be T(0) =9keV in

acceptable agreement with the result of Ref. [5].
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Summary
The present analysis has considered the equilibrium and stability proper-

ties of the power balance equation determining the temperature evolution

in a burning fusion plasma. Special emphasis has been given to a

consistent profile averaging of tne radial transport eouation to obtain a

simplified zero dimensional model equation, the determination of approxi-

mate solutions for the equilibrium temperature profiles, as well as the

stability properties of the corresponding 0-D and 1-D equations. For a

more detailed presentation of the analysis, see [8]. Although the results of

the stability analysis are well-known, the method of approach gives some

new insight into the thermal runaway problem and in particular the

relation between 0-D and 1-D models. The extension of 0-D models to

allow for a more complete description involving radial transport models is

presently attracting considerable attention, [2,9].



- 40 -

References

[1] K. Borrass, Physica Scripta T16 (1987), 107.

[2] G.T. Säger, Tokamak Burn Control, internal report, Fusion Studies

Laboratory, University of Illinois, Urbana, Illinois, USA (1988).

[3] S.V. Putvinski, Sov. J. Plasma Physics, 6 (1981), 694.

[4] M. Becker, The Principles and Applications of Variational Methods,

MIT Research Monograph No. 27 (1964).

[5] Ya.I. Kolesnichenko, S.N. Reznik, and V.A. Yavorski, Nucl. Fus. J_6

(1976), 105.

[6] Ya. I. Kolesnichenko, Nucl. Fus. 20. (1980), 727.

[7] Ya. I. Kolesnichenko, V.V. Lutsenko, S.N. Reznik, internal report, Kiev

Institute for Nuclear Research (1987).

[8] D. Anderson, H. Hamnen and M. Lisak, CTH-IEFT/PP-1989-19.

[9] S.W. Haney, ITER Burn Control Workshop, December 16 (1988),

Lawrence Livermore Nat. Laboratory.



- 41 -

4 . SOME EMERGING THOUGHTS ON BURN CONTROL

4 . 1 On the maximum Q in subignited operation

The stabilization of thermal runaway can be obtained by working in the

subignition regime (nearly ignited plasma), with actively controlled time-

varying auxiliary heating. Symbolically, the evolution of a perturbation 8T

around an equilibrium temperature To can be written as:

^ ^ T ^ (1)

where Paux denotes the auxiliary heating power, assumed to be controlled

by some feedback function. Since To is assumed to be an equilibrium

point,

(2)

In Eq. (1), the maximum allowable negative perturbation is determined by

the available heating power, P a u x < P m a x . The maximum positive pertur-

bation follows from the requirement Paux > 0.

Conversely, the equilibrium point To together with a specification o the

maximum allowed positive perturbation STm a x determines the necessary

equilibrium heating power, P a u x (To), or in other words the maximum Q-

value for control to be possible.

The problem of finding Qmax as a function of To and 8Tmax was analyzed in

Ref. [1], using a two-fluid, 1-D, model for electrons and ions. Neoclassical

thermal conductivity was assumed for the ions and a constant conductivity

corresponding to the scaling law



- 42 -

Te =1.9-UT21 noa
2

was taken for the electrons. Both centrally peaked and edge peaked

auxiliary heating profiles, deposited either on ions or on electrons, were

studied. A typical result from [1], showing Qmax as a function of the

central equilibrium ion temperature, for different values of allowable

perturbation, is shown in Fig. (1).

a

50

40

30

20

10

•to

10 20 30

T l 0 (keV)
Fig. 1. Maximum allowable deviation from equilibrium as a function of the central
ion temperature and the power multiplication factor Q for centrally peaked auxiliary
heating of the ions. (From [1]).

We note here that the essential features contained in the results of Ref. [1]

can be obtained qualitatively without much involved analysis. Namely, as

noted above, using that the maximum positive temperature perturbation is

when the auxiliary heating must be completely shut off in order not to

have a growth of the temperature, i.e.

O = <3n Jt (5T)> = <Pa(T0 + 8TmiX)> - (3)

where we have also applied a volume average, we find by a Taylor expan-

sion of the RHS. and using Eq. (2), omitting for brevity the angular

brackets:
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yielding

5Pn r eTn

T . T

where

5 = (5)

From Eq. (4) we find

where we have assumed Q » 1 and where as before (cf Sec. 3)

3 In <av> '
(7)

and 8 is the scaling exponent of the thermal conductivity with

temperature. We also find that the thermal runaway time, defined from

can be written as

^

Eq. (6) shows a reasonable agreement with the results of Ref. [1]. The

equilibrium temperature To should be regarded as the volume averaged

temperature. Using the approximate relation (c.f. Sec. 3)
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T =
6+2
6+T" (10)

for the central temperature, Eq. (6) is plotted in Figs. (2a-c) for three diffe-

rent choices of 8; 5 = 0.5, 0; + 0.5. As can be seen, the achievable Q m a x

depends strongly on 8. Taking as an example the maximum relative

perturbation to be e = 0.2 (which could prove difficult to improve upon

because of diagnostic uncertainties among other things, c.f. also Sec. 4.3),

we find with 8 = 0 and T = 20 keV, Qm a x -10-15. Such a figure, obviously,

would be inconveniently low from a reactor point of view.

Q
o..
sr

- i
n r

10 20 30 40 T

5/

DEiTA=0
30 40 T

Q
o

o.

O .

DELTA=C.C

10 20 3C

Fig. 2. Qmax as a function of central ion temperature for different allowable
temperature deviations and for different temperature scalings, 8, of the thermal
conductivity a) 6 = -0.5 b) 8 = 0 and c) 8 = 0.5
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4.2 Conditions for the initial development of the
temperature

Assuming that the temperature profile corresponding to equilibrium of a

chosen operating point is known, we are faced with the following problem:

Suppose that the instantaneous measured profile is different from the

equilibrium profile, e.g. that it is hotter near the centre and colder near the

edge. What- will the subsequent evolution be? Will the plasma self-heat to

high temperatures or will the burn be quenched? Could a simple criterion

be given to separate the two cases? The answer to this question obviously

determines which control action to take, e.g. whether to increase the

auxiliary heating or let the plasma self-heat. To see that the question is

non-trivial, consider Figs. (3a, b), which are results of a numerical study of

the dynamics of a model equation for burn stability, given below. The

graphs show the evolution of two profiles, initially with the same profile

shape, but with slightly different axial values. As can be seen, for both

cases the axial temperature initially decreases, but at later times one case

self-heats and the other is quenched. Thus, the need for a sophisticated

control criterion is obvious. E.g. the momentaneous change in axial

temperature is not sufficient in this situation, but instead some sort of

integral criterion is needed.

Fig. 3. Time evolution of two temperature profiles initially with the same profile
shape (solid line), but with slightly different axial values. In both cases the central
temperature decays initially, but in the case to the right it later recovers and ends up
in runaway.
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Therefore, work has started in order to try to find such a suitable criterion.

The model equation studied is given by

(c.f. Sec. 3), with initial and boundary conditions

T(x,0) = To ( l -xV

T'(O.t) = 0

T(l,t) = O (11)

The same normalization as in Sec. 3 has been used so that X is taken as

(8+1 )2

In accordance with Sec. 3, we expect the equilibrium solution of (10) to

closely resemble

(13)

Problems similar to this1 one has been studied before, see, e.g. [2,3]. In Ref.

[2], it was suggested that regions of runaway and quench could be

separated by

[ T(x,0)xdx><x| T (x)xdx (14)
Jo < »o

where the coefficient a depends somewhat on the exact profile shapes,

though always being of the order unity. In other words, thermal runaway

is determined by whether or not the momentaneous thermal (energy)

content is more or less than the equilibrium content. Using the results of

Sec. 3, we have
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"I T e q(x)xdxS l I^ (15)

So far, we have primarily been studying the dynamics of profiles which

are initially more peaked than the equilibrium profile (13). The

preliminary conclusion is that the criterion (14) tends to overestimate the

thermal content needed to get runaway. However, for the numerical

solution of Eq. (10), a rather crude explicit scheme has been used, so that

the quantitative statements may have to be reexamined.

To examine the stability of the assumed equilibrium solution we first

illustrate the case y = 1/(1+5), p = 2, 8 = 0 (A. = 8). Shown in Fig. (4) is the

time evolution of the thermal content

W(t)=f T(x,
Jo

t)xdx (16)

for different initial To. In Figs. (5a, b) are shown the corresponding evolu-

tion of profiles.

hi

Fig. 4. Time evolution of the
thermal content for initial peaking
factor y = 1/(1+5), p = 2, 5=0 , for
three values of initial axial
temperature To = 0.9, 1.0; 1.1.

2 A .6 TIME
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Fig. 5. Time evolution of temperature profile with the same parameters as for Fig. 4,
a) To = 0.9 b) To = 1.0. Solid lines mark the initial profiles.

It appears that the approximation for the equilibrium profile is reasonable,

although it seems to predict slightly too broad profiles.

It is intuitively clear that for a highly peaked initial profile, the time

evolution will consist of two phases. A first fast phase, where by heat con-

duction the central peak will spread out, so that the resulting profile will

be similar in shape to the equilibrium profile. Thereafter follows a phase

of either runaway or quenching with essentially fixed profile shape. It is

then also clear that the separation between runaway or quench is deter-

mined by whether or not the profile lies above or below the equilibrium

profile by the end of the first phase. A criterion like Eq. (14), with a = 1,

says just this. However, it neglects the change in thermal content during

the first phase. In order to include this, we have tried Taylor expanding

the thermal content, and thus write the criterion for thermal runaway as

^ - W(X) = Weq - W(0) - W(0)-T - W(0) • y < 0 (17)
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where x is a measure of the length of the first phase and where W(0) and

W(0) are numerically calculated here but corresponds to quantities which

are semi-momentaneously measurable. To find an estimate of the time-

scaie T, we note that close to the axis, a generalized parabola can be fitted

by a Bessel function:

, x« (18)

For a highly peaked profile, the presence of the boundary at x = 1 should

initially not play an important role. Thus, from the solution to the free

expansion problem with initial profile as in Eq. (18) we find a measure of

the characteristic time constant for decay

1

(2VÖT)2 4y (19)

In Fig. (6) we compare the criteria (14) with a = 1 and (17) with the

numerically derived boundary between cases resulting in runaway and

quenching. Although the prediction given by Eq. (17) is not perfect, it

seems to be a step in the right direction and further studies may improve

the situation

3]

2

1\

5 10 V

Fig. 6. Comparison of analytically and numerically derived criteria for the separa-
tion of cases resulting in runaway on quench. The case shown is for the parameter
choice p = 2, 8 = 0 and gives as a function of initial peaking factor y the necessary
initial axis temperature.
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4.3 Some implications of sawtooth activity for burn
control

A prominent feature in modern Tokamak experiments is the presence of

significant sawtooth activity. The characteristic sawtooth variation in time

has been observed in electron and ion temperatures as well as in plasma

density but also in signals relating to fusion produced quantities like

neutron and high energy charged particle emission. Although an effort is

made to conceive methods for suppressing the sawteeth, it seems likely

that sawtooth oscillations will be present also in Tokamaks operating near

or under ignition conditions. In fact, it has even been suggested that the

suppression and excitation of sawtooth oscillations might be used to

modify plasma energy confinement and thereby to act as a burn control

method. However, making the conservative assumption that sawteeth do

not easily lend themselves to be controlled, one should examine their

effects on burn control. In particular, the presence of sawteeth

complicates the active feedback control of an unstable equilibrium

temperature profile.. Two aspects of this problem will be tentatively

discussed: (i) the profile changes involved in the sawtooth process

complicates the interpretation of neutron emission signals if these are used

to infer central ion temperatures and (ii) the sawtooth temperature

variation implies an inherent Q-limitation for subignited scenarii.

Neutron yield variation in sawtooth dominated plasmas

Assuming <ov> ~ Tp the volume averaged neutron yield, S, becomes

S - I n2 Tp dv (20)

The ion density and temperature profiles are modelled according to n(r) =

n(0)(l-r2/a2) f f Tfr) = T(0)(l-r2/a2)P' The relative change of the neutron

yield during a sawtooth event is,
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AS „ An(O) . AT(O) 2Aoc + pAp'
i + P

where the last term accounts for the effect of the changing density and

temperature profiles during the sawtooth. Indeed, the last term in general

significantly affect the neutron yield and must be taken into account in

order to relate correctly the variations of neutron emission and tempera-

ture, [4].

Using the assumption that the total ion particle and energy densities in the

plasma remain constant during a sawtooth crash eq. (21) can be rewritten,

[4]

A S 2 a + p p A N
+

( '

_
S " (2a + pp+l)[l + K(a)(a+l)] N

AT(0)
2a+pp+l T(0)

where K(a) can be expressed in terms of the logarithmic derivative vy(x) of

the Gamma function according to

K(a) = v(a + 1) - y(a + 3/2) (23)

and N and AN denote central line integrated density and the corresponding

variation respectively. Generally the contribution coming from the density

variation is significantly smaller than that coming from the temperature

variation. Neglecting the former contribution we have

AS_ _ p[q+(p-l)p1 AT(0)
S = 2a + pp + 1 T(0) ( '

as compared to the relation

AS _ AT(0)

"T = p"Tör {25)
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which is obtained if profile effects are neglected. Assuming parabolic

density profile (a = 1) and taking a temperature profile consistent with a

thermal conductivity scaling K ~ T5, i.e. p* = 1/(1+8) we obtain from eq. (22),

using p = 2:

AS
S

4 + 28 AT(0)
5 + 38 T(0)

(26)

e.g. for 8 = 0, AS/S ~ 0.8 AT(0)/T(0), as compared to AS/S = 2 AT(0)/T(0)

according to eq. (25). Thus, we conclude that changing profiles in connec-

tion with sawtooth activity in burning plasmas is an important effect to be

considered when neutron diagnostics are to be used for feedback control of

unstable equilibria.
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Fig. 7a. Time evolution of the total neutron flux in FT sawtooth discharges, [4],
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350 -

couata/0.5 ms

300

Fig. 7b. Time evolution of the total neutron flux averaged over 17 subsequent
sawteeth during the current flat top, [4].

Sawtooth induced Q-limitations of subignited operation

The presence of sawtooth activity in a fusion plasma should be particularly

complicating for a feedback controlled subignited plasma since such a

plasma should work as close as possible to the ignition temperature in

order to achieve high Q-values. This implies that especially positive

temperature excursions from the operating temperature are particularly

dangerous since the control measure is passive, i.e. decreasing the auxiliary

heating. Thus, the maximum positive temperature excursion is determined

by Paux = 0.

Furthermore, the control system must be "intelligent" enough to

distinguish between the inherent sawtooth excursions and real thermal

runaway. This may, in fact, prove exceedingly difficult partly because the

characteristic sawtooth period can be expected to be of the same order as

the thermal runaway time and partly because the sawtooth period may

vary on the same machine. On, e.g. JET the sawtooth period can vary from

~ 100 ms up to monster sawteeth extending over several seconds. In

addition the magnitude of the sawtooth may also vary significantly. This is

illustrated in Figs. (8-10).
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Fig. 8. Time dependence of 2.5 MeV neutrons, soft x-rays from the plasma centre and
ICRH power for a typical ^He minority heated discharge ;.n JET, [5].
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Fig. 9. The giant sawteeth activity in JET with increased amplitude and period of
sawteeth during ICRH (Ip = 2 MA, q v = 6), [6].
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Fig. 10. A characteristic "monster" sawtooth JET discharge with sawtooth stabiliza-
tion by minority ICRF heating, [6].

If the sawtooth activity is accepted as part of normal operation, at least a

20% inherent variation in peak temperature must be allowed for. To this

must be added the uncertainty of the measurement which may add

another 20% (conservative estimate). This implies that the operating

temperature must lie at least 20-30% below the ignition temperature and

that the maximum achievable Q is approximately 10-15 as discussed in

section 4.1.

Thus we conclude that sawtooth activity should be a problem of great

concern for high-Q subignited operation of fusion reactor plasmas.

4.4 Thoughts on alternative control actions

As noted previously, a large number of schemes have been proposed in

order to control the thermonuclear burn at an unstable operating point.

However, most of these have drawbacks associated with them, e.g. in terms

of power consumption or compatibility with reactor design or simply

because the physics of the proposed mechanism is poorly understood.

Therefore, there seems to be a need to invent alternative methods, in the

hope of eventually finding a more suitable scheme. We have tried also to
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think along these lines and below we present two embryos for ideas in this

direction, one of which does not appear effective and one which may be

worth pursuing.

Control by variation of effective minor radius

As shown in Sec. 3, the average temperature in equilibrium is related to

minor radius according to

(z
< T S > =

Thus, e.g. for the case p = 2, 8 = 0.5, we see that a 5% change in minor

radius a is sufficient to produce a 20% change in <TS>. Hence, if a suitable

method of changing the effective plasma radius could be devised, then this

may be a practical method for control. One method of doing this could

perhaps be to move the divertor x-point in and out, if e.g. this is possible

on the required timescale and if the resulting changes in depositio'n profile

on the divertor plates would be tolerable. Another method may be to

strongly increase the heat conductivity in the outer regions of the plasma,

thereby effectively reducing its size. This may prove possible to

accomplish if turbulence could be induced by injected edge-localized

waves or if time varying magnetic field ripple could be introduced in the

outer plasma by external windings.

Dynamic stabilization

It is well-known in mechanics that an unstable equilibrium point may be

stabilised if a suitable periodic force is applied. For example, the unstable

equilibrium of an inverted pendulum can be stabilized if its base point is

forced to perform an updown motion with an amplitude and frequency in

a certain range. Also in plasma physics, dynamic stabilization has been
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proposed for stabilization of e.g. the Rayleigh-Taylor instability, see e.g. the

review [7].

We have briefly examined whether the same technique could be applied

for burn control. It has been assumed that sinusoidally modulated

auxiliary heating is applied to the plasma, giving the energy balance equa-

tion

3n -^- = F(T) + Po coscot (28)

where

(29)

with paux being the time averaged auxiliary heating power. Suppose that T

= To is an unstable equilibrium solution of (28) with Po = 0, i.e. that

F(To) = 0

J? IT=TO>0 (30)

Introducing 5T = T-To we find by Taylor expanding around the equilibrium

point

To simplify the notation, we have studied the model equation

-r- = ay + by2 + coscot (32)

where a > 0. Eq. (32) is a special case of the generalized Riccati equation:
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f(t) + g(t)y + h(t)y2 (33)

which is known to have the general solution

+ u2

v (34)

where C is a constant to be determined by the initial condition, and ui and

U2 are linearly independent solutions of the equation

u* + P(t)u + Q(t)u = 0

Q(t) = bc-coscot (35)

With the transformation

u(t) = v(t)-w(t)

= e-a/2t (36)

we find

V pcoscot)v

a2

P = be (37)

This is the Mathieu equation and is formally identical to the equation

resulting in the case of the inverted pendulum. Hence there exists ranges
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for the parameters for which the general solution of (37) is stable and

oscillatory. However, for the solution (34) of the original problem

l[(Cv1+v2)-w]

b (Cv1+v2)w

where vi and V2 are the independent solutions of the Mathieu equation,

we see that these oscillatory solutions would correspond to instability for

the Riccati equation, in that whenever Cvi + V2 = 0, y(t) diverges.

Thus, it appears likely that dynamic stabilization of the burn instability

could not be achieved in this way. However, the remaining possibility of

utilizing parameter ranges where the solution of the Mathieu equation

does not pass through zero should be further investigated before a definite

conclusion could be reached.
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5. Requirements on diagnostics

For the purpose of controlling the plasma with respect to burn conditions

one will require information about plasma quantities of relevance for the

control process like the fuel concentration, fuel composition (i.e. no/nx,

fuel temperature, alpha particle heating, additional heating power, (J- and

Q-values. All quantities have to be known as functions of time. Quantities

directly involved in the burning process, like densities, temperatures and

alpha particle heating power density have to be known also as functions of

radius.

5.1 Accuracy and time resolution

Whenever a deviation from the working point occurs in a burning plasma

some sort of control action has to take place in order to bring the para-

meter values back to the desired values. Regardless of the method chosen

some distortion of the fuel ion distribution has to be the result, whether it

is caused by direct heating or cooling of the ions or indirectly through a

density modification. In any case for a large modification of the fuel

energy distribution the interpretation of the fuel temperature measure-

ment becomes more difficult as opposed to a minor modification.

As an example we consider an ITER plasma with a 15 keV central

temperature and central density equal to 41020m"3 (and no /n j = 0.5),

profile peaking factor (for parabolic profiles) equal to 4, and 100 MW

neutral deuterium beam heating. Calculations of the fractional neutron

sources, i.e. thermal-thermal, beam-thermal and beam-beam reactions

give the ratios 0.9/0.09/0.01. Thus in this case the evolution of the ion

temperature through measurements of neutron energy spectra would just

be possible. The power level referred to in this case represents the full

neutral beam power capable of bringing the plasma from low temperature

and low density conditions to full power (1000 MW) performance in a time

period of a few seconds.
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As a control reference case we consider a situation when the total energy

content decreases by 10 per cent within a time interval of 0.1 s.

Regardless whether this is due to a loss of fuel density or a decrease in ion

temperature or a combination of both, the decrease will be reflected in a

20 per cent decrease in neutron production and consequently in a 20 per

cent decrease in alpha particle heating power (i.e. ~ 40 MW). To

compensate for this the additional power needed for heating the plasma

would be of the same order. Thus for this particular case the neutron

spectra would contain approximately 4 per cent of beam-thermal neutrons

and consequently the ion temperature measurements through evaluation

of neutron spectra or by any other diagnostic technique would be

relatively reliable because the distortion of the fuel energy distribution is

negligible.

To measure a variation of 10 per cent in total neutron emission within a

time period of 0.1 s is a relatively straightforward matter. To measure the

.fuel ion temperature within the same time period is feasible although it

would require sofisticated instruments and a fast evaluation procedure.

Evaluation of fuel concentration either from neutron measurements or

from measurements of line radiation of impurities is a tedious work and

requires a lot of considerations before it can be made on line. For

improvement of evaluation of measured data further research and

development work is needed.

One complication which occurs on timescales around 0.1 s is interference of

sawtooth oscillati ns which could easily cause variations in neutron

emission exceeding the 10 per cent level.

In case one does not want the control system to act upon such oscillations

it is not at the moment obvious how a distinction of these oscillations from

ordinary global energy losses can be made. One possible way might be to

use the time derivative of the neutron emission signal. E.g. in JET this has

a much faster decay time (- 50-100 ms) than signals caused by global
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energy losses with fall times approximately equal to 500 ms. The whole

issue concerning the treatment and interpretation of global neutron

emission signal has to be further investigated.

5.2 Profile measurements

The demands on the spatial resolution of the neutron emission measure-

ment is related to the level of accuracy in the measurements and the

profile of the neutron source. If we again require a 10 per cent accuracy

in emissivity measurements the spatial resolution must correspond to a

smaller distance than does a 10 per cent variation in neutron emissivity

along the minor radius. With peaking factors (for a parabolic neutron

source profile) ranging from 5 to 12 (obtained from JET data) this distance

is approximately equal to 10 cm in the ITER geometry.

5.3 Summary of diagnostics requirements

In conclusion one needs to achieve qualities in measured or evaluated

plasma parameter values used in the algorithm for burn control as given in

Table 1. Some diagnostic techniques used in todays tokamaks allow for

measurements according to the requirements. However, for some

evaluated values like nf and Tf the experience of today is limited and

further research and development work will be needed.
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Table 1.

Evaluated or
measured
quantity

Tf (r,t)
Te (r,t)

no (r,t)
nT (r,t)

Pa (r,t)
P
Q

Accuracy
(%)

10
10

10
10

10
10
10

Time
resol.

(s)

0.1
0.1

0.1
0.1

0.1
0.1
0.1

Spatial
resol.

(cm)

10
10

10
10

10

6. Process identification
6.1 Description
Process identification is an analysis technique which allows to determine

the dynamics of complex processes. It is based on real measurements of a

set of physical signals which represent the process to be evaluated.

Process identification is today broadly applied in various fields like nuclear

power reactor technology, chemical process technology, geophysics, aero-

nautics, biological research and speech processing to name a few.

Our experience comprises both code development work as well as practical

applications mainly at the Swedish nuclear power plants during the last

two decades.

Some applications to fusion have recently been developed and tested at

JET. They concern the control of plasma density, vertical and radial plasma

positioning and detection of leakage in a cooling system for magnets.

Simplified the method can be explained as follows:
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The input and output signals from the process to be studied are measured

simultaneously and analyzed by a mathematical model. During the

measurement the model parameters (order and matrix coefficients) are

updated iteratively by comparing the output from this model with the out-

put from the process. The deviations of these outputs contribute to the

convergence of the model.

When finally the evaluated output from model is identical to the measured

output - within predefined margins - the process is said to be "identified"

and relevant information is stored in the model's matrix coefficients. The

model order is then also evaluated and optimized by using Akaike

criterion [Ref. 1].

Now this model can be used to study various dynamic characteristics of the

process. By disturbing the model we can find step responses, time con-

stants and transfer functions as well as complex cause-consequence rela-

tions.

Also testing of sensor conditions (aging) is frequently done using process

identification.

6.2 Applications for fusion

At JET some applications have recently been tested in the following areas

[Ref. 2]:

- The introduction of Beryllium in the wall changed the mass balance in

the plasma. The conventional controller for this reason has been

redesigned to bring the system back to acceptable performance. However,

with the knowledge of current dynamics (through identification) and

expected reference signals a performance beyond what is possible with the

previous technology could be achieved. An enhancement in terms of an
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adaptive feed-forward solution superimposed on the established system is

being considered within JET. Some preliminary attempts of running an

identifier on real data has so far given some encouraging results.

- The plasma positioning control in the vertical direction is complicated

by the fact that the open loop system is unstable; it has a pole in the right-

hand half of the s-plane. This pole is normally moved across to the left-

hand side (the stable region) through adequate design of feedback. In this

case, however, the position of the pole is not constant, which keeps

changing the conditions for the feedback stabilisation. In order to

maintain the overall performance of the system the pole position has to be

identified and the feedback algorithm updated accordingly. A feasibility

study addressing this problem has been carried out by UMIST for NET with

participation from JET [2].

- A leakage detection module for the magnet cooling system has been

designed and tested. Normal expansion variations due to the operation at

JET is several orders of magnitude higher than that relating to leaks in the

system. An identifier with the ability to distinguish between expected and

unexpected variations was developed within JET.

As concerns NET we propose to study the application of process identifica-

tion methods to burn control. Within this area a promising approach is

a survey of relevant diagnostics as input to a system to identify

"underlying common" information about the dynamics of the plasma

- to investigate the area of burn control under the aspect of:

which (set of) diagnostics are suitable candidates for necessary

control loops
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is there a necessity to improve their performance

is there a necessity to "develop" new diagnostics

to contribute to the better understanding between the demands and

needs from physicists and control experts.

6.3 Present preparative activities
A key experiment has been designed and will be conducted during the

first half of 1990. We will make use of process identification technique for

an investigation in fusion plasma dynamics.

Software for the solution of a set of model equations for burn dynamics

has been developed, c.f. Sec. 2. In situations near marginal stability

(weakly stable and weakly unstable) a carefully selected "persistent"

excitation will be used, together with noise-corrupted data from the

solutions of the evolution equations. Analyzing these data using process

identification an attempt will be made to recover a couple of the system

parameters, e.g. the energy and particle confinement times. Thus a

comparison is possible with the values assumed when generating the data.

If this is successful an attempt will be made to identify, in a situation with

feedback control, both the intrinsic dynamics of the open system and the

control actions taken.

In this way it will be possible to demonstrate the feasibility of using

process identification on known systems as concerns burning fusion

plasma.

Later, based on this experience, it should be possible to use real data (e.g.

from JET) to evaluate interesting dynamical parameters from measured

plasma shots in order to study practical contributions to burn control.
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6.4 Process identification and physical models

Several different forms and methods for system identification exist. The

theoretical approach with a system description in terms of equations

derived from basic physical principles represents one extreme case. Such

a theory is desirable but it may be incomplete, having flaws and limited

validity or involve unknown parameters.

At the other extreme we have a black-box model in which the system is

treated based on measured input-output signal relations with a non-

physical mathematical formalism, which takes very little credit of "known"

relations derived from a physical theory.

It is an interesting fact that between these two cases there exists a whole

spectrum of intermediate possibilities in which one can include what is

known about the system from physical analyses, e.g. the structure and

order of the system. This knowledge can then be used - together with

sampled input/output data - to determine unknown parameters. It seems

that the "state space" formalism of control theory is particularly well

suited for this since the laws of physics are very often formulated in terms

of differential equations. This is indeed the case with the present problem

of burn control.

In a real situation, even if a theory exists which claims to describe the

pertinent phenomena, one may also use a black-box model to check the

validity of the theory. This should be of interest for burn control since

zero-dimensional systems describing burn with different dimensions exist;

a black-.box identification model may thus be helpful to distinguish

between the theoretical models in a systematic way, still based on an

experimental approach.
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7. Future work

In order to complete this prestudy of burn control issues for NET/ITER

some particular issues related to the power balance, actuator techniques

and control techniques have to be further investigated. Particularly we

intend to study the following:

The potential of using the Pa-signal as a basis for control purposes

extended by a reconstruction of n and T and utilizing state-space

control, Sec. 2.5.

To find an optimized way to chose between several actuators in order

to reduce the input effort and undesired side effects, Sec. 2.5.

Different minimization criteria with respect to desired and actual

signal and their implications on the requirements on the actuators in

terms of, e.g. maximum power rate, power and energy, Sec. 2.5.

An extension of 0-D models to allow for a more complete description

of radial transport, Sec. 3.7.

Further development on finding criteria for the time evolution of

given initial profiles, Sec. 4.2.

The complicating effect of sawtooth oscillations for (i) the

interpretation of neutron emission data and (ii) the feedback control

of a subignited reactor plasma, Sec. 4.3.

The practical implications for control by variation of effective minor

radius will be investigated. If feasible the idea could possibly be

supported by a numerical study where the 1-D power balance

equation would be solved. Concerning dynamic stabilization, where

the preliminary conclusion was that the method is ineffective, the

remaining open questions will be studied, Sec. 4.4.
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The burn dynamics by means of process identification. The coupled

power equations will be used for generating signals (with some noise

addeJ) for a process identification in a numerical experiment to be

performed early 1990. The purpose is to study the potential of this

technique for conditions of relevance for burn control, Sec. 6.3.

A closer interaction with the NET-team particularly with the purpose of

studying the technical aspects of the actuators and diagnostics is also fore-

seen.
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