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ABSTRACT 

Г.его and finite temperature quark matter is studied in a chiral 

chromodieLectric model with quark, meson and chrcmodieiectric 

degrees of freedom. Mean field approximation is used. Two 

cases are considered: two-flavor and three-flavor quark matter. 

It is found that at sufficiently low densities and temperatures 

the system is in a chirally broken phase, with quarks acquiring 

effective masses of the order of 100 MeV. At higher densities/ 

temperaxures a chiral phase transition occurs, and the quarks 

become massless. A comparison to traditional nuclear physics 

suggests that the chiral ly broken phase with massive quark gas 

may be the ground state of matter at densities of the order of a 

few nuclear saturation densities. 
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I. INTRODUCTION 

Over the past few years various chromodielectric models 

1—9 have become popular . These models are based on the old 

idea that the phenomenon of confinement can be described by 

vanishing of the chromodielectric constant in the vacuum, 

£ = 0. ~ In chromodielectric models the dielectric constant t. is 
v a c 

treated as a dynamical effective field. Several attempts have 

been made to justify these models, starting from QCD on the 

lattice1' 1- . The form of the effective lagrangians that 

follows from such considerations has, in general, the following 

structure: 

£ = ? дцг* V> - ? M. if/x" + 1/2 Хго(дцх)2 - U U ) + £• , (1) 

where 9 is the quark field, X is the (dimensionless) chromo¬ 

dielectric field, p is some positive power, Л is the quark mass, 
lc is a scale of dimension of energy, U(.t) is the ł-field 
potential, and £' contains terms with color octet fields, and 
possibly other effective degrees of freedom. The chromo¬ 
dielectric constant is related to the chroraodielectric field in 
the following manner 

£ = ** . . (2) 
T 

hence to ensure e = 0 one requires that x = 0 . ^ 
The key element of chromodielectric models is that the 

effective quark mass, A/XP, becomes infinite in the vacuum, 
which in the case of baryons forces the quarks to be confined in -'. 

bag-like objects2"8, very much like in the old MIT bag model.15 "* 



The difference is that in the case of chromo\Lelectric models, 
the bag: is generated selfconsistently through the interaction 
with the dynamical field ł. 

S;:;ce QCD possesses an approximate chiral symmetry, any 
realistic effective theory of strong interactions has to respect 
this symmetry. Chiral extensions of chromodielectric models 

have been proposed and studied in the context of models of 
& 5 8 9 1A hadrons by several authors"' ' ' ' . The modification in the 

l.łgrangiar. (!) amounts to the replacement of the mass term by a 

chiraliу invariant form involving a and в mesons, and to adding 

a suitable cr-n interaction. The lagrangian of the chiral 

chromodielectric model which we are going to study in this 

paper has the form 

n)B /яр + 1/2 

+ 1/2 {B^a')2 + 1/2 (d^n)2- U(0,/r; 

The potential U(ff,n) has the "Mexican Hat" shape °, which leads 
to spop-anecus chiral symmetrv breaking, with о = -F , where 

v a c T* ' 

f.n = 93 MeV is the pion decay constant. The coupling constant g 

is dimensioniess. Tlie effective mass of the quark in this model 

In the vacuum, due to spontaneous chiral symmetry breaking, о is 

nonzero, and since д = 0, m e f f becomes infinite, as in the 
v Q C <j 

non-chiral mode i (1). 



Thf main purpose of this work is to study the chiral phasfe 

transition generated by lagrangian (3). Our approach parallels 

the treatment of the fermicn-meson system in the Wałecka 

model . Specifically, we use the mean field approximation, 

i.e. the effective meson and chromodielectric fields are treated 

as classical fields, and no quantum effects for the quarks are 

included. We find that at sufficiently low densities and 

temperatures, the system is in a chirally broken phase, with 

a * 0, and with massive quarks (cf. eqn.(4)). As the matter is 

compressed, at some point a first order phase transition to a 

chirally symmetric phase occurs, and at higher densities the 

ground state of the system becomes just a gas of massless 

quarks, with с = 0 (in this work we ignore the effects of 

current quark masses). 

The paper is organized as follows: In Sect. II and III we 

study the zero temperature matter. Two cases arfi considered: 

isospin-symmetric quark matter (Sect. II), with equal amounts of 

up and down quarks, and charge-neutral qticirk matter (Sect. Ill), 

with equal amounts of up, down and strange quarks. The results 

of Sec. Ill may be applied to models of neutron stars. In 

Sect. IV we study the two-flavor quark matter at finite " 

temperatures. This situation may be realized in relativistic 

heavy-ion collisions, as well as in the early universe. 



::. TWO FLAVOR МАТ~ЕП. \T ZE?.Q T~MPEHATU:>E 

For simplicity of caici.ition, we make the assumption that 
the system is uniform. Thus, '•he mean I and a fields have 
constant values throughout the whole space, and the pion field 
vanishes . The valence quarks occupy plane wave' states of 
positive energy, up to the fermi momentum kp. The expression to 
minimize is the energy per Ьагуо-л number, 

;• fd3k/(2n)3 / (mefVt- fc2 в(к - |kj) + U(a) + WU) Ł/j, = i 2 , S , (6) 
г/г jd3k/(2*r)3 

e f f where ;' = 2x2x3 is the spin-f lavor-co] or degeneracv, m is q 

given in (4), к is the fermi momentum, and the с and i 
potentials are given by 

г 
U(a) = — ^ — (a2- F " ) 2 , (7a) 

* it 

= 1/2 У[2 A 2 

Potential (7a) is the familiar "Mexican Kat" , with the pion 
field set to zero, and for the case of m = 0. The quantity m 

' is the mass of the a meson. Potential (7b) consists just of a 
j,. mass term for the chromodi electric field. 
Ц The model seemingly has five parameters: g, m , M , t and 

p. However, introducing a new variable \' = Л х X, potential 
(7b) becomes just U(r') = 1/2 X'2, and the effective qu-.гк mass 
(4) takes the form m^rf = -(gfl^,^ )PCT/?IP. Thus, exprebsion (6) 
depends effectively on three parameters: m , gM * and p. For 



convenience we denote 

which is a free parameter of dimension of energy. Throughout 

•h:. • paper we use m =1.2 Gev°. The choice of power p is more 

subtle. Various authors have their preferred choices of this 

parameter, ranging from i4'-1' , through 3/2 to 2' . Here we 

do no- ivatit to make a judgement on which choice is better 

justified. We present results mostly for p = 2, however we will 

also show the qualitative conclusions do not depend on the 

specific chcice of p. 

To find ~he configuration with minimum energy per ui.it of 

baryon number, expression (6) is minimized with respect to *' 

arid m at a fixed value at к . We use x' and m as 
j F q 

independent variables, rather Than X' and cr, to avoid divisions 

by С in rqn. . ^ ) . The field a is thus replaced by 

a - -я1.'' ' i ł '/&* ) p in eqn. (7a/. The results for p = 2 and 

Z- = С 21? C-eV are displayed in Fig. 1, where we plot the energy 

per barvon number (a), and the value of mean fields and m* *(b) 
ч 

versus, the volume per baryon number. 

At "nigh densities the ground state is in the chirally 

restored phase (solid line, labeled 3 = 0 ) , for which both m* f 
q i 

and i' vanish. In this case expression (6) has a particularly ;"j 
< 

simple form .f 

;- Jd3k/(2ff)3 к 

7/Ъ fd3k/(27r) 



л.-.ог-- 3 = nitri/fi has the i r.t. ̂ rprstat ion of the volume density of 

the energy or the chirally symmetric vacuum. It plays the same 

role in expression (9) as the bag constant of the MIT bag 

model1"'19. In the limit of large densities, E / ^ o h l r a l behaves 

d^ к , which is a feature of a relativis-ic fermi gas. For low 

densities, 2/N behaves as k_~3, and in fact the solid curve 

has a minimum around V/N =1.5 fm3. However, the low density' 

part of the solid curve is unphysical, since around 

V/X = 0.5 fin3 a phase transition occurs, and for lower densities 

the ground state of the system is in a chirally broken phase 

(dash-dotted line in Fig. (la), labeled a * 0). In this phase 

the values of m* Г and г', and, consequently, u, are no longer 

zero Fig. (lb)). 

Performing a standard-Maxwel1's construction we can find 

the densities at which the phase transition starts and ends. 

They are denoted by thin arrows in Figs, (la) and (lb). The 

jump in the energy per baryon number between the two phases is 

"29 MeV, hence the transition is a rather weak first order phase 

transition. We note, however, that the "order parameters" in 

Fig. (lb) change abruptly from zero in ihe chiral ly restored 

phase to finite values in the chirally broken phase. In 

particular, in the vicinity of the chiral phase transition the 

value of a is approximately -85 MeV, not significantly different 

from the vacuum value of -93 MeV, and the effective quark mass 

assumes values around 100 MeV. Such values are reminiscent of 

"constituent" quark masses, although in our case the number is 

about three times smaller than one third of the nuc1 eon .mass. 



\•.••'= that similar values for na" were found in the center of 
q 

Ьэгуоп in chromodielectric models 

As we contin\i3 to decrease the density, the dash-dotted 

cur\e in Fig. (la) flattens oat, reaches a minimum around 

Y/N = 2.5 fm3, and then starts +o increase again. However, our 

calculation is not reliable in this range of densities. The 

assumption that the mat+er _an be described by plane-WLve gas of 

quarks is acceptable for high densities, where we expect bc-ryons 

to be melted into a quark gu=. Un th* other hand, we know that 

at the nuclear saturation density p = 0.17 fin , which 

corresponds to (V/N) =» 6 fm , puclear matter consists" of well-

for:ned nucleor,s. which are throe-quark clusters. One can use 

geometrical argumsnts to estimate the rer:ge :n which one car 

e"Ti*ct uncl ' = -e:ed gas to be a good approxiriation. Using the 

isos'-al ir "hs:ge r?dius of thr- nucleon, whose experimentŁ I value 

is 0.72 fm. as tne nacieon rsćius, we fir:̂  that the volume 

ocrupie-i by the :;ucleon is ~1.6 fm . which is roughly a quarter 

of (V/N)Q. Thub we expect that at densities "к р the r,ucl»ons 

will start to overlap, and for r.i&her densities will gradually 

"melt" into a quark gas. Consequently, we expect that our 

approximation is good for V/N less than about 1.6 fm . Beyond 

this point the clustering effects become important. Ideally, 

one would like to describe these effects within the model (3), 

this is, however, beyond the scope of this paper. 

Instead, at low densities we use for comparison a 

traditional nuclear matter calculation. For simplicity, we have 
20 chosen the Vautherin and Brink parameterization (SI1) of 



symmetric nuclear matter, bas^d on the Skyrme nuclear 
interactions (dotted curve ii. Fig. (la), labeled "Nucleonic 
Matter"). It is not clear up tc what densities one ca.n trust 
this parameterization, but we hope one can still use it up to 
densities " •* p . Also, one could use a different equation of 
state , but since we are concerned with qualitative predictions 
of model (3), such details would not change our general 
conclusions. 

Looking at Fig. (la), we note that at high densities the 
quark gas phase has a lower energy than the nucleonic matter, 
and, vice versa, at low densities the nucleonic matter is the 
ground state. There is a "clustering phase transition" at 
V/N = 1-1.8 fm . We perform a Maxwell's construction between 
these two phases. The densities at which the clustering' begins 

! and ends is denoted by thick arrows in Fig. 1. We note that 
\ this phase transition should be taken with a grain of salt, 

\ since the clustered, nucleonic matter is-, not described within 
\ 
\ our model, but taken from elsewhere. In a consistent 
1 
j description, this onset of clustering may occur smoothl;'. 

' without a phase transition. We perform the Maxwell's 

f construction merely to see at what densities we expect the 

clustering effects to become important, avid find densities of 

: the order of 3-6 pQ. This value is compatible with the number 

ft obtained earlier from geometrical estimates. Looking back at 
% 

к Fig- 1 (a) we can see that there is a range in densities, 

I approximately between 6 and 12 p , for which the ground state of 

| matter is the massive quark gas, with a broken chiral symmetry. 



To coiivlnop thfc reader t'idt our qualitative results do not 

deperr1 on parameters chosen, Fig. 2 shows E/N calculated for two 

different vs'ue- of G (in units of L>eV) , with p = 2, and also a 

calculation for p e l . There is only one solid curvs for the 

ihirally restored phase, since E/N o h i P e l does not depend on G or 

p (ef. eqn. 9). The effect of increasing G, at a fixed p, is a 

decrease of the energy per baryon number in the broken phase. 

This can be seen comparing the dashed curve and the dot-dashed 

curve iii Fig. 2. One can also see that a different choice of p 

can be "compensated" by the ciioice of G, as the dashed curve and 

the dot-dLt-dashed curve in Fig. 2 are very close to each other. 

The effect of changing the mass of the cs is following: As 

m a increases, in the chirally restored phase (eqn. (9)) the 

value of В increases, hence E/S . . , goes up. In the broken 
с hi г a 1 

phase, the increase of m^ forces the О field to lie closer and 

cl-.iser to its vacuum value -FffI and the value of E/\' also goes 

up. 

The rest Its of this section are of pedagogical rather than 

physical merit. Two-flavor matter at zero temperature and at 

densitieb of the order of a few nuclear saturation densities is 

not realized in nature. In the next two sections we will 

discuss physical cases, applicable to the neutron star physics 

(Sect. Ill) and to relativistic heavy-ion collisions 

(Sect. IV). 
'•i 
•i 1 
4 

10 



III. THREE-FLAVOR MATTER AT ZERO-TEMPERATURE 

High density mat-.er is realized in centers of neutron 

stars. This matter is charge neutral, and can be described in 

three-flavor quark models . .Now we apply the techniques of 

Sect. II to this case. For simplicity, we assume equal amounts 

of up, down and strange quarks, hence we neglect possible 

admixtures of electrons and muons, and we ignore the current 

mass of the strange quark. Such approximations are valid at 
19 high densities 

with the above simplifications, we can directly apply.the 

formulas of Sect. II, changing the degeneracy factor r to 

account for three flavors, у = 2*3<3. The results are plotted 

in Fig. 3. In the present case, we use Pandharipande's model"1 

of pure neutron matter as the traditional calculation to'which 

we compare our results. Looking at Fig. 3, we notice that the 

qualitative behavior is very similar to the two-flavor case of 

Fig. 1. The difference is that E/N for all curves is lower for 

the three-flavor case, as expected from eqn. 6, and that the 

flustering "phase transition" occurs at higher densities, 

between 7 and 9 p , The massive quark phase appears at 

densities "1 pQ, and continues up to densities ~12 p , where the 

chiral restoration takes place (Fig. 3). 

Such high densities may be realized in centers of neutron 

stars, however, this depends rather sensitively on the equation 

of state of the nucleonic phase. For a soft equation of state 

the central density of the neutron star is higher than for a 

stiff equation of state. Therefore a soft equation of state 

11 



favors the appearance of a quark phaye inside the stor. In ou: 

model a neutron star would have a core of massive quarks 

(i.hirallv broken phaso), and, possibly, a smaller core inside, 

made of massless quarks (chirally restored phase). In this 

paper wt- do not quantitatively investigate this issue. 

IV. FINITE-TEMPERATURE TWO-FLAVOR MATTER 

In the present calculation we include only tho thermal 

excitations of quarks, and ignore possible thermal excitation'' 

of the a and x' fields. This parallels the approximation of 

ref. 17. although a careful treatment should include thermal 

excitations of all degrees of freedom. 

For finite temperatures, the appropriate thermodynamjс 

potential to be minimized at fixed temperature T, volume Y aiid 

chemical potential (i, is the grand potential 

-TY/ + Inf 

- V [pff + р г ] , (К) 

where ц is the quark chemical potential, /7 is the antiquark 
chemical potential, v = /(m e f r) 2+ k2 is the quark 

q 

single-particle energy, and T> is the antiquark single-particle 

energy. Due to baryon number conservation II = -Ц, and due to 

the charge conjugation symmetry F = v. The quantities p p and 

p , are the contributions to the pressure from the о and X' 

fields. In the mean-field approximation they have the form 

12 



Pff = - U (a) , p r = - Mil) . (12) 

T'ne equilibrium conditions are 

from which we find the equilibrium values of a and x'. Thermo 
dvr. imical quantities can then be evaluated using standard 
expressions. In particular, we use 

p = -Q/V , 

E/V = 7 fd3k/(27T)3 i i> n(k) + v n(k) 

N/V 

fd3k/(27T)3 i i> n 

= у d3k/(2w)3 I n(k) - n(k) X 

where the quark and antiquark distribution functions are defined 
through 

n(k) = [i + . C - ^ / T ] , E(k) 

£ Figure 4 shows the isotherms in the pressure - baryon 

£ density diagram. The lowest curve is for T = 0, and the 

й interval between the isotherms is 50 MeV. The dashed lines 
jj" connect the Maxwell points, between which we have coexistence of 
I'-
ЙГ phases. Left of the dashed lines is the region of the chirallv 
i 
f- broken phase, and right of the dashed lines is the region of the 
и 
k> chirally restored phase. Beyond the critical temperature 

T = =» 348 MeV only the chirally restored phase exists. 

13 



Two phs.se diagrams are plotted in rig. I, with the regiorib 
of the chi rally broken and chirally restored phases labeled 
a * C , dno a = 0, respectively. Figure (a) shows the 
temperature dependence of the baryon densities at the two 
Maxwell points. The baryon density at the critical point, 
T ь 348 MeY, is zero. Figure (b) showb the temperature 
с 

dependence cf the pressure at the phase transition. The shade1! 
region in Fig. (5b) is excluded from the phase space. The 
boundary corresponds to N/V = 0, and all thermodynamical states, 
with positive or negative baryon densities'", lie outsiae the 
shaded region. Note that the critical baryon density is zero, 
thus, the regions of the two phases are disconnected, and it is 
not possible to pass from one phase to the other without a pha=;e 
transition (as for example in the case of vapor and water). 

Ль in the zero-temperature case, we might compare our 
results to some standard nuclear matter calculation, and 
construct r'ne "clustering phase transition" for finit 
temperatures as well. We expect an appearance of the nucleonic 
phase in t n>? diagrams of Figs. " and 5. In particular, a 
nucleonic region should be drawn in Fig. 5 (a) at low densities 
and temperatures. We have not drawn this region, since 
calculations of high temperature nucleonic matter are subject to • 
large uncertainties. Traditionally, one expects that the ^ 
hadronization phase transition between quark-gluor. plasma and jj 

j 

hadrons occurs at temperatures of the order of 150-300 MeY. Our | 
results of Seel. II and the value of T =•= 348 MeV allow us to 1 

с 
speculate that the nucleonic region in Fig. 5 (a) would be 'j 



contained in the chirally broken quark gas phase. In that case 
the chirally broken phase with massive quarks will exist at high 
temperatures as well. Appropriate therroodynamic conditions to 
generate this phase may be reached in heavy-ion collisions. 

V. CONCLUSIONS 

We have analyzed quark matter in a chiral chromodielectriс 

model, investigating in detail the chiral phase transition. We 

have found that the quark gas phase with broken chiral symmetry 

may be the ground state of matter for densities of the order of 

a few nuclear saturation densities. 

Although our calculation has been done in the framework of 

a specific model, and many simplifying assumptions have Ъееп 

used, t-he described behavior is of a general nature! common to 

models with fermions interacting with a scalar field which 

develops a vacuum expectation value. It-, was first discussed be 

Lee and Wick in the context of nucleonic matter. The 

;. mechanism leading to the appearance of the "constituent", 

massive quark gas phase can be described as follows: at high 

5: densities, where the quarks are massless, there is some 
A" 

additional volume energy in the system. If this volume energy 
'i. 
i|f. gets reduced when the quarks become massive, than there is a 
| 
It possibility of an overall decrease of energy per baryon number, 
fe¬ 
ll and a phase transition. In our case this volume energy is 

interpreted as the energy necessary to, break the chiral 



condensate of the vacuum, and the quark masses are generated via 

spontaneous symmetry breaking. 

Our calculation can be used to limit the range of 

parameters of the chromoaielectric model (3). In particular, we 

ao not want the model curves in Fig. 1 (a) to drop below the 

nuclear saturation energy, or to predict declustering for too 

iow baryon densities. Such limits are useful in application ot 

the model to baryons. 
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F :••.-••.•* ь CAPTIONS 

Fig. 1. 
Zero temperature two-f : e\ :;r matter, r: - 0.217 GeV, p = 2. 

(a' Friergy per baryon numr-er, E/N, plotted vers-us the vc I ume per 

Ъагуоп number, V/N. The solid line (a = 0) is the chirally-

restored quark—gas phasef the dash-dotted line (a * 0) is 

the chirally broken quark-gas phase, and the dotted line is 

the nucieonic matter cf ref. 20. The thin arrows indicate 

the densities where the chiral phase transition ttartb and 

ends, arid the thick arrows indicate the densities at which 

the clustering starts and ends. 
e if (b) Effective qua; к mass, m , the chromodic-lectric field д.' /G 

(division by G is introduced for convenience), and the 

negative a field, plotted versus V/N. The line at 0 MeV in 

the left part of the graph shows that these quantities 

vanish in the chirally restored phase. 

Fig. 2. 

Comparison of the predictions of the model for various 

parameters. Solid line is the chirally restored phase, 

common to all values of G and p. That other lines are the 

chirally broken phases for various choices of parameters. •' .' 

Tne axes are as in Fig. 1 (a). Parameter G is in units of |" 
GeV. }' 

,5 

20 



FU- ?. 
S,-ir.e as Fig. 1 (л) tor the three-flavor case. Dotted line 

sr. *s She neutrcn mafar of S*jf. 22. 

Fig. -. 
I1-otherms in the pressure - baryon density iiagram for the 

two-flavor matter. The lowest curve is for T г 0, and the 

intervals between the isotherms are 50 MeV. The dashed 

H-ies connect the Maxwell paints. Values с £ :r,;.dei 

p-i.-jmeters are the same as for the zero-temperature case. 

Fig. 5. 

Pi.Hse diagrams for the two-flavor matter. Lab-. 1 s с г 0 and 

a = 0 denote the regions of chirally broken arc ..rally 

restored phases. 

(a) B.i.-yon density vs. temperature. The solid lines are 'i.-i 

densities at whi:h the phase transition star' • i-.-i ^vii-. 

(b) Pressure vs. temperature. The shaded regior: : r. • -;,»^ 

sp.ice is inaccessible (see text). The critical pcir.t i = 

denoted by a dot. P is the critical pressure. 
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