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A possibility is studied as to construct the odd Poisson
bracket and odd Hamiltonian by the given dynemics in phase
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equation of motion.

Yerevan Physics Institute

Yerevan 7987



Introduction

In the recent years, in the field theory studies, certain
interest has been attracted to the odd Poisson bracket ~ the
Butten bracket [1,2,3] . In particular, D.V.Volkov et al. have
been working out a concept, according to which the odd Poisson
bracket is an initial object for superhamiltonian mechanice
(4,31« In Ref.[4] these authors have noted that in the formu-
lation of classical supersymmetric Witten mechanics the Witten

hamiltonian

: P2+ W2(q)

H= =5 + 6,6 W'(9), ()

VV(Q) is superpotential

may be replaced by a more elementary one:
ﬁ = Qy,
(Qy=-P6 + W(q)6: Q, = P8, + W(q)6; ).

In this cage, from the even Polsson bracket giving the dynamica

(2)

2f the system (1)



{P, $}°= 1 ¢ {ed’eﬁ}fédp’ {P’ea}o;-' {$792}o=0 , p=1,2

4

one ghould turn to a specially chosen odd bracket { , }’ con-
structed in [4] such that equations of motion would not

change*:

f= {6}, = {A.f],-

In the case W(g)=g in (1) ( harmonic superoscillator) the
{ ’
bracket { , ], tekes a canonical form: {, }' = { , }1

{P,e,}1={q,92}1=1 ’ {P,92}1={q,9,}1={94,ep}'=0. (3)

The superalgebra of the motion integrals
{Qd-’ep},"'zsde , {Qd, F}°= Exﬁap

(4)
F=S52- 06
will preserve its form:
- - ' - -— ¥ —
{G'diap}1=28dPH7 {Qi’F}i-.-e“PQP (5)
where

?=-—'§-Qa . Q,=H, Q,=L(2F-H).

In this work we'll try to generalize the statement of (4]

for the case of arbitrary supersymmetric mechanics.

* The use of the odd bracket for the description of dynamics
see algo in [5] .



Let H be the supersymmetric Hamiltonien in (2n,m )-di-
2n,m
mensional phase superspace E ' with coordinates
(Pyyees PryGiy s GnyBiyenyBm ) in which the system dynemics is

given by canonical even Poisson bracket:

{£,9},

Can we reformulate the system dynamics in terms of cdd

_"afgg_ af a9 T fH g
-g(gfﬁaq‘—ﬁapi) ;(1) 36% 36~ (6)

Poisson bracket, i.e. to construct a new (odd) Hamiltonien H
and new odd bracket { ) }:(not necessarily canonical) such
that the motion equetions would be unchanged, i.e.
{11}, = {H,f}, (1)

for eny function { on the phase space?

In Section 1 we'll remind the definitions of ihe Poisson
bracket in superspace (for details see [6,7]).

In Section 2 we'll arrive at results of Ref,.[4] by a more
geometric menner.

In Section 3 we'll suggest an explicit construction of the
{ ,-E bracket satisfying (7) for an arbitrary supersymme%ric
Hamiltonian H . Here the role of the new Hamiltonian will be
played by the supercharge of Hemiltonian H : H=08  where
{a,a} =21 .

In Section 4 we'll construct solutions of Eq.(7) for one

class of integrable superhamiltonian systems.

1. Recall some definitions.

g , } is called an even Poisson bracket on the phase

2n, . '
superspace k£ mTmog for functions of definite parity on Eanm



P({f:9}) = p(f)+pP(9),

(8a)
{f,g}.;_(_')P(:F)P(Q){g,f} 8
(superanticommutativity conditicn)
{hysg}={h, g+ "7 {hg}s (e

(the Leibnitz differentiation rule)

plh)P(G)

)P(i)p(h) {3, {hfl}+ 1)

P(g) P(F)
)

(-4 {hif.gd=0 {8c)

{$. {g:h}}+ (-1

(the Jacobi identity)

In (8) P(f) is the § function parity. The action of
on inhomogeneous elements (functions of uncertain parity)

continues by linearity:
{f90+hp}={f,g}a+ {f h}p.

To the ncondegenera*t:e"I even Poisson bracket there corresponds
the nondegenerate differential closed even 2-form which, for

example, for the canonical bracket (6) bhas the form:

co=2_r_"?dpt/\dqi - G‘Z:(ded)z. (9)

=1

We arrive at the definition of the odd Poisson bracket

(the Butten bracket) if in the definitions (8a,c) we make

* The bracket f , } is nondegenerate if for any nonconstant

function + there exists such function ¢ that {f. 9} + 0

5



everywhere replacement Pp(§)— p(f)+1{ . In the ( 2n, 2n )-
dimensional phase space to the nondegenerate Butten bracket
there corresponds the nondegenerate differential closed odd
2-form. Locally, such a form (the analog of Darboux theorem)
always may be reduced to the canonical form [8] (similarly as
the even form to that of (9)):

n
w=Z(dP1d6i+dq(‘_d6n+i)' {10)
i=1

To the canonical form (10) there corresponds the canonical odé

bracket:

{f,g}1=;(§f_ 3,229,y 8, %g_))

api a6t aqi aentt p

In the superspace with the even (odd) Poisson bracket the
system's dynamics is given by the even (odd) Hamiltonian H .

Equations of motion have the form:
f={t. )

2. Return now to our problem. The construction of the odd
sracket { | } and the mew odd Hemiltonien P  satisfying
(7) is especially simple if the supersymmetiric Hamiltonian H
has & sufficient amount of integrals of motion (see for de-
tails the end of Section 4). Precisely this situation is the
cagse for the Hamiltonian (1) in [4] - in the (2,2)-dimensionai

phase space there is one even motion integral H and two odd
/

G.1 ) G.a 9 md {Gd) ap}o"' 26«PH . We'll Obtain { ] }'
(constructed in [4] by direct solving the differential



equation (7)) by defining it on the basic functions:

{Q’7t}: %"‘ﬂl’ H_f}::

{t*+f} e, 2 +q} = {Q,H- £} = {G., +g} =0,

where f and g are arbitrary functione of the motion integ-

(1)

rals,({ is even and 9 is odd) T is the "time" - function
such that

{H"c}o:i‘ (12)

!
To the bracket { , } there corresponds two-form

©=dQyde + d(B2+g)d(H-§) - (13)

If we put H =@y Just like in [4] , then the relation
(7) will be fulfilled, because it is evidently fulfilled for
the basic functions '

THf, Qs wr+g

The arbitreriness in the definition of the { , ]a bracket
in Ref.[4] arising in the direct solving of differentisl
equations (7) corresponds to the arbitrariness in the choice
of §{ and 9 functions in (11) and T in (12) {the 7 may
te mdded to by an arbitrary even function of the motion in-~
tegrals H,08;,H,). We'll satisfy the relations (5) toc, if

we also put

= (H-f)+ (55 +9)=H* Qg+ (F-F)



0,=-L((H-H-Qi(gE+g) =L @F -H+ L(F-f)+idig
(14)

Fel(H-0)(B+9) - $au+ igH-H)- 5

3. Turn now to the generali case.
Let H be a supersymmetric Hamilitcnian. The dyvnemics ir
determined by the canonical Poisson bracket (6), Let U be

the odd integral of motion:

{H,G}OT-O b} P(Q):

Without violating generality we may assume that @ is a

supercharge:

{Q,G.}O=ZH (15)

Indeed, {G. Q} # 0 , since the bracket (6) is sign-defined in
the odd gector and hence <1({G,Q},)= ZZi(.aed) aed) >0
where < (h) is the number part of superquantity h . There-

fore, the replacement of G by Tﬁ;@};— JeH will bring to (15).
{To the motion integral whose "square" is nonzero
( {Q , Q} 79 0 ) there corresponds the supertransformation of
the aciion which adds to the lagrangien a full derivative),

The main observation is that if { , } is the even Poisson
bracket and (; is the set of even and o 1is the set of

odd functionsg, then

(4.9} = ; ({ai, $H= 9} + 0" Pfet, £ a9 7) (16)



patisfies the relations (8a), (8b) for the odd bracket
(P(§)—=P(F)+1 in (8e,c), and under certain conditions imposed
on a; and «; (in particular, if all commutators {G¢ ,GJ} ,
{aL , & } . {o{.L )o(.J} are constent) also the condition (8c);
i.e. { , }: in (16) is the odd Poisson bracket. We'll search
for the solution of Eq.(7) using the ansatz (16).

Por example, for the~supersymmetric Hamiltonian H with
supercharge G we take (16) putting a=JW , = - TGH- ’

{a,a},= {a,2}=0, {,a}=2

7
{5:9% =-({FsL{fghe Y (F oL (W .91)

The bracket (17) may be identically rewritten in the form:

{LQ}: = E%({H’f}o{a7g}o+(-1)i,(;) {@F), {H-9}) + (17a.

P @
+ (-0 gz (5] {9l
FProm (17) it is obvious that

(.5}, = {Fr el {W ] = {H. ],

That is the transition to the odd bracket (17) together With
the transition to odd Hemiltonian H =6 does not change the
motion equations.

0f course, the bracket (17) has one serious drawback - it
is degenerate., However, note, that in constructing our odd
bracket we always have certain arbitrariness (see, e.g. Sec- i
tions 2 and 4), since we practically keep to motion equations

alone. In a class of all brackets satisfying (7) at a fixed

10
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choice H=Q of the new Hamiltonian the bracket (17) is
extracted by the condition of maximally possible degeneracy.
It is interesting to notice that in the ususl case (if
there are no fermion variables and both { } and { }I
connected by ansatz (16) are usual Poisson brackets) the
straightforward calculations give us that concommutant of

these two brackets is equel to zero, i.e.

{fy {g,h}'}+{§,{g,h}}' + cyclic permutation = 0,

where

]
{£.9F = 3 ({a, §Heog) - i }{angh)
i
4. Certainly, the substitution (16) can be used to con-
struct an odd bracket, less degenerate than (17), and a new

odd Hamiltonian such that the system's dynamics would not

change.
Congider, e.g., the foliowing class of dynamical systems:

dynamics on the (2n,m )-dimensional phase superspace is de-
termined by the Hamiltonian H eand canonical Poisson bra-
cket (6); here there are n even integrals of motion

3,3, .-y In and m odd g,,.--,4m , and
{9, 0L = {99480 {30 9] =5

We'll call such systems integrable. It can be readily shown
by elementary calculations like those carried out in the

standard symplectic geometry (see, e.g. [9] ) that the phase

11



space is divided into ( N,0 )-dimensional tori T (Jio, Qao)
determined by the conditions J; = Jio, G = Guo - In this

cage into the vicinities of any torus T one can introduce

the coordinates (Y%,,..., ¥a ) so that {Ji,‘fx}‘fsi.x,{‘ﬁ ,Qd}°=
={§*—L,?K}E=O . Clearly, H=H(Jy, ..., Jn) . Indeed, n vec-
tor fields IdJe{I1dIx: GJ(IdJK,q) = dUKer)) are ten-
gential Lo (RN,0 )-dimensionel tori T end dH(IdJIx}={H,Ik}=C.
hence H=H(3-.,q'¢). Or the other hand, gg; = {H, Qa }°=O R
hence H= H{J; ..,Ja).

In the cage M 2 n , for integrable Hamiltonians we can
construct a less degenerate then in Sect. 3 odd bracket { , ﬁ
and odd Hemiltonian H , both gsatisfying Eq. (7) as follows.
Consider the odd bracket (16), putting

Q=3 , 4i="9; , i=1,..,n
and introduce the new odd Hamiltonian

A= 2 e(9)g, (e

J
where QL(J):—a—:-—,J(_T-)—— .

Then

(g}, =2 ({38 {308k 07 Rofk{%9k)

(19)

Obviously,
(A3} =2 (9 A L {3, Z 55 (%, k- {H 5

i.e. Eqs. (7) hold.
Nlote, that for integrable Hamiltoniens in ( 2n,2n )-di-.

12



mensional phase space we can directly construct the nondegene-
rate odd bracket so that the odd Hamiltonian~-supercharge of
the former Hamiltonian would describe the system dynemics,
We'll generalize the comnstruction formulated in Section 2.

Let T, be such functions that

[H,w} =1, i=t,..,n (20)
i _ _GH)
For example, 7T = a—;—(&)(_ = '—ﬁ':—)

!
Determine{ R }1 by relations on basic functions <T,,...,Ta,
:’1,...,:’“’&1, veey Qan ( de \Jqui,d=|)...,2n are super-
charges, {Gd,Qp}°= ZédPH )

{Qi,)t:,‘}: = Gn” ’ jJ} = SLJ ’ L=ty N
(@i, &)= (@i, 855 ) = (@0, 3] = {55 - (21)
“lr SR (o3 o S (oo

w= T (d8d; + d pid3;)

t=1
and introduce the new Ham:}.ltonian

H=Q,+Q*+ ... *Qa (22)

which is a supercharge of the former one {ﬁ,ﬁ }o=2nH .
Clearly, Eqs.(7) at determination (21) of the odd bracket
{, } endat determination (22) of the 0dd Hemiltonian A
will be satisfied automatically, since they will be obviously
satisfied on basic functions T, 3y, Q{,Q;.n (i=1,...,n)

At such determination of the new bracket the slgedbra of

13



integrals of motion will not change its form:

{Q,,Qp],= 285 H — {@u,8p], = 26upH

if we put immediately after H= Q;+ ... *Qn

Py - Qari
G = K tHZ-
- . — Gn+i
Qnﬂ.:"'(j—H 2H )

At N = 1 this construction transforms into one formulated in
Section 2.

Of course, the determination of the bracket (21) as well
es of the bracket (11) in Section 2 contains arbitrariness in
the choice of 2n even and 2n-~{ odd functions of integrals
of motion. When replacing in the determination of the bra-
cket (21)

T, 2&4-91 , t=1, ...,n
S 3t h,
Gy Qu+Gy, 4=1, .., 2n

n
provided thet Z:;Qd =0 s where fi ) f,-_ are even, gd are
0dd functions of integrals of motion, Egs.(7) will not be
violated.

This work suggests two ways of constructing an odd bracket
and odd Hamiltonian which just like the former even bracket
and even Hamiltonian describe the system dynamics. The first
way consists in constructing nondegenerate bracket by giving
it on canonical basic functions in case if the system possesses

a sufficient amount of integrals of motion. The second way

14



congists in direct expressing the odd bracket through the

even one by means of the ansatz (16).

in ccnclusion, the authors would like to express their
gratitude to D.V.Volkov, V.Gershun, V.A.Soroka, V.I.Tkach for
highly fruitful discussions, and also to R.P.Manvelyan,

R.L.¥Mkrtchyan, T.Khovanova, A.S.Schwarz for useful remarks.,
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