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Abstract

Arkhipov A.A. Single-Time Reduction of Bethe-Salpeter Formalism
for Two-Fermion System: Preprint IHEP 88-147. -Serpukhov, {988.
-p- 44, refs.:32.

The single-time reduction method proposed in refs. /10,44,
for the system of two scalar particles is generalized for the
case of two-fermion system. A self-consistent procedure of sin-
gle-time reduction has been constructed both in terms of the
Bethe-Salpeter wave function and in terms of the Green’s functi-
cn of two-fermion system. Three-dimensional dynamic equations
have been obtained for single-time wave functions and two-time
Green’s functions of a two-fermion system and the Schrddinger
structure of the equations obtained is shown to be a consequence
of the causality structure of the local QFT.

AHHOTaUUd
ApxunoB A.A. OgHOBpeMeHHas peAYKUMS ¢opMaansMa Dere-ConmuTepa

And  asyxdepmuoHHOR cucTemn: [lpenpunt MHOBI 88-147. -Cepmyxos,
1988. -44 ¢, 6uémorp.: 32,

MeTox ofHoBpeMeHHOM PeAYKLUMM, NpeinokeHHw# B pasorax /10,1{/
ANR  CHCTeMH JABYX CKANApPHHX YacTML, 06GobmaeTcs Ha CMCTeMy RBYX
depMuoroB. NlocTpoena caMocornacoOBaHHag npolefypa OXHOBpeME@HHOA
pPeRyKuMu kak B TepMMHaX BOJHOBMX QyHkuuh Dere-Coxnurepa, TaK U B
TepMyHax QyHkuuR TpuHa ABYXPepMMOHHOA cMcTeMn. [oAyueHN Tpex-
MEDHbe JMHaMHueCKHe YPaBHEHMS AAS ONHOBpeMEHHbX BOAHOBHX QPYHKLMA
M ABYXBDeMeHHHX QYHKUWA T'pUHA cMcTeMu JABYX PepMHOHOB M MOKAZEHO,
YTO WpeAMHrepoBCKAH CTPYKTYPA MOMyueHHHX YpaBHeHXR dBAKETCS
CACKCTBMEM NPUUMHHOA CTPYKTYPH JNOKaAbHOR KBAHTOBOK TEOPHH MOAK.
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INTRODUCTION

At present in the framework ¢f the local quantum field theory
there exists a fundamental gauge model of strong interactions,
formulated in terms of the well-known QCD Lagrangian (see,e.§.,
review /1/ and the references therein). The property of the
asymptotic freedom discovered in this model /2,3/ allows one to
make calculations for the region of small distances in the
framework of perturbative theory, wusing the running coupling
constant as a small parameter, and to compare these results with
experimental 1y measurable quantities at large momentum transfers
and iarge transverse momenta. Here one managed to describe a
sufficiently large number of experimental data /4/. However QCD
faced with considerable difficulties in deseribing the
spectroscopy of hadron states predicted by the theory itself as
bound states of quark and gluon fields. On the one hand the
aexperimental observation of the J/¢ and Y mesons consisting or
e¢® and bB quarks confirmed our notions about quarks as basic
structures of initial fundamental gauge theory, on the other
hand it imposed an important problem of deseribing systems in
the framework of QCD. 1t still awaits its solution.

At the same time the spectroscopy of the J/¥ and Y particle
families are nicely reproduced in the framework of the potential
models with phenomenological potentials /5,6/. Sometimes the



system of heavy quarkonium QQ, where the QQ interaction is given
as a Coulomb-like potential added with a term linearly growing
with distance, is declared 10 be a " hydrogen atom” for strongly
interacting systems.

The success of the petential models in describing the
spectroscepy of quarkonium systems may be thought to be not
accidental and in order to understand why it is so, one should,
first of ali, clarify what the status of the pctential models in
the QCD framework is. The solution of this problem would allow
one to establish the connection between the fundamental theory
and experiment right at the point where at present we have
confrontation. Note that the indicated point of the
confrontation between theory and experiment 1s an essentially
nonperturbative region.

In a more general case this problem may be formulated as a
problem of calculating the interaction potential between quarks
proceeding from the first principles. In the case the problem be
solved one would manage to predict all the properties of quark
gystems proceeding from the fundamenial QCD Lagrangian. Here
great hopes are set on the calculations based on the latiice
methods and large efforts are wundertaken in this direction
/7~9/.

In the present paper we are going to show that thera exisis a
simpler and more consistent way to solve this problem, which {s
based ¢n the single-time reduction procedure in QFT. The method
earlier developed by us for the system of two scalar particles
/10,1i/ admits a natural generalization and extension onto a
two~Termion system, this is what we are intending to do in the
given paper. We will show that such generalization can be
realized in a self-consistent way both in terms of the
Bethe-Salpeter wave functions and in terms of the Grenn’s
functions of the two-fermion sysiem. Three-dimensional equations
of the Scrddinger type will be obtained and a construction which
allows one to calculate the effective potential for two-fermion



interaction in terms of the QFT basic functions, will be
derived.

1. THE BETHE-SALPETER WAVE FUNCTION AND THE GRENN/s PUNMCTION FOR
TYO-FERMION SYSTEM

As an initial object of our consideration we shall treat the
Bethe-Salpeter wave function of a two-fermion system for
scattering states, which will be determined with the matrix
element /12/

O(x,x,) = <0 T(¥, (x,)¥,(x,)) ®;in>, ¢9)

where ¥((xs) and ¥g(xg) are Heisenberg field operators of spinor
particles { and 2,!®;in> is a normalized state vector
corresponding to the asymptotic configuration of two {free
particles at t + --, in the in-basis. Ve shall present the
vector |®;in> in the form

|ostm> = = [fau, Bpan, B, (pi6up,8p08, Bybpra,’ By6p |0,
6,6, in in
@

where a;,z are the creation operators of fermiong { and 2
®;n(P161,P262) 1is the wave function of the initial state (wave
packet), antisymmetric in its variables and satisfying the
normalization condition

~ ~ 2
E [, @pany By o, pi6,ipe8| " 1. 3)
6,6
The invariant measure in the momentum space (an element of

single particle phase space) is designated as usually through
du<p)

3»

2 2 -1
du, () = (2v p ) dp.



The tilde used throughout the paper implies that the given
momentum lies on the mass shell ﬁ?-m?.

Similar to the scalar case /{1/ it is convenient to consider
the structure of wave function ({) in the framework of the
Bogolubov/s axiomatic formulation of quantum field theory. For
this purpose let us use the following formla /1{3/

+
T IV (x)e00) = TW (X P (X,)...5)8
and rewrite expression ({) in an equivalent form
o(x,x,) = O[T, x), (x,)9)|0; 0uts, @

where Y (x;) and Yy2(x2) are asymptotic out-fields of spinor
particles and we took into account, that

'0;in> =3

o; out>.

Substituting expression (2) into formula (4) and using the
commutation relations of Fock representation in the Bogolubov’s
form we obtain

AT, (XOV, (6)8) o
ocx,xy) = [[ay,ay,0| OREAL T |0>e” 7,3, (5)

where

(o ~ ~N
0 *y,yz);zsﬂdy’(3,)dy2(32)0m(p16‘,pzsz)u’(y,l-ﬁiﬂ)uz(ytl'ﬁp‘).

te (6)

For the definition of the functioa u(xlﬁs) and their
properties refer to Appendix. In the R.H.S. of equality (5) we
imply summation over spinor indices, which are not written out
here explicitly. After functional differentiation in formula (6)
and using a generalized Wick theorem /14/, we find

{0 (0) (0)
O(xixz) = ¢ *x‘xz) + (G “R*x¢ )(x’xz) -




(0) o(4)  .(0)

(0
- 0P%x,xp ¢ @ V%0 (xpxy, @

where 6(%).sfsf, sf arz single particle causality Green’s
functions of spinor particles, the structure of the function R
is as follows

-1
(2)
R(X X,5¥,Y,) = sf (X ~¥ IR, " (Xg3y,) ¢+

-1
(X(3¥,0S; (X,-¥,) *+ B

(2)

(2) (4)

(X Xy3¥g¥)s (8)

where Ry "(i={,2) are the vacuum expectations (VEV) of the
second-order radiation operators

2
2
R gy = §<o|-:-—§-§---s’|0>. )
8, O/, (V)

R(*) is the VEV of the fourth-order radiation operators

(4) {
R (X x,5y,7,) = =<0

4
| S s*los. oy
i

30, (x, )8, (X,) 8, (¥,)8Y, (x,)

The operation » in formula (7) denotes the convolution of the
functions in the configuration space. Besides, in the R.H.5. of
equality (?) in the term containing convolutions, summsation over
gpinor indices is implied. When going over to the second
equation in relation (7) we used the stability of
single-particle states

0
¢ R;R)* 0. 0. (1)

iWhen working with spinor variables we agree for conveniency,
that the derivatives &/3y; are always considered to be right
handed and the derivatives over the conjugated field 8/8#1 ars
left handed. In_this case the derivatives 3/3¢; commute with the
derivatives 3/8y;, and the derivatives 3/3y; anticommute with
a/evj in the same way as the derivatives 3/3y; with 8/8#1

&



The two-particle Grenn’s funetion, determined with the
equality

2 - -
60x ;37,91 T, (0¥, k¥, (7 0¥, ) 0> =

2 ~ -
- 1 0|Ta, (x4, 0, 0)F, DS |0> (12)

can be presented after partial transformation of the
chronological product, as

8T (Y, (X )¢, (x,)8) |

G(xixz;yay‘)-!jdz‘dzz<0| N TS |

x $%(z,-y,)55(2,-¥,) . (13)

Using exprassion (13) for the Green’s function one can easily
#ce 1hat linear relation (5) connecting the Bethe-Salpeter wave
function with the initial wave function of two spinor particles
may be rewritten in the form

-1 -1

0
oxyxy = t@x st ¢ ) xoP 1 x). (4

Completely transforming the chronological product in  the
two-particle Green’s function with the generalized Wick theorenm,

we obtain

(0)

@y rxs®, (15)

),

G=G G

where the structure of the function R is given by equation (8)
and G°=stg free Green’s function of two spinor particles. With
an account of the stability of single-particle states ({{) one
can preseni linear relation (i14) in the form

-1

ocx,x,) » (@ x 6" ) x0ixxy, (16)

where



()

-1 2 -1
(2) ¢ y %x 6.

{2, n®s

(9) ¢
*(5, ¥, 1 2

@=6G-G' '%(S

. 6% gy g™y ¢, (17)

As can easily be seen relation (16) is equivalent to the second
equality in relation (7), which we shall rewrite in an expanded
form indicating all the spinor indices

(0) ¢ By
O« « (xlxt)'°¢ «(x’x2)+[de’dyz[s’(x{- y{)l« x
172 172 1
) a¥y (o)

W,yz;ZzZ,Hp{pzo,’,g(z,zz). (18)

¢ ﬂz
U CREATN I dz 4z, IR
Summation is implied over the repeated indices in relation (18).
The function R(*) in the R.H.S. of relation (18) is directly
connected with the elastic scattering amplitude of two spinor
particles. Indeed, using the Bogolubov’/s reduction formulae we
shall obtain the following expression for the matrix slement of
S-matrix, corresponding to the elastic scattering process of two
spinor particles

‘d.d
2 =(0) “1°2
<0’;outls—1'o;out> = | dex‘dxzo( ) (X, xg) x

Bgh

", .. 1, (0)
x de’dy2 R (kyXy3g¥) 1 g O g Via):
where

-[_O)I > > */ ~ ~
° (xixl)'kzkfjd“i(ki)dul(kt)oout(kixi’k Ag)

178
« 8, 0x, [R T, (x, [0

Relation (i8) which will also be called an evolution
relation, determines the structure of the Bethe-Salpeter wave
function for the system of two spinor particles and is very



important. In particular, one can easily pass over from relation
(18) to a dynamical Bethe-Salpeler equation if the interaction
kernel for two spinor particles is determined with the help of
an equation

(4) (®)

(4)
R '=K+K»xG "R . (19)

Then one can easily undersiand that the Bethe-Salpeter wave
function given by equality ({8) is the solution of the equation

(0 (°)

ox,x,) = 6k x) + @ K * 0 x,x,). (20)

The importance of relation (i{8) is also determined by the
fact, that it allows to explicitly take into account causality
properties of the local quantum field theory when carrying out
single time reduction. In what foliows we shall deal with this
fact in more detail, however in conclusion to this Section we
shall present a formulae which is of interest from the practical
point of view, when one of the spipor particles is an

antifermion.
Let the Bethe-Salpeter wave function for the fermion-antifermion

system be determined with the help of the matrix element

X(x,x,) = <0l ¥, @) |G a0 -

- <olr(¢,<x,)@2(xz)S)lx;out>, (21)

where |X> is the vector of the fermion-antifermion system state,
which may be presented in the form

> > ~ ~ + + &

[touts= = [fau, B odu, B%; (P8, 8,08, B,88," B,8p 0,
6.6 out out

(22)

where ai is the creation operator of fermion "{",b} is the

creation operator of antifermion "2", moreover we consider this
case when antifermion 2" is in general no% an antiparticie



respect to fermion "{* Function X;, is an antisymmetric function
of it8 variables and satisfies the same normalization condition
(3) as the function ®jp. Acting in the same way as in the
pravious case, we find the linear relation of Bethe-Salpeter
wave function (21) with the j{nitial wave function of
twvo-particle fermion-antifermicn system!

3T (Y, (X, )9, (x,)8)

39, (¥,)89, (¥,)

©
x(x,x) - [ay,dy, 0| |ox @ ev,9p, (23)

where

0 ) ~ ~ -
. )(y‘y.)-sts Ifdu,(3,)au,<3;)xiép,s,,p,s,)u(y,Iﬁ,s,)v(y,lp.st).
2

! (24)

The definition of the functions u and v and their properties
are given in Appendix.

Having carried out the functional differentiation in the
R.H.S. of relation (23) and using the generalized Wick theorea
wa shall obtain

(0) e,eT ~

(9)
(X X ) =X (x,x,) + t(s,s, ) # R %« l(x(x.) .

(0) coeT,  ~(4) (9
= X (xx) ¢ 1SS ) R E A I(x,Xy). (25)

Let us present the last equality in relation (25) which follows

from the stability of the single-particle states in an expanded
form

«

2
x‘a (x,x,) = ¥

(0)%s

B
¢ 1
RCERE JIdy‘dyzls'(x(-y,)ld‘ x

iThe appearance of the sign "-" in the R.H.S. of eqution (23)
as compared with similar relation (5) is connected with our
agreement to consider the derivatives 3/3¢ left handed and the
derivatives 8/3% right-handed ( see footnote on page 5).



Bi¥, (DY,

L D (z,2,). (26)
Pty P

«
eT, . . 2 . D
x (Sz (x, :,rz)l’32 dezidzztn aysbz,zzzi)l
The functions R and R“*) in relation (25) are connected with the
functions K and R introduced above (see formulae
(8), (9), (1)) through the equaiity

ROK 205 ¥¥, ) = RO TR3%Y) }

o4 (43 &7
R TGRx,i¥,y ) = R ¥,ix,y,0

or in the momenium space

R(pppz;kgski) = R(P“'KZ;“‘Pz,k,), }

~¢ ¢ (28)

4) \ 4) _
RE g Byiky k0 = R (P s Roimpyk, )

Matrix SgTin relation (26) is the mairix transposed 1o Sg

over ali the variables, both discrete and continuous

n

(85T eyt ® = 1Sy

38 B
Deternining the interaction kernel K tor <rermion and
antifermion with the help of the relation

;
1

ne 4 ~n ~

Y-k kw 5%5H % RYY, (29)
we arrive at a dynamica® squaiion for the Bethe-Salpeter wave
function of the fermion-anvifermion system

xixxy) =« ox v (85SST K ok 0 xyx,0 (30)

Simitar to tas previous cage one cen easily show that 1ihe
function R{* 45 directly connected with the -elastic
fermion-antifermion scattering amplitude. It is worth paying
attention to relations (Z27) which show that the funetion R
provide 2 wuniform description of both fermion-fermion and
fermion-antiferimon sysiems.

{0



2. SINGLE-TIME REDUCTION OF THE BETHE-SALPETER WAVE PUNCTION

Two-fermion system. Let us determine the single-time wave
Tfunction for a two-fermion sSystem by projecting the
Bethe-Salpeter wave function (i) c¢nto some space-like
hypersurface

o SR | (-) -) - 2k
w(nrlx,xz;-;2 [[5:7 cxpme-z 8,7 (xeme 2,46, 46 0,2,),
y=T=nly (31)

where S(-) are negative frequency parts of the permutation
functions for the spinor fields, g, dbp, ”n dsfiti-i 2) d6p
is an lement of a flat space-like hypersurface given by the
equation n¢=t, nM(n®=1) 1is a unity time-like normal vector to
the given flat hypersurface. One can easily get convinced that
~(0) (0)
Y T(nTix x,) = @ (X, 40T, X, +07),
where ¢(?) is determined above by equality (6).

The momentum representation for single-time wave function
(31) can conveniently be introduced with the help of the
integral transformation

~ ~ - I;? - - A A N
¢(nr'p{61p262)gJJu{(xilg161)u2(xz p262)d6x’d6x3(nr X,X), (32

where integration in the R.H.S. of equality (32) is carried out
over some arbitrary space-like hypersurfaces, besides one can
easily check that the result of such integration does not depend
on the choice of these surfaces. Since in what follows we shall
often find surface integrals let us agree that we shall point
out explicitly the hypersurfaces over which we perform
integration only in the case when the result depends on the
choice of the indicated surfaces. In the R.H.S. of aquality (32)
we also imply the convolution over the spinor indices. The

i1

4



formula of an inverse transformation to the configuratioa space
has the following form

mrlx,x,);z6 [[an, @pawy Bpucnc|p,e,p,8,) =
172

" u, 0, B8 ug x,[B,8)- 3%

Let us also make a Fourier transformation of the single-time
wave function over the variable ¢
¢<nn|p,¢,p,6,>- drexp(inr)o(nrlp,s,p‘s,). (30

In particular we find
o ~ ~n ~ ~ ~ ~
¢( )(nulpicip,cg)-ZRG(M-np’-np,)oln(p,cip‘c‘). (38)

The single-time reduction of the Bethe-Salpeter function for a
two-fermion system we carry out following the technique proposed
by us earlier for the system of scalar particles /{{/.
Substituting into the R.H.S. of equality (31) the expression for
the Bethe-Salpeter wave function from evolution relation (18) we
obtain

5 (9)

$ne|x x4 cnex 20+ [ay, a0 e-my p0ct-ny) =

) )

x 8,7 ey s, (xgeneeyy [z a2 20

(Y VgiBg3g) ™

2(9)

L ([0 (-) A A
<4, st, (20208, @pome-pdd 48, @ wrf,gy. o6

In deriving relation (36) we took into account the fact that

2(0)

(©) RS (=) A
o @z pepef[s7 2, -ne-t s, (2,-nt-2,)d6; 46, §

(ae2,2p)
a”)

12



and used the equality

)

: Jsf”<x,+nr-c>48c 5{9 (g-yp=0(r-nns{ (xene-y). (38)

nl=t ®
In relation (36) we shall go over t0 a momentum
representation through integral <transformation (32) and carry

out Fourier tranformation over the variable t. A8 a result we
obtain

¢<nM';,6,S,62)-¢‘°’<nM|p,s,pasa)+ z Jde,(E,)dp,(E;) x
Mo h
172

. 4 - > -8- dal P d“i ~ ~ o
u{ui (916’ )uz (p262) (21) Ii;_:i_é E;-_—ié-ﬂ(p”d’ n, p'-dsn,k’, k‘)x
xu, @ ou, @) o8 ks ko) (39)
g Rxpdug (kd )b ¢ 12 Ka2g7s

where the function R is a Fourier image of VEV of the
fourth-order radiation operator

(4)

R(Pys Pyikgrk,) = Idx,dx,dy,ay,a (X, XG5 V¥, *

x expUp,x,+ 1p X~ 1k, y, - 1k;y,.).

In deriving relation (39) we took into account the
translation invariance of the function R(4), This property
allows one to make simplifications in the R.H.S. of relation
(39). Indeed, using the fact that owing to the tramslation
fnvariance the function R contains a four-dimensional & fuaction

4 4
R(P,,Pyikg k) = (218 (P-K)R(D;K[K),

we can present the integral in the R.H.S. of relation (39) in
the form

13
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i 'B- d«( ° dqg ~ ~ ~ o~
(2n) JE;:TE E;:TER(p,'d,n,p,‘ﬂgn;k,,k,) *
3 3 -+ -7 .
- @0 n 8 R op-niod) zm ™ [dal /2 -t x
x (A/Z-d-le)1"R(p"dn;kilt),
where ~ ~ ~ ~
P=p+py K=Kk*Kk,

g~ g
P~ 5~ By K o= (K- K, 4w mP-Dk.

After substitutirn; equality (40) into the R.H.S. of
(39), we obtain

~ ~ o ~ "]
w(nMIpisipzsz).w( )(nM|pi6ip262) *

i -+ » S W3R R a2
'FRE [[an, Rpay, ®pew’ng @ - 1 - sy =
172

- - - - -7 { {
« {8, @608, 20 Jclaz(--———--A/,M_“E * T "

o ~ ~
x Rep-amik| 0w, v, Rrg) ) o i k),

(40)

relation

(41)

where A=nP-M and we also took into account the ract that tks
function ¢(°) (mMjK{r¢kgrz) contains the 8 function 3(nK-N),
which allowed us to take A out of the integrand. The presence cf
this § function gives us a possibility to rewrite relation (41)

in an equivalent, more symmetric form

~oo ) 1~ {
Y(rM|p 6,p,6 ey (nM pi6’p362)+mkzkﬂdﬂ, (K, Yy (K x
17t

i4



~

x TP Py8i Kphg a9 il k), (42)

where

TCM|p, 6 P65 kg = {20 02 B R

{ 1

—————  ——) X
A/2+da-1€  A/R-4-i€

- - -8r"
x5, (B,6,00, (By6,) (20 ™" duc

o & 1 N 4 >
~ [ e T Rk pnlku, K pu K, (4)

PM. P“Aﬂ, H- K‘A’ n’

4 = nP-M, 4/ = nK-M.

The R.H.S. of squality (43) determines the continuation of
the function T off energy shell both over the particles in the
final and initial states. Such continuation is determined, on
the one hand, by the requirement for the conservation of the
symmetry of the function R(p;k{K), and on the other hand we
shall see below it is unambiguously connected with a two-time
Green’s function for the system of two spinor particles.

Now one can easily go over from relation (42) to a dynamic
equation for the single-time wave function of the two-fermion
system. For this purpose let us introduce a function V, using
the relation

'r<nn|p,c{p,c,; KgAK h,) = V(M| p,6,p,6.5 KhKnp) *

SN AR AR
6162

15
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2" 2!
nP’/ - M-i¢€ ’

o R A L LA AAR R RN “

Then we can easily see that single-time wave function (42) 18
the solution of the dynamic equation

W(HM|p‘6’pz62) - ¢ (nﬂlp’61p262) * oMie

~ T [fan, @ RV p,6 By, kpgkn v ok k). (48)
) U W

In the discrete spectrum, when M<my+mg (B¢ and mg are farmion
masses) the inhomogeneous term in equation (46) vanishes an’ we
come to a homogeneous equation for the single-time wave furction
of a bound state of two fermions

voon i » <+
¢<M|p,6,pg6,> " S kz)\ Hdp, (k,)du, (k) »
17°s

Vo] p,6,p,6,5 kphghe,n ducairlic i) (46)

It is also obvious that the equation of the foram

aP-Wg (o[ p,6,p,8,0 T [fan, Rpawy &) =
AN
12

« V| p,6,8,6,5 Kh kW[ k) 47
is satisfied by the single-time wave function of the two-fermion
system of continuous and discrete spectra.

It may be shown that the function T {introduced through
equality (43), coincides on ecnergy shell with the physical

16
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amplitude of two fermion elastic scattering. Really using the
Bogolubov’/s reduction technique we obtain

] -2 4
<P 6, B8, 1S- 11K A Kpr > = 1 (2078 (P-K) =

x u, (B, 6,0, (B8, R(P;KIKIU, R\ duy (Kp,). (48)

On the other hand from equality (43) we find
T(nMip 6 P65 KA KNI = ——5n,8 (P-K) =
(2x)
nP=M=nk

x 4, (%60, (B 6 RMPKIKIU, (Rh dug Ry y). (49)
From equations (48) and (49) it follows that

&> > >
<p(6’p,62|s—i|k(x(k‘x‘> -

- 2803 P-nK)T (0, AK|p 6, Po6 5 KoAK ), (50)

vhich proves the statement made above.The connection of the
function T with the physical amplitude of the elastic scattering
of two spinor particles together with representation (42) allows
us to find a physical, in its essence, quantum mechanical
interprstation of the single-time wave function for the
twvo-fermion gsystem introduced by us.

Fermion-antifermion system. The single-time reiuction of the
Bethe-Salpeter wave function for the fermion-antifermion system
follows the scheme used above for the single-tike reduction of
the two-fermion system. Therefora we shall omit its detailed
description and present here only basic relations. Let us
determine the single-time wave function of the

1?7



farmion-antifermion system through the equality!

yone)x x 3= [[57) x one-g, 046, 22 2,048, 5 G -ntox,), (50)
bneix X ieg JJS Xenel e, XL, Lo NTXg)y

ng, =t=ng,

where s§+)is a positive-frequency part of the permutation

function for the spinor field. One should bare in mind that the
ordering of the functions in the R.H.5. of equality (51{) (as
well as in all the other surface integrals in thig paper) is
significant since the diffsrentials dafi contain the Y¥-matrix.
One can easily get convinced that the substitution of the free
Bethe-Salpeter wave function x(°) from relation (24) into the
R.H.S. of equality (1) yields

0) LI .
¢ (nTix Xx,)= (X, +n7, X, +n0).

The transition to the momentum representation for the
single-time wave <function in (51{) is realized through the
integral transformation

w ~ o A ~ A
w(nr]pisipzcz)gjfu’(x’|3’6’)d5x’W(nf x,xz)dsxzv(xz|3;s,), (52)

where integration is carried out over some space-like surfaces,
besides similar to the previous case one can again get convinced
that the results of such integration are independent of the
choice of these surfaces. The formula for the inverse transition
into configuration space has the form

bne[x,x,)- : [[an, Bpa, Bpucx, 1,60 cacip 6,56,
2

6

x G(leﬁzse). (63)

1¥e use here the same lettar § to denote the single-time wave
function for the fermion-antifermion system, assuming that no
misunderstanding would occur.

i8



Let us also introduce the Fourier transformgs of sgingle-time
wave function (52) over the variable ¢

¢(HN|P,6,p262) - Idr exp(iMv) ¥(nt{p 6 p,6,).

In particular, we have
(o) ~ ~ ~ ~ ~ ~
o' (D 6,p,6,) < ZXBQH-np,-nD, )X, (P, 6,Py5,)- (54)
Having substituted the Bethe-Salpeter wave Tfunction X from

evolution relation (26) into the R.H.S. of cquality (51) we
arrive at

St x4 aeix,x,)-f fexgaxge (eomep o ceomeg) x

1

)T

) ~(4)
xS (x,+nr-x;)s;’ (x2+nr-x;)JJdv,dvzﬁ (X{X3i¥g¥y) ™

i (=) A NM(0) A (+)

53[5 a8, ¥ ez 2068, 5, @peny. 68)
i 1 2
¥Yhen deriving relation (55) we expressed the free wave

function x(°} through ¢(°) with the help of relation

(0) (-) A N(O)
"y, - 1;]Js, (vy7ne-g,)d6, ¥ (TIZ, T,
i i

x a6, $'*7 (¢ +nt-y,) (66)
g, $o*NT=Yy)s

used equality (38) and the following analogous equality

: Js°(x-c)d3cs“’(c-nf-y)--e(r-nx)s“’(x-nr-y). (67)
ni=t
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In passing over to the momentum representaion in (b5) with
the help of integral transformation (52) and realizing the
Fourier transformation over the variable t, we obtain

v (0) ~on 1 f » >
(M| p,6 b6,y (nﬂlpiG(pZGz)*EE:E:TE I @pan @

x T(nM‘p(s(p2 2 KKV (ank‘x(kzxz), (68)

where

+> >

{ 3
;(Zn) n,d (PyKp

T(nM|p16!p262; K Z Kk x )= -

. a 36 v @0 da(os sy x
1 PO IY(P,0, A/2+d-1€ A/Z-4-1€

{ {
x J B 7z pTe * vIEp-1C

JR(p-an; k-n|Kou, K2 V(R (59)

In the R.H.S. of equality (59) we used the same notations as
in equality (43). The function B is a Fourier-image of the
function R(4)

~

~ €Y
R(p,P,ik k) = Idxidxzdy‘dyzn (x(xz;yzyi)
x exp(ip x,+ ipX,-ik ¥y -ik,y,).

When deriving relation (58) we take into account the
translation invariance of the function R(*) as well as the
circumstance that the imitial wave function ¢(°) contains the
§-function (see formula (54)).

If now one defines the function V¥ with the help of the
relation

~ o~ ~n o~

(P85 K2 K x ) = V(NMIp 6,p,6,5 Khkhge) *

~

T (nM 5

20

kX



o ffan, By @y
66,

272 2717

V(m,p161p262; SEG;P;G;)T(M p;s;pl6/. Kk X))
) | P’ - M-1€ ,

(60)

then it can eaéily be seen that single-time wave function (58)
is a solution of the dynamical equation

w(nnlp161p262) =¥ (nM|p161p262) * WPM-1€

« 5[, R oo, RVem|p,6,py6, Kk gk 2wk k). 60
AN
172

In the discrete spectrum from equation (6i) one should
obviously go over to a homogeneous equation. As in the case of
the two-fermion system we can show that the function ¥ on the
energy shell is directly connected with the matrix element of
the S-matrix for elastic fermion-antifermion scattering.

- -+ > >
<P6,P6, IS-1] KX K > =

~

- 213 (nP-nKT (n, nK 5161p262; l';’le:,x,). (62)
Equality (62) together with representation (568) provide
physical reasonings for introducing the single-time wave
function of the fermion-antifermion system in form (b1).
Equation (6{) is fully analogous in its structure to dynamic
equation (45) for the single-time wave function of the
two-fermion system. The only difference is that in equations
(45) and (61) we have two different functions V and ¥,
describing the interactions of fermion with fermion and fermion
with antifermion, respectively. However it should be noted that
the functions V and ¥ are not completely independent since they

21
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are determined through the funciions R and R which are connected
with each cther via crossing relaticne (27), (28)

3. SINGLE-TIME REDUCTION OF TWO-FERMION SYSTEM IN TERMS OF THE
GREEN’ s FURCTION

In the previous Section we carried out the single-time
reduction of +the Bethe-Salpeter wave functions and obtained
three dimensional dynamic equations for the wave function of the
iwo-Termion system. Since in the quanium field theory one
usually deals with the Green’s functions,it will be of undoubt
interest to generalize the developed technique for the Green’s
functions. In this Section we present 1this generalization and
consiruct the procedure of the single-iime reduction right in
the terms of the Green’s functions /15,16/. We shall start our
consideration with the R-function or current Green’s functionst.
As an initial relation we take equaiion <«i9) connecting the
four-point current Green’s function with the Bethe-Salpeter
interaction kernet

(4) ey (4] .
RO x50,y =K@ X5y, y I (BxG =R (X X 5¥,¥,), (63)

where

Q) . c,
G (x1x2;y2y(;=s (¥

-y iﬁc'x
1 Fpiv 8

1 ¥y 2 Vol

S?(xi~yi),£i=£,2) are single-time causality Green’s function of
spinor particies. Remember that the operation % denotes the
ecenvolution of the functions in configuration space and as
usually the convolution over the spiner indices is implied.

IVEVs of the radiation operators reduce with an aceuracy up
10 quasilocal terms to VEYS of the chronclogieal product of
eurrents /{5/, where the name "current Green’s functions" comes
from.
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For our purposes it is convenient to go over from equation
(63) to an equivalent relation

(4) (4)
(x’xa;yayi)=U(x‘x2;y2y‘)+(U*g°*R ) (X, X,59,Y,)s (64)

where the function U is determined from the equation
(0)
Uk X5 ¥,¥ ) =HX X, 57,70+ (B (G -g )%U) (X, X 5y,¥,). (66)

The system of equations (64) and (65%) 1is equivalent to
initial equation (63) with an arbitrary function go. The problem
is to find such function go which would allow one to ecarry out
the single-time reduction in a self-consistent way. The
self-consistency condition unambiguously determines the function
go.It has the following form

oo L J d
8 (%X, ,7,)= [ ot [ dv/get0inx~08(Mx,-01 x

« L[[s s, (x,-nt-x;)d6_ d6_,
= , (x -nt- x ) (xz nvt xz) x; x;
1

x——IJlG (n, -1/ |x1x; ,yzy’)de dsy 5,7 (ypantr-y,)

(=)
x §, (yp*nt/-y,) d(,le(r’ ny,)8(v/-ny,)1, (66)

where the function Go is determined by projeeting the free
iwo-partiicle Green’s function
'E (n, -1/ |X,X,; ) = L S(_)(x +nf-x’)s(-’(x +NT-X4) x
18, (0, 1% ¥,9¢) = )5 1 1/9g (Xg*N1°Xy
1

/x ’
nx! r=nx2
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< (0)
x d6x;d6x/ ? JJG (X/X/;yzy’)d6¥/d6y S (y;-nf/_yi) »

ny; =1’ =ny,
8. (yyne-y ). (67)

Having calculated the surface integrals in the R.H.S. of
equality (67) we obtain an explicit expression for the function

8o

~ (=)
16, (ny -1/ X X, ¥,¥,)=8(T-1/)8, (X, +n(¥-1/)-y,) x

(-)
x 8, (xptn(t-t/)-y,). (68)

The integration in the R.H.S. of equality (66) is carried out
over the arbitrary space-like surfaces, the result of
integration being independent of the choice of thase surfaces.
Obviously all the integrations in the R.H.S. of equality (66)
for the function g, may be performed but we shall not do it
since for our purposes it 1is more convenient to use the
representation for the function go in form (66)

In equation (64) we shall pass over from the function R(%)
and U to new functions ¥ and ¥ which will be determined through
the relations

(=)

-)
»I dx]dxyS, (X nTx])S, | (X, *nT-X5) S 10 (T-nx/ )8 (T-x) ) >

2’ dv
Y xqxgivgy) - (-)
de’dy2 UCxg s 4¥4) 8, f{-nt-y)S, (yp-nv/-y,)x

%T(n,t-r'[xixz;yzy,)
K§?7[6(ny;-f')6(ny;-f’)la v . (69)
EV(n,r-rflxlxz;yzy,)

Then from equation (64) we obtain
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T(n,r—r’|x'x2;y2y()=V(n,r—r'|x’x2;y2y') +

- o ~ A A ~
+Jd6 Jd6'JJV(n,f—6|x‘x2;xgx;)déx;d6xéjjso(n,6-6/|x;x;;y;y;)x

A A ~n
x de;deéT(n,6’~f’ly;y;;yzy‘)- (70)

Equation (70) is the required three-dimensional reduced
Bethe-Salpeter equation for four-point current Green’s function.

In equation (70) one may pass over to the momentum
representation. For this let us introduce the images of the
functions T, ¥, & in the momentum space via formulae

° - > - > ALA
I dv exp(iMf)Jju{(x{|p{61)uz(x2|pz62)d6x'd6x x
2

~ A A @ »
xIJF(ﬂ,f]X'xz;yzyi)d6 ‘d6y2ui(y‘Ik‘ki)uz(yzlkzxz) =

b
= F(MIp 6,p 6,3 K2 K )5 (71)

where F is any of these three functions 8o, ¥, ¥; F 15 its image
in the momentum space. The formula of the inverse transiormation
has the form

F(nr|x,x2;y2y,)-éif a exp(-iMr)626 deu,(ﬁ,)du,(ﬁz) x
- 12

Mha

“deﬂi(zi)d“z(zz)“i(xi13151)“2(xz|$§52)F(“M|p161p2°s;kakzkik1)'

AT BMIHCAT A WD (72)

< e



Using expliecit expression (68) for a free two-particle
Green’s function 8o we shall obtain for its image {n the
momentum space the following expression

G, (nM|p 6, 6,5k N K N ) =
-»> 3+ » > 3 »
2E, (p,)8 (p,-KIZE,(P,)8 (Py-Ky) Xy X,
= = ~ 86 86 . (73)
np,+ np,-M-i€ t "2

As a result equation (70) in the momentum space will be
presented in the form

T(NM[P,6,P,8, 5k K X I =V(NM|P, 6, Pe6oi kAR M) +

3 [, @pauy By x
6162

V(nM|p161p262;p;6£p;6;)T(nMIp;G;p;G;;kzkzkik‘)
x «

(74)

npi+ npy-M-i€
From relations (69) and (7{) it follows that

( lpieipzsz,kzxzk,k,)-i(zn) n,8 (PM-KM) x

{ i

-1 * sj-w-ie "

- P < -8("
% U (B, 6,04, (B,6,) (2R) [da(uz

4 g .
"I B G 7T ' Tiz-pie HPramkopniKy x

-

x u, R u, (K D), (75)
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+ <+
~ ~ .N ~ 1 8 3
VIM|P, 6, P, 6,iKeD K 3 Ins (20) nod (P -K ) =

- - - - "8 = 1 1
x u, (5,600, (5,6,) (1) I MrrrTe * et

1 1
| B * T

YUCP-an;k-gn| K)u, (K yuy Rody), (76)

wherae

"~

P = p‘+ pz, K = k’+ kz,

iN ~ 1 ~ ~

P = 5P~ Py K = Z(K,~ Kp),

P, = P-An, KM' K-4’n ,

A = nP-M, A’= nK-M.

R(p;k|K) and U(p;k|K) are Fourier images of the translational
invariant parts of the function R{*) and U, respectively. The
R.H.S. of formla (75) exactly coincides with that in equality
(43). Formula (76) with an account of equation (65), which
relates the functions U and K, provides an alternative way for
calculating the function V directly in terms of the fumction
K - the kerne! of the Bethe-Salpeter interaction.

Let us now proceed to the construction of the single-time
reduction procedure for the field Green’s function (12), which
is determined as a VEV of the chronological product of the field
operators. The two-time @reen’/s function for the two-fermion
system will be determined by the covariant projection operation
introduced with formula (67)
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~ ) (-)
1G(n, T-1/ X, X.5Y,Y,) = 1; IIS: (X +nT-X{)S, (X *mT-X3) x
i

nX{=T=nX}
6 ds_ 1 G AL A ()
" db e ffﬁ<x?x3;y3y§)d5y;d°ygsf (y{-ntr-y,) x
ny{=t/=ny;
x s;')(y;-nr/-ya), -

where the function G is determined above by equality (17):

(4)

p (0) (0) (0)
QX XYY )= (X Xo3¥,¥)+(@ ¥R %@ ) (XX 3¥y,¥,). ()

The projection from the first term in the R.H.S. of equality
(78) has already been calculated (see formula (68)). To
calculate the projection from the second term in (78) we shall
use the following relation

L ((s57 (x, +nt-x738"" (x,+nt-x;) 46, ,d6. 8" x/x23y.50)
;iJ] g (XnTexS,  (Xpentoxg A A (X{X2iVg¥y) =

nx;-r-nx;
[ avi (i@, (n, -0 )%, x, ;xsx0) 46, d6. 5% (xsenes-y, yx
[2)) et N e A A Iy

.
x 5,7 (Rpent/ -y )-8 -my DOV -my )1, (79)

L[ «x.x.:y:y 6. a6 .88 (yr-nt/-y.38' ) (y2-ntr-y.)
I? X X3 V9V ¥, Cyg P/l FRL RS Mo A PO

ny; =t =ny;



I de-10(nx, 08, -0 155 [Is:"(x,-nt-y;)S:"(x,-nt-y;) x

dayg y;iao(n,t-tfly;y;;y‘y’). (80)
With the help of relations (79) and (80) and with account of
definition (69) for the function ¥, the projection from the

gecond term in the R.H.S. of equality (78) may be presented in
the form

f; [[s:7 &ponexps,” apomeexpas a8 5

X ‘31'
nx{=t=nxy
che R xa ) xrx; y,y')dey d‘,r 7 (ygmaer-y 8,7 (ygomes -y e
ny'-f’-ny,

~ A A
. I d&I dGIIIiGO(n,t-6|x‘x,;x;x;)d6x;d6x$

o[} T 667 ixgxgivpvrdd,, 6, 18, (n, 6 -v Iypygivgy). 8D

e 7’

As a result for the two-time Green’s function we obtain the
following expression

G(n, -1/ X, X3 ¥g¥, ) =Gy (0, =T/ X X 5Y,Y,) ¢

+I d6I &6'IIE;(n,t-clx‘x,,x'x')dc ds
Xg X3

AL A AT ARE (82)

I]f(n,s 6 I X4x4 ,y,y')ds dcy



The substitution of equation (70) into the R.H.S. of obtained
relation (82) yields the following equation for the two-time

Grean’s functiion

6 {0, 10X X509, Y0 = Gin Tt X, X5, ¥,) ¢

! £ Sre A A
H 1 v -3 . Y4
. déj dE’}JGO(n,r 6;x,xa,x;xi)d6x§d6xé x

- ~en

o

Vin, 6-67{X{X3;yp¥q)d6

» ,'
]
A

A ~
y;d6yé G(n, 6/ -7/ [y{¥3i¥,9,)- (83)
Using integral transformation (7i{) one can easily rewrite
'@caiions  (B2Z) and (83) in the momentum space. For instance,
ogquation (83) in the momentum representation has the form

ar

i ~ ~ ~ n ~n ~ ~
@adngpféfpzoz; kxkox ) = G (nMip 6 p, 6,5k K ) ¢

: o (. » PP
D AR 5f(rfjdﬂ,xp,)dyz(p;)V(nM|pi61p262,p;6§p;6;) x
172

= Gl pleIp, 6o K N K

565 KN K N ). (84)

nence relations (82),(83) provide the solution of the problem
;1 the single-time reduction of the Bethe-Salpeter formalism in
e 30 the field Green’s function. Now the scattering problea
of  wwo relavivisiic particies may be formulated in the form
zim iar to the nonrelativistic theory of potential scattering.
The evolution of a two-particle system from the initial state

given by the wave funclion

RSN i ~ ~
o )(ntixlxz) -z JJdp,(B,) dy ()0, (P8,Py6,)
6.6
172

g, ~ -»> -»
5 epX [-z(np(+np2)r] Uy (X )Py 6,) Uy (X, 1P,6,)

a0

e



is determined by the relation
O(nr'x‘x,) .
L av ([, v |x s xsx: 008, , d6. 4 % (e |xexe) (85)
. i‘ (n, -/ X X0 X4X4 X 130 1%8)

vhere the operator 2 is a relativistic cnalogue of the MOller
operator in the nonrelativistic theory of potential scattering

L P |
2(n, T-1/ X X ;X4X]) = (@% 86, )(nt-v]XX;3X[X7) @

17278 0
. (4 + 8, % T, - |xx 52520 (86)

In formula (86) we introduced the operation ¥, which denotes
the integration over some space-like surfaces and the
integration over the evolution parameter as it {is explicitly
presented in the R.H.S. of formula (86). The function &' has

the fora

e |

"o q
) (n,r-vflx,x,;y.y,) .

- 8 (=08 (x on(e-1)-y )8, (xen(e-t)-yy) (87)

and satisfies the relation

-{ L2 LA
(G, # G, )(n,f~f’|x'x.;y.y,) = (G g% G (Mt X X3Y,Y,) =
(=) (=)
= 3(t-1/)8, (x-¥,)8, (Xy=¥q)- (88)

Evolution relation (85) for the single-time wave function has
a three-dimensional form contrary to evolution equation (i8) for
the Bethe~Salpeter wave function, and in this respect it is
analogous to the evolution equation in the nonrelativistic
scattering theory. However, and what is very Iimportanmt,
evolution equation (85) determines the structure of the
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relativistic two-particle system, since it has baen obtained in
the framework of the local quantum field theory and is a
consequence of the most general properties of the relativistic
quantum theory.

. TRANSITION TO PHYSICAL EQUIVALENT DESCRIPTION OF THE
TWO-FERMION SYSTEM

Proceeding from the causality and spectrality properties in
the local quantum field theory it has been shown in ref./f{/
that one can go over from the single-time wave function of the
two-particle system to a physical equivalent single-time wave
function, which is determined in the following way. Let us
divide the function T in the R.H.S. in equality (42),
determining the single-time wave function, into two terms

T= T T, (89)

where

T'(nmls,s,szsz,kzxzk,x,> - 120 0’ (P uﬁ) x
x U, (B,6,)4, (B,6,) (2") [Rep-3 on; k 2 IH“> *

+ R(p-n; k+g'nlk") + R(pogn; k-3 nl&) .

Y
+ Repegn; ke n[Ko] v, Expu, @y, (30)

T, P, 6B 65k gkx ) + {20 (p x“) x

3, 3,804, 8, 20 " [in daP bt [Rep-anikeg n[Kp +
1 Py O Vg (Pgly A/2+a " A/2-a ikeg 0Ky

2



. ""“""gi"l'ﬁu’]"'ﬁ"'ﬁﬂo‘r’ﬁm’["P'%"‘“""'&’ .
. u(pogn;n-nll‘“)] . I:“"ﬁm"v‘n’ "

" I;Q(Pm?x%!_-‘)l(p-u;k-nllu)}u, dapu, @, o)

As can easily desn seen, division (89) the fumetion T into
tvo terms is realized with the help of the well-known formula

W“-’T‘ » P Wt‘— * llQ(W(),

vhere P is the symbol of the principal value. From the
single-time wave function ¢ we go over 0 the wave funetion §’,
which will be defined with the equation

¥ i|p,6,p,6,) - 0M|,6,p,6,) - 0, (M|B,,p,8,), (o)
vhere

o, |5, 6,548,) - Zire X [fan &) e,y
178

" T ] 6, By8y ik 2 0 (iR K2 (%)

Por the wave function ' we obviously have the following
representation

v (i[5, 6,56, « ¢ | p,6,p,00) iy

‘;:x Hdﬂ, (‘,) &,(‘.)'rl (ﬂ'b,ﬂp,‘.;k.x.k‘x’). (o g';lg.).,.
1

(36)
If now one determimes the function V' with the help of the



relation

~ ~ lN n ~n ~
g Kpx K 2 )=V (nM Pi6,P, 6, K kM) +

T’(nMZp161p26

¢ 2 [fan B auy By
6;6;

Vf(nm!p,eipzsz;pés;p;6;>T/(nmlp;s;pés;;kzxzk,x,)
P’ - W

x

. (95)

M+M+ i€,

then it can easily be established that the wave function ¢' is a
solution of the dynamical equation

“ o 0) v {
wf(nM{piéipzﬁz) = ¢ (M)p 6. p,6,)¢ e

-+ Pry ~ ~n ~ ~ n "~
x % HWHM)Wﬁ%”“mhﬁﬁﬁpﬁhhhw“mkﬁﬁﬁﬁ-
)\1)\2
(96)

In the discrete spectrum from equation (96) there obviously
follows a homogeneous equation for the single-time wave funetion
for the bound state of two fermions. From explicit expression
(21 for the function Ty we can easily see that on the energy
shell ihis function turns into zero

T, (nM p’61p262;k2x2k’x1) =0,
A= 4A=0

and from (90) it follows that the function T’ coincides on the
energy shell with physical relativistic invariant amplitude for
elastic scattering ¢f two spinor particles. That is why we may
say that the wave functions ¢ and ¢’ give a physical equivalent
description of the two-Termion system. The single-time wave
funetion ¢’ i3 attractive, since it satisfies the dynamical
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equation, for which we have a constructive way of deriving the
function V right in the terms of the basic functions of the
quanium field theory - VEVs of the radiation operators. This
circumstance may be of particular interest from the point of
view of studying the exactly-solvable models in the quantum
field theory.

In the language of the Green’s function division (89) of the
function T into two terms and transition to the description of
the two-fermion system with the help of the wave [function 0'
means a replacement of two-time @Green’s function @ with the
Green’s function G’ which is defined by the equality

G’ M) = aM - g M,
where
G (M) = G MT, MG, (M).

It is clear that

& = 6,00 + G, (MT/ (MG, (M).

Taking into consideration reiation (95) for the functions T’
and ¥ we obtain an equation for the Green’s function

G (M) = G, (M) + Gy (MIV” (MG’ (M).

In conclusion to the present Section it should be noted that
the functions V and Y/ defined with relations (44) and (9%),
respectively, are complex functions depending on the spectral
parameter M. The imaginary (more precisely antihermitian) part
of these functions is connected with inelastie channels in
two-particle interactions. It may be shown that the following
equality holds /1{/:

+ + +

(f + TOMDG, (M) (VM) - Y(M3) (1 + Gy (M)T(M)) = H, (37)
on energy-shell
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+ + L4

( + VNG, M)V M) -V M) +QMT M) =H, (98)
on energy-shell

vhere the rfunction H determines the contribution of all
inelastic channels to the unitarity condition. Relations (97)
and (S8) determine the consistency condition for the dynamical
equations with the requirement for the complete two-particle
unitarity.

CONCLUSION

The single-time technique,proposed in refs./10,11/ for the
Bethe-Salpeter wave function of the two scalar particle sysiem
hag been generalized in this work and applied to the two-fermion
systemi. A self-consistent procedure of the single-time
reduction has been constructed both in terme of the
Bethe-Salpeter wave function and of the Green’s function. In
other words it means that the single-time reduction of the
Bethe-Salpeter formalism has been realized in a complete form.
The single-time reduction of the Bathe-Salpeter formalism brings
us to a three-dimensional dynamical equation for the single-time
wave function and two-time Green’s functions, moreover the
indicated equations having Schrddinger structure. By this
structure we imply a possibility to present the full Ham{ltonian
of the relativistic two-particle system as a sum of the
kinematic term and interaction. It is worth stressing that the
Schrddinger structure of the dynamic equations arises for our
case as a consequence of the causality structure of the local
quantum field theory.

When deriving the three-dimensional dynamic equations we did
not bare in mind any concrete model of the quantum field theory,

1The problem of deriving three-dimensional dynamic equations
for the two-particle system in QFT has almost thirty year
history, which may be traced e.g., in refs,/16-26/. There ars
a180 reviews /27-31/ on the subject.
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but used its most general properties, for example, such as the
property of frequency dividing the single-particle causality
Green’s functions, orthogonality property and completeness of
the single-particle wave functions., The realization of the
single-time reduction technique in terms of the fGreen’s
functions show that this technique can also be used in the
quantum field theory models, where the single-particle causality
Green’s functions may differ from the free ones. Namely this
situation oceurs in the investigation of the infrared
singularities in QCD /1/. Another attractive feature of the
formalism considered is its universality, which manifests itself
in the fact, that it can be applied to the system of particles
with an arbitrary tensor structure. In the given formalism
scalar, spinor, vector,etec., particles are treated on equal
grounds.

It is of undoubted interest to calculate the potential for
the interaction of two fermions in traditional quantum field
theory models - QED and QCD. A separate article will be devoted
to the investigation of the structure of the thus obtained
potential. However here we would like to stress once more that
the proposed technique for the single-time reduction provides
strickt and consistent reasoning for the potential models in
elementary particle physics.

In conclusion I express my gratitude to B.A.Arbuzov for his
interest in this work and discussions of the results.
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Appendix

In Appendix we present the list of basic formulae and

relations.
The function u(x|pé) and v(x|{p6), used in the article, are
determined in the following way

¥*
u(x | P6)=f . (OU(PE), ux{PeI=L, (x)u(ps), (A.1)
P P
-+ * -» - + =,
v(X{p6)=f ,(X)V(PE), v(X|pb)=f_ (x)V(pSE),
p p
where
-3/2 ~ ~2 2
T.(%) = (2) / exp(-ipx), p= m, (A.2)
P

u(BG), v(BG) - are the Dirac bispinors satisfying normalization

and orthogonality conditions

ABeru@s’) = ZE(D, W8,

(A.J)
3('56)\'('56') = ZE(Bim)assf ’
EGm = v 3o’ ,
u(Perue’) = 2m &, , At

-4

;(BG)V(-p'G’) --zm 866/ ’
* > »
L@ vi-Psr) = 0, (A.5)

$@eoru-ps) = 0,
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G, ¢ are bispinors the Dirac conjugates to u and v. The
orthogonality and normalization relations for the functions
u(x|P6) and v(x|P6) have the form

- S
Jd’x 2 p6)3 ux K6/ ) =28 B, m) 8 B3,

(A.6)
3 - o 0 » -+ S+
Id x x| P6¥ v (x| Re )28 B, ma” -3,
Idsx ax|pery’vex®e) = o,
(A.7)
3 - Y 0 »
Id x v(x|p6)¥ ucx|Re’) = 0,
or in a covariant form
- h
Iu(xl'[sG)dax ucx[Re’) = 2BE,m8" FRg,
. I vexiBerds vix|iks), (A.8)

Iﬁ(xﬁs)d%‘x vix|Re) Iw’r(xﬁe)d%‘x u(xjR6’) = 0, (A.9)

dé e
xli"Gx.

The condition for the completeness of the functions u and v
is presented in the form

z Idp(ﬁ)u(xﬁs)ﬁ(yﬁs) - 157 ey,
s (A. 10)

T Idp(’p)v(xﬁs)?r(yﬁs) - 8 -y,
6

1t can easily be s8seen that the following relations are
fulfilled
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- A
J s ’(x-y)dsyu(y|36> . (3o , |

f a <yi35)d3ys"’(y-x) - x| pd),

J s(*’<x~y)d3yv(y|36> - ivepe , |

J v (y;BS)days"’(y—x> = 1v(x|pb), |

f s("(x-y)dgyv(y|36) . f v (y|36)d3ys"’<y-x)-o,
- A )
J s(”(x-y)dﬁyu<y|36) . J a (ylis)dsys" (y-X)=0,

- A (=) - \
J s' )(x-y)dsys y-2) = i (x-2),

A
f S(+)(x-y)d6ys(+)(y-z) - 15 -2y,

t A +
J s(‘)(x-y>d6ys“’(y-z) = 0. )

(A.11)

(A.12)

(A.13)

(A.14)

For the single-particle causality Green’s funetion of the

spiner field we ugse the expression

0 0 -) 0 0 (+)
SPx-y) = 0 -y T xepr-ay x8 -y, (AL18)

From (A.14) and (A.15) there follows that

- (-
J S( )(x-{)dg Sc((-y) = i8(T-ny)S )(x-y),

ng=1

$

A (
I s (x-0)d6,5%(2-y) =-10(ny-08*) -y,

nl=t1

{

A - -
J sCx-0)d6,8 " (2-p) = 16mx-087 -y,

nl=1

$

]

i (A.16)




(+)
Jf s¢(x-2)48,5 " (2-p) =-18¢t-m0S" (x-) J

ng=t

e

W¥e shall also present the transformation properties of the
functions u(x[P6) and v(X|{$6) respect to the proper
orthochronous Lorentz group

1/2

6/6(A(A1 p))l

w/ (X’ P’ 6)=S (A u(x|p6y=u(x’ |p’ 6 )D
(A.17)

+

- - -1 i1/2
W (x/ {3/ 8)=(x[P6)S  (Ay=D ./

ser (ACA DU [P/ 67)
where A¢SL(2.c¢) is an element of the universal covering group of
‘the proper orthochronous Lorentz group LI, X is Wigner rotation

~ -1
A(A,p) = Ip’) Alp), (A.18)

where (pl denotes the element from thg SLéz.C) sroup and it is
such that [plplpl* = B, P = phey, p = Py, P* = m,3), 6y is
the set of the Pauli matrix with the unity one ,32/. A is an
element of the SU(2) subgroup of the SL(2.C) group. D'/2 is the
matrix of the finite-dimensional representation of the rotation
group (SU(2) group) with a half integer spin. S(A) is the matrix
of the spinor representation of the SL(Z2.C) group. In the
representation c¢f the Dirac matrices where the ¥s matrix has a
diagonal form ¥s = (}_9), the matrix S(A) has a block-diagonal
form

sy = [ 4 °‘-1].
0 A

Finally, p’=A(A)p, x'=A(A)X, where A(A) is the Lorentz
transformation matrix.

It may be shown that the single-time wave functions,
introduced in this work, possess the following transformation
properties
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two-fermion system:

W R/ TIXX5) = S, (A)S, (MY (NT|X,X,),

2 a0/t

7 (n’ ’ -
¢ (n M[p 6 /5/) Ds's 66,

n’ = AR, X{ = ACA)X,, X§ = ACAIX,,

Pj= AP, P ACAIP,,

1 ~ -1 ~
A, = (p{1 Alp,1, A, = [pj] "Alp,l,

fermion-antifermion system:

~ ~ -‘
Y/ (n’Tx{x;) = Si(A)W(ntlx X,) S (A),

1/2 v iy

w/(n/M!plsl /5/);D6,6 (A ) ¢(nM|p, ‘pzﬁz)Ds 6’(
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(A.20)
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