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ABSTRACT

Within the context of Barut's self-field approach, we write the exact expression of the
spontaneous atomic decay rate [Phys. Rev. A37, 2284 (1988)], in the long wavelength approx-
imation, in terms of electric- and magnetic-like multipole contributions which are related to the
matrix elements of the transition charge and current distributions of the relativistic electron. A nu-
mer of features of these expressions are discussed and their generalization to interacting composite
systems is also pointed out
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1 INTRODUCTION

In Self-Energy Quantum Electrodynamics (SEQED) advanced by Barut et. a/.'1"3'
spontaneous emission from one electron atoms is treated as a self-field attribute
in a fashion close in spirit to the classical idea of radiation reaction. So far in this
theory only a first iteration of the action functional of the matter plus radiation field
has been considered in direct correspondence with first order perturbation theory.
To this order of iteration, account has been made'2"4] of the electron's anomalous
magnetic moment (g — 2), the Unruh and Casimir effects, the Lamb shift and others
besides atomic spontaneous emission'5] and absorption.

The subject of this paper is again spontaneous emission. We have been encour-
aged by the success of our formulation in producing precise atomic decay rates for
some of the low-lying Hydrogenic excited states reported elsewhere'5'. Moreover, we
have recently employed'6' our general relativistic formula in calculating the decay
rates of the metastable 25 states in the Hydrogenlike atoms and ions with values
of the atomic number Z ranging from 1 to 92. Agreement between our results and
those of other formulations as well as with experiment is good especially for high Z
values where a relativistic treatment is essential.

In this paper, we bring our exact formula '5' for the atomic transition rates
one step closer to the familiar language and terminology of the standard theory.
This goal is fulfilled by making the long wavelength approximation which is less
severe than the dipole limit. We show that, in this regime, our expression, which
was arrived at fully relativisticaily, in fact contains contributions from all the elec-
tric and magnetic multipoles of the radiating system, namely the electron, with
slightly modified definitions for the multipole moments that automatically exclude
contribution from the electric 2°-pole (monopole).

2 THE THEORY

Within the context of SEQED, we have arrived'6' at the following general expression
for the Einstein A-coefficient of spontaneous emission, or the transition probability
per unit time, for the decay of an atomic state n into the state s

= ~ f (1)

where n and 5 stand for the totality of the respective state's quantum numbers
n,t,J and M. In the last step in equation (l) the radial integration over |k| has



been carried out resulting in the understanding that |k| is to be replaced everywhere
by CJ = En - Et, by virtue of the delta function. Moreover, dX\k = sin 6hd$kd4>k and
the quantities

(2)

are Fourier transforms, or transition form factors, of the electron current

in«(r) = -e$»( r)W»(r)- (3)

The wavef unctions are everywhere the well-known exact solutions of the Dirac equa-
tion for a single electron in the Coulomb field of the atomic nucleus, as is explained
in reference [5]. Equation (1) is thus exact and has been the basis of our decay rate
calculations referred to above!5'6'.

3 THE LONG WAVELENGTH APPROXIMATION

Equation (1) has been shown'6! to reduce to its well-known nonrelativistk counter-
part when the dipole limit (eAr « 1) is made. Although retaining the dipole term is
believed to be sufficient for most practical purposes in atomic physics calculations,
this may be too severe for radiation from atoms with high values of the atomic
number Z, where the relativistic corrections become important. We show below
that more terms can yet be retained when a less severe approximation is made.
In fact we shall demonstrate that the decay rate is a sum of contributions from
all multipoles of the system, establishing in this way some degree of resemblance
between our fully relativistic semiclassical formulation and the familiar theory of
nonrelativistk multipole radiation from atoms.

In expanded form,equation (1) can be written as

where it is straightforward to show that T,°n(-k) = T°i(k)t and that T,n(-k) =
T«(k}».

Next we look at
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(5)

where use has been made of the expansion

(6)

in which gi is a spherical Bessel function and where

pnt = ^ ( (7)

The long wavelength approximation amounts to retaining the first term in the
power series expansion of the spherical Bessel function

Thus equation (5) becomes

where

are matrix elements of the classical electric multipole moments (the (e) here stands
for electric)

Hence the first term in equation (4), after carrying out the remaining angular
integration, becomes

(12)
tm

where w^ is the 2'-pole electric transition rate per unit time and is given by
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Equation (13) is precisely what one gets for the transition probability per unit
time from the electric part of a multipole expansion^7' of the radiation field, apart
from a factor of -2i*±ll which we shall discuss below. The factor ^ is a result of
the system of units we are adopting here whereby K — c — 1 and the fine structure
constant a = C2/4TT. The minus sign in (13) implies that w^ is a growth rate for
the population of state n and a depletion rate for that of s. In other words, w%l
corresponds to absorption of radiation rather than emission.

Similarly, the second term in the expression for the transition probability per
unit time, equation (4), yields

tm

where the (m) stands for magnetic and

~ 4TT {21 +1)!!

In (15) we have used the notation

S L = \ /^~T / rlYtm(r)]n.{T)a«r, (16)

with

In perfect analogy with the electric multipole contributions to the transition
probability per unit time, equation (13), one is tempted to call w^ the 2 -̂pole
magnetic transition probability per unit time, except here the departure from the
standard usage of the term is quite apparent. In relativistic Quantum Mechanics,
the velocity operator describing the jittering motion (Zitterbewegung) of a Dirac
particle is given by the a matrices. The fast irregular motion of the electron, termed
Zitterbewegung, is associated with its spin motion. Hence, one is led to intuitively
interpret ejns as the matrix element of the physical current associated with this
motion, which results in the magnetic effects just like in the classical picture. It is
in this sense that we call w\™* the 2*-pole magnetic transition probability per unit
time and it is in that sense we call
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the 2*-pole magnetic moments of the electron. Putting (13) and (15) together, we
get the following expression for the total transition probability per unit time in the
long wavelength approximation

tm

4 DISCUSSION and CONCLUSIONS

By making the long wavelength approximation, we have managed to write the tran-
sition probability per unit time in one electron atoms in terms of the matrix elements
of suitably defined electric and magnetic multipole moments of the radiating sys-
tem. The intuitive picture we draw for spontaneous emission (and absorption) of
radiation from such atoms is thus close in spirit to the intuitively clear one drawn
from the ideas of the classical radiation from oscillating charges. In our formulation,
the radiating system is an electron undergoing Zitterbewegung.

We maintain that the full decay rate of the transition n —*• s should be calculated
using the exact analytic expression of reference [5] or equation (19) above as an
approximation. A decomposition of the transition probability into electric and
magnetic contributions, effected artificially in the conventional theory, is rendered
meaningless in our approach due to the presence of the negative sign in equation
(13) for «,«.

Our main results in this paper are equations (13) and (15). Equation (13) is to
be compared, if need be, with'7'

2 £ + l
l)!ip

of the standard theory. Immediately one recognizes the following differences be-
tween (13) and (20):

1. The minus sign in (13): We have good reason to believe that the existence
of this sign in our version of the theory is crucial, provided that (13) and



(15) are taken together and equation (19) is used in practical calculations. In
calculating the 25 —• IS transition rate, for example, using the exact formula
developed from equation (1) above, we discovered that contribution from both
terms is the same up to a good number of decimal places resulting in a null final
result if one is not careful enough. In a double precision calculation, however,
we found that the finite result of the standard magnetic dipole calculation can
be reproduced'5'6'. This transition is, of course, forbidden in the nonrelativistic
limit.

2. The ^ factor in (13) comes from our system of units.

3. The factor of 2 in equation (20) is a result of summing, in the standard ap-
proach, over the two photon polarization states. In our formulation of the
problem, polarization of the emitted radiation is an attribute of the spin of its
source which is, in turn, automatically accounted for through the use, from the
start, of spin-dependent Dirac-Coulomb wavefunctions. See also references [5]
and [6] for a discussion of this factor.

4. The factor &~ in (20) comes from a choice'7! of the arbitrary constant in the
electric photon wavefunction. In the standard theory, radiation from the 2°-
pole (monopole) corresponding to I = 0 is absolutely ruled out (Jn = 0 -f-+
Jt = 0) by the transversality of the radiation field, yet if one naively takes the
limit as I —*• 0, one gets

wg) „ I4l1>.dr = £ (21)

an indeterminate quantity, where orthogonality of the wavefunctions has been
invoked. In contradistinction, our result gives automatically

.(<) „ / ./.!./. J 3 . = Q. (22)

This result is a byproduct of our original elimination of the radiation field'1"3'
from the picture in favor of its source which is, in turn, described by orthonor-
mal Dirac - Coulomb wavefunctions involving no arbitrary constants. More-
over, this arbitrary factor tends to unity for large £ and is therefore important
only for the lowest order multipoles.

What we have labeled as a magnetic contribution to the transition probability
per unit time, equation (15), is based upon vector magnetic multipole moments
defined for our purposes in perfect analogy with their electric counterparts (in terms
of a transition current distribution as opposed to a transition charge distribution).
The magnetic multipole moments of the standard theory are scalar quantities which
in the I — 1 case are related to the spin and orbital magnetic dipole moments of
the electron'8'.

In conclusion, we wish to stress here that the real test of our theory of sponta-
neous emission should be to compare the results of its exact version directly with
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those of the experiments. Equation (20) above is the multipole-like approximation
to our exact spontaneous decay rate formula given in detail elsewhere'5'.

The advantage of making the long wavelength approximation, provided that it
is good for a certain practical calculation is twofold. On the one hand, one can
now break the problem of calculating a decay rate into small pieces corresponding
to multipole contributions of increasing order. On the other hand, writing the
expression for the decay rate in terms of multipole contributions may be directly
generalized to the case of multielectron atoms and to composite systems such as
positronium using the many-body form of the action functional.
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