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1 INTRODUCTION 

1.1 What Is a Quench? 

The superconducting state only exists when materials are maintained below a 
temperature called the critical temperature. This critical temperature depends oa many 
parameters, including the amount of current carried by the conductors, and the magnetic 
field on the conductors (which for a given turn of a magnet coil are of course related). 
A three-dimensional surface, called the critical surface, is defined by the boundaries of 
critical temperature, critical magnetic field, and critical current, as shown in Figure 1. 
The critical surface is the very boundary between the superconducting and normal 
resistive states. 

A magnet is normally operated at conditions corresponding to a point located 
beneath the critical surface, where the entire coil is superconducting. Let us assume 
that starting from this operating point we ramp up the current In ramping up the 
current (and thus the magnetic field) we get closer and closer to the critical surface, and 
soon, somewhere in the coil, we cross it. Crossing the critical surface means that 
somewhere in the coil a small volume of conductor, V, switches to the normal resistive 
state. When switching to the normal resistive state, this small volume dissipates power 
by the Joule effect. The dissipated power overheats V, and also, by thermal diffusion 
along the conductor, the region dV, which surrounds V. If the Joule heating is 
sufficient, dV can in turn reach the critical temperature, switch to the normal resistive 
state, and dissipate power; the dissipated power can in turn overheat dV, and, by 
thermal diffusion, the region surrounding dV— and so on. Under certain conditions, 
a self-maintained process can be established — from transition, to power dissipation, to 
thermal diffusion and then again to transition — in which the normal zone, the zone 
where the conductors have switched to the normal resistive state, propagates through 
the entire coil. This process is called a quench. 

1.2 The Effects of a Quench 

As described above, once a small volume of conductor has switched to the normal 
resistive state, it dissipates power. A fraction of this dissipated power is transferred to 
the surroundings of the initial volume of transition (either along the conductor, or, 
transversely, to the conductor insulation or the helium), but the main part is consumed 
locally in overheating the conductor. In a very short time (a few tenths of a second in 
the case of a dipole or quadrupole magnet) the conductor temperature, initially that of 
the helium, reaches room temperature, and, if nothing is done to discharge the current, 
keeps on increasing. At temperatures above 1000 K, the current capability of the 
superconductor begins to degrade irreversibly. At about the same temperatures, the 
conductor insulation (usually Kapton film) loses its strength and resistance to cut-
through. A turn-to-tum short is then very likely to occur, which will severely damage 
the coil and render it unusable. If not controlled, the effects of a quench can thus be 
disastrous. 

* Lecture delivered at ihe 1989/1990 US Particle Accelerator School, Brookhaven National 
Laboratory, Upton, New York, USA, July 29-August 4, 1989. 
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Figure 1. NbTi critical surface. 

In the operation of a superconducting magnet, a quench is, of course, a 
disturbance. Everything must therefore be done to limit the risks of quenching. As we 
will see, one important factor is the position of the operating point of the magnet 
relative to the critical surface. Nevertheless, as much as we might limit the risks, they 
can never be nil. Every superconducting magnet is likely to experience quenches 
during its lifetime. We must therefore ensure that these quenches will not be 
destructive. In other words, we must ensure that the coil will not reach a temperature 
higher than even a fraction of 1000 K. This implies two things: 1) that we have to be 
able to detect quench occurrence, and 2) that we have to be able to discharge the coil 
and extract its stored energy quickly enough to limit the power dissipation by the Joule 
effect. These concerns cannot be addressed without understanding the very nature of 
the quench phenomenon, its origins, and its laws of propagation. This shows the 
importance of quench studies, which, besides fulfilling an academic interest, also 
answer an engineering demand. 

1.3 Studying the Quench 

My oral presentation consisted of three parts: quench origins (how and why does 
a quench occur), quench development (how the quench propagates through the coil), 
and safety concerns (how to detect a quench, how to estimate the temperature increase, 
and what to do to protect the coil). In this paper, however, I shall only discuss the 
quench origins, sending the reader to references 1 to 3, which contain experimental data 
from the testing of 4-cm aperture, 17-m long SSC dipole prototypes, for supplementary 
information on quench development and magnet safety. 
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As for the quench origins, I shall first establish a method of classification and 
introduce the notions of conductor-limited and energy-deposited quenches 
(paragraph 2). Paragraph 3 will be devoted to the study of conductor-limited 
quenches, and I shall introduce the notions of plateau and offraction of short sample. 
Paragraph 4 will be devoted to the study of energy-deposited quenches, and I shall 
introduce the notions of training and of minimum energy deposir, I shall then review the 
possible causes of energy release. Lastly, in paragraph 5,1 shall introduce the notion 
of operating margin, and I shall indicate how to optimize the operating margin in order 
to limit the risk of premature quenching. 

2 QUENCH CLASSIFICATION4 

2.1 Definitions 

Let us consider a superconducting coil wound with a conductor of known critical 
current IQ (T, B). At a given current, the magnetic field on the conductor is variable 
from turn to turn, and also, for a given turn, from the inner edge to the outer edge of 
the conductor. Let B =/ p(/) designate the relation between the current and the 
maximum magnetic field seen By the conductor in the coil, also called the peakfield. At 
a given temperature, To, the maximum current, / m a x , that can circulate in the coil is the 
solution of the implicit equation 

/ = /c (To,/P(7)) at T0. (1) 

When ramping up the current from zero, quenches can occur either at currents lower 
than / m a x, or as / m a x is reached; this provides a first classification of the quenches. 

The quenches occurring at / m a x are a consequence of the intrinsic characteristics 
of the conductor, and nothing can be done about them except to improve the conductor. 
I shall call these conductor-limited quenches. The other quenches are different in 
nature. Since they occur at a current, /, lower than /max(To), somewhere in the coil a 
volume of conductors is subject to a temperature increase, To + AT, such that 

/ * 'max(70 + AT) . (2) 

These quenches are therefore initiated by a deposit of energy on the conductor. I shall 
call them energy-deposited quenches. Thus, the main difference between the 
conductor-limited and the energy-deposited quenches is that in conductor-limited 
quenches the critical surface is crossed because of an increase in current, while in 
energy-deposited quenches the critical surface is crossed because of a local increase in 
temperature. 

2.2 Identification Method5 

The above definitions rely on knowing IQ (T, B). AS we shall see in 
paragraph 3.2, the transition from the superconducting to the normal resistive state is 
much more complicated than a single-step function, and in practical applications /c(T, 
B) is not very well defined and ought to be measured on each particular conductor. 
Nevertheless, the sorting of the quenches into conductor-limited and energy-deposited 
categories remains relevant, and is of great interest for the magnet builder since it gives 
him direct information on what is limiting the performance of the magnet. I shall now 
set forth a method which allows clear categorization of quenches, independent of the 
numerical values of /c (T, B). 
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Figure 2. Selected testing results from SSC dipole prototype DD0017. (a) Current at 
quench versus quench number, (b) Fraction of short sample vs. quench number. 

(c) Current at quench vs. temperature at quench. 



Let us assume that the operating temperature of the magnet is changed from TQ to 
TQ + ATQ. In the case of conductor-limited quenches, the current at quench will 
change from Imax(To) to /m ax(7o + ATQ); there will be a strong correlation between the 
current at quench and the operating temperature, closely following the critical surface of 
Figure 1. On the other hand, for energy-deposited quenches, the deposit of energy 
presumably has nothing to do with the fine tuning of the magnet temperature. Instead, 
as we shall see in paragraph 4.3, it is more likely due to a stress relief or a friction 
between wires resulting from the energization of the magnet and the application of 
strong Lorentz forces. If Lorentz forces are involved, it is therefore expected that the 
energy-deposited quenches should depend mainly on the current level and should be 
relatively insensitive to small variations in temperature. Thus a practical method for 
categorizing quenches is to change the operating temperature of the magnet slightly — 
for example, to increase it and then decrease it by 50 mK — and to see if the quench 
current follows the change or not. 

2.3 Practical Example 

Figures 2a and 2c feature an illustration of the method set out above. These 
results are extracted from the excitation test of a 4-cm aperture, 17-m long SSC dipole 
prototype (magnet DD0017).6-9 The magnet was first cooled down to a nominal 
temperature of 4.4 K, and ramped several times to quench. A "ramp to quench" 
consists of ramping the magnet current until a quench occurs; the power supply is then 
switched off and the coil is discharged. Following the quench, the magnet is cooled 
down again to 4.4 K, and die test is repeated. In this particular case, the magnet was 
quenched seven times and then warmed up to room temperature for several days. It 
was then cooled down again to 4.4 K, and six more quenches were taken. Figure 2a 
shows the current at quench versus the quench number, and Figure 2c shows the 
current at quench versus the magnet temperature. (The temperature is measured by 
carbon resistors located in the helium interconnect region at both extremities of the 
magnet.) Quenches 3 to 7 and 10 to 13 exhibit a clear correlation between the current 
and the temperature, while quenches 1,2,8, and 9, the first two quenches of each test 
cycle, are scattered; thus quenches 1, 2, 8, and 9 are energy-deposited quenches, while 
the others are conductor-limited quenches. 

3 STUDY OF CONDUCTOR-LIMrTED QUENCHES 

3.1 The Notion of Plateau 

As we have seen, conductor-limited quenches can be characterized by their strong 
dependence on temperature. On the other hand, if the temperature of the magnet is kept 
constant, the current level at which conductor-limited quenches occur is very stable. Li 
the plot of the current at quench versus the quench number, these quenches appear on a 
"plateau"; they are called plateau quenches. When testing a superconducting magnet, 
the operating temperature is deliberately kept constant. The first sign of a conductor-
limited quench is thus the appearance of a plateau in the current-at-quench plot. Once 
this plateau has been clearly established, one can verify that these quenches are indeed 
conductor-limited by deliberately varying the operating temperature, as recommended in 
paragraph 2.2. This is the procedure that has been followed for the magnet in 
Figure 2a, and this is why the last quenches of the testing cycles, which were taken at 
slightly higher temperatures, seem to fall off the plateau. 
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Figure 3. Voltage-current characteristic of an SSC inner-layer conductor 
(at 4.33 K and 6 T). 

An important consequence of conductor-limited quenches is that they reveal the 
maximum current that can be put into the coil. This means that, in the operation of a 
magnet, once a plateau has been reached, there is no hope of improving the 
performance except by deliberately lowering the operating temperature. This also 
means that a correlation like the one in Figure 2c provides an in situ measurement of the 
conductor critical current. The next step, then, is to compare these in situ values with 
the critical current previously anticipated for the conductor wound in the coil. Before 
we can make this comparison, however, we must understand how the critical current of 
a conductor is defined, and how the maximum current of Eq. (1) can be predicted. 

3.2 Defining the Critical Current 

The conductors currently used in accelerator magnets are typically a couple of 
millimeters thick and 1-cm wide. They consist of 20 to 40 strands wound in a spiral 
pattern. Each strand consists of a large number (typically 1000) of small (typically 
10 (im in diameter), twisted, superconducting filaments, embedded in a copper 
matrix.10 In this highly complex structure, the transition from the superconducting to 
the normal resistive state is not abrupt, as is clear from Figure 3, which shows the 
voltage-current characteristic of a 75-cm long sample of SSC conductor at a temperature 
of 4.33 K and in a background magnetic field of 6 T . n For low currents, no voltage is 
measured, indicating that the whole sample is superconducting. For currents above 
7000 A, a finite voltage appears, indicating that part of the current is no longer carried 
by superconducting electrons. As we keep increasing the current, this voltage increases 
rapidly, and finally the whole sample switches to the normal resistive state at a current, 
/,, of about 9000 A. 
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The curvature of the U-I characteristic of the sample is not well understood, and 
is influenced by many parameters, including the filament size and the magnetic 
Field.12-13 It is usually represented by the equation 

UA Pa = 727 = const7" for/ < Iu (3a) 

where p a is the apparent resistivity of the sample, A and L are the cross-sectional area 
and the length of the sample, and n is an integer, called the N-value. The N-value is 
inversely related to the width of the U-I curvature and is used to characterize the quality 
of the transition from the superconducting to the normal resistive state. (A "bad" 
conductor has an N-value of less than 10, while a "good" conductor has an N-value of 
30 or more.) Of course, when the current exceeds 7t, the apparent resistivity is the 
resistivity of the conductor in the normal state 

Pa = l g f p C u for/ > 7t, (3b) 

where rc us is 'be conductor's copper-to-superconductor ratio. 
Since the transition is not abrupt, the value of the critical current is not accurately 

determined, and many ways to define apseudo critical current present themselves. The 
most commonly-used standard12 is to define the critical current 7c as the current value 
at which the apparent resistivity defined in Eq. (3a) is equal to 10"14 iim 

pa(/c) = 10-14 at 7" and fl. (4) 

This is the definition we shall use throughout the paper. Also, since the manipulation 
of Eqs. (3a) and (3b) is mathematically complex, we shall sometimes idealize the 
conductor transition by representing the apparent resistivity by the step function 

p a = Y(/ - / C ( 7 \ S ) ) 1 ^ pCu atTandB, (5) 

where Y is the Heaviside step function. 

3.3 Generating the Critical Surface 

Because the critical current defined in Eq. (4) depends on the temperature and on 
the magnetic field, in order to entirely determine the critical surface the conductor 
sample should be tested under varying T and B, and for each value of (T, B) a 
characteristic similar to the one in Figure 3 should be drawn, and the N-value and /c 
measured. This, however, is rather tedious and very expensive. To avoid this, many 
studies have been carried out to determine a parametrization of the critical surface — 
that is, an analytical representation of the critical surface that can be adapted to each 
particular conductor by measuring only a few characteristics.14,15 In the case of the 
SSC conductor, the most appropriate parametrization (in the range: 4.0 < T < 4.5 K 
and 5 < B < 8 T) has been found to be 1 6 
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r rr B\ f, , ~ 0-315319 U- 0.01528 U2 + 0.00161 H 3\ 
IC{T,B) = ^1 + 1-0.163089v J 

y / 1 - 0.231741V \ 
[\- 0.021249 v - 0.020418 v 2 J c ( ' D } ' W 

where u = 7/ - 4.2, v = B 5, and / c(4.2 K, 5 T) is the critical current at 4.2 K and 5 T. 
In this parametrization, the critical surface of a conductor can thus be entirely generated 
from the measured value of the critical current at 4.2 K and 5 T. 

3.4 Short-Sample Current Prediction 

Before winding a superconducting coil, a sample of conductor is taken from the 
spool, and is tested in a specific test setup in order to measure its critical characteristics. 
In the case of the SCC conductor, one tries to measure with as much accuracy as 
possible the value of IQ at 4.2 K and 5 T. 1 7 With the use of Eq. (6), this allows an 
estimate of the critical current for all T andS. Introducing this /c(T, B) into Eq.(l) 
then allows one to predict the maximum current that can be put into the magnet. (The 
peakfield function}j> only depends on the geometry of the magnet coil, and can be 
easily calculated using any of the existing computer codes.)18 This maximum current, 
derived from the critical current measured on a short sample of conductor, is called the 
short-sample current prediction, and is usually noted / s s- Note that / s s only depends on 
the operating temperature To-

3.5 Fraction of Short Sample 

As we noted in paragraph 3.1, the interesting fact about conductor-limited 
quenches is that they provide an in situ measurement of the conductor critical current 
once it has been wound into a coil. It now seems appropriate to compare these values 
with the short sample predictions. 

By definition, the fraction of short sample of a quench is the ratio r\ 

" -d f c> • (7) 

where / q is the current at quench, To is the temperature at quench, and Iss is the short-
sample current prediction for To- If 1} equals one, the quench is called a short-sample 
quench* 

3.6 Degradation or Not Degradation? 

Let us return to the example of the SSC dipole prototype in paragraph 2.3 
(magnet DD0017). The parameters of the inner-layer conductor are listed in Table 1, 
and the peakfield function is given by 

/ p(/) = 0.7505+ 0.9470 10- 3/ . (8) 

* Since the transition from the superconducting to the normal resistive state is not abrupt, and since 
the definition of IQ is somewhat arbitrary, the fraction of short sample may ai limes exceed 1. 
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Table 1. Selected Parameters of the Inner-Layer 
Conductors of SSC Dipole Prototypes 

Specifications19 DD0017 DD0019 

23 23 
0.808 0.808 
1.59 1.44 
70 80 
12848 12076 
6820 6691 

Figure 2b shows a plot of the fraction of short sample versus the quench number. For 
quenches 3 to 7 and 10 to 13, which we identified as conductor-limited quenches, the 
fraction of short sample appears very stable, with an average value 7/a 

77a = 0.975 . 

The maximum current at which the magnet can be operated, at a nominal temperature of 
4.4 K, is therefore 97.5% of the short-sample current prediction; one could also say 
that the current capability of the conductor has apparently been degraded by a factor of 
3.5% compared with the short-sample predictions. The question now is whether that 
degradation is real, resulting for instance from bad treatment of the conductor during 
the coil winding, or whether it is simply due to errors in the fraction of short sample 
calculations. 

Errors in the fraction of short sample predictions have two principle sources: 
1) the inaccuracy of the critical surface parametrization itself, and 2) the inaccuracy of 
the temperature-at-quench measurements. In both cases, the inaccuracies can be 
estimated to be around 2-3%. It follows that the inaccuracy of the fraction of short 
sample is around 5%. If the average fraction of short sample for the plateau quenches 
is less than 0.95 we can then answer with confidence that the conductor has been 
degraded; but if 7]ais within a few percent of 1, as for the example presented above, 
the question remains unresolved. 

As is often the case in physics when a question cannot be resolved because of 
inaccuracies, a solution is to rely on statistics. Indeed, if the short-sample current is 
always measured in the same way, in the same test setup, and if the temperature at 
quench is always measured with the same temperature sensors, at the same locations, 
the errors mentioned above should be fairly reproducible from magnet to magnet. 
Testing a certain number of similar magnets would then allow us to empirically define a 
working fraction of short sample, r)w, which will give the correct ratio between the 
"observed" plateau current and the "predicted" short-sample current. It then remain to 
compare r)a and T]w: either r)ais less then T)w, in which case the conductor can be 
considered as having been degraded, or 77a is greater or equal to 77w, in which case the 
magnet can be considered as having reached its full performance. (Unfortunately, I do 
not have enough information to reliably define rjw for the above example.) 

Number of S trands 23 
Strand Diameter (mm) 0.808 
Copper-to-Superconductor Ratio 1.3 
Copper RRR 70 
7C(4 2 K,5 T) (A) 14097 
/S5(4.35 K) (A) 7006 
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3.7 Practical Example 

In actual state-of-the-art cable manufacturing and coil winding, the conductor 
degradation is usually less than 10%. If a magnet appears limited to fractions of short 
sample of less than 90%, the first move of the magnet testers is then to think of 
problems other than the conductor. To conclude this section I want to give another 
example which shows that conductor-limited quenches can indeed occur at very low 
fractions of shon sample. This also shows that our identification criterion based on the 
current-at-quench versus temperature-at-quench correlation is a much more powerful 
tool to diagnose *he rnsj^e: problems than the sole consideration of the value of the 
fraction of shor i.̂ r ; : , . 

Figures 4a to 4 , aummarize the testing of another 4-cm aperture, 17-m long SSC 
dipole prototype (magnet DD0016).6"9 The current plot shows a neat plateau, and the 
temperature pint shows a strong correlation between the current and the temperature at 
quench. Although the average fraction of short sample is relatively low, 

?7a = 0.753 , 

these quenches exhibit all the characteristics of conductor-limited quenches. On the 
other hand, the magnet was equipped with voltage taps, which allow one to locate 
where the quench starts in the coil.1 The analyses of the voltage data showed that all 
the quenches were originating in the same area. After the testing, the magnet was taken 
apart, and in the area identified as the quench origin it was found that each of the 23 
strands in the cable contained a cold weld, resulting from an error in cable 
manufacturing. All the quenches were therefore initiated because of this conductor 
degradation, and were indeed conductor-limited quenches. 

4 STUDY OF ENERGY-DEPOSITED QUENCHES 
4.1 The Notion of Training 

As we have seen, energy-deposited quenches, as opposed to conductor-limited 
quenches, appear scattered when their currents are plotted versus temperature. On the 
other hand, even if the magnet temperature is kept constant, the current level at which 
the energy-deposited quenches occur can vary. When testing a superconducting 
magnet, it is quite frequently observed, as illustrated in Figure 2a, that for the first few 
quenches the current at quench progressively increases, until it reaches the plateau 
described in paragraph 3.1. This gradual improvement of the magnet's performance is 
called the magnet's training, and these first few quenches, which precede the 
establishment of the plateau, are called training quenches. 

Of course, the training can be seen in a positive light, for it leaves the hope that, 
even if the first quenches of a magnet are below the short-sample limit, the performance 
may improve and the magnet may finally reach the design current Nevertheless, it is 
not reasonable to build an accelerator with several hundred or more superconducting 
magnets that need to be trained each time they are put into operation (or at least, each 
time they are warmed up to room temperature). If the magnet prototypes exhibit some 
training, the origin of this training has to be understood, and the design of the magnet 
has to be modified in order to eliminate, or at least limit, the training quenches to levels 
well above the operating current of the accelerator. 
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The study of energy-deposited quenches has two main goals: 1) to determine the 
amount of energy that can trigger a quench, and 2) to understand the mechanisms in a 
magnet coil which can release such an energy. Paragraph 4.2 will be devoted to a 
discussion of the critical energy, that is, of the minimum energy deposit which at a 
given temperature and current can trigger a quench, and paragraph 4.3 will review the 
possible quenching disturbances, that is, the mechanisms which, during the 
energization of a magnet, can release an energy larger than the critical energy. 

4.2 Evaluating the Critical Energy 

4.2.1 Introduction 

4.2.1.1 Definitions, Let us consider a magnet coil initially in the 
superconducting state at a temperature 7"n and carrying a current/, and let us assume 
that an energy W is deposited on a volume V of the coil. Common sense tells us that if 
W and V are small, the diffusion along the conductor or the transfer to the helium will 
carry away much of the heat, so that the disturbance will progressively disappear and 
the whole coil will recover the superconducting state. On the other hand, if W and V 
are large, the cooling capabilities of the conductor will be exceeded, and a quench will 
begin. In other words, a quench can only be triggered if W and V are greater than 
certain minimum values, which I shall note Wei and Vci- These qualitative results are 
very well verified experimentally.20'21 Wei is called the critical energy or minimal 
energy deposit, and Vfcl is called the minimum propagating zone. 

4.2.1.2 Calculating the Critical Energy. The calculation of Wa and Vci is a very 
difficult problem since it requires the solution of the three-dimensional heat-balance 
equation of the coil, which, besides its complex geometry, is an anisotropic medium 
whose properties depend non-linearly on the temperature. Practically, one must 
therefore do some simplifications on both the coil geometry and the material properties. 
Throughout the years, two main configurations of coils have been studied: the potted 
magnets, for the which the amount of helium in contact with the conductor is 
negligible, and the liquid-helium bathed magnets, for which each individual conductor 
is closely surrounded by helium. For the potted magnets, the heat balance equation can 
be written 

C ( D ^ = div(F(T)gradr) + P j ( D + ^ , (9) 

where C is the specific heat per unit volume of conductor (Jm^K-^.Tis a second-
order tensor whose components are the thermal conductivity coefficients (Wm^K-1), 
P] is the Joule heating rate per unit volume (Wnr3), and (dW/dr) is the power deposit 
(W) which is only non-nil inside the volume V. For the helium-bathed magnets, each 
conductor can be treated independently from the others. Considering a straight 
conductor of z-axis and assuming that the temperature is uniform in each section, the 
heat balance equation can be written 

C ( ^a" = ^ ( r ) ^ ) + ^ ( 7 > ^ r ~ + v - d 7 • ( 1 0 ) 

where A is the cross-sectional area of the conductor, k the longitudinal thermal 
conductivity, and P\\<. the heat-transfer rate per unit length to the helium (Win1). 
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Starting from these basic equations, one can either seek a quick evaluation, which 
will give the order of magnitude of the minimum energy deposit, or one can be more 
thorough and seek an exact solution. The quick evaluation consists of determining the 
stationary solutions Ts of Eqs. (9) or (10) (that is the solutions of the steady-state 
equations derived from Eqs. (9) or (10) by taking d/dt = 0), and then defining the 
minimum energy deposit as the difference in enthalpy between To and Ts integrated 
over the coil volume 

WC\ = J J J dV JdTC(T) At/. (11) 
coil volume 7o 

References 22 and 23 treat potted magnets in this way and achieve simple formulae, 
while references 24 and 25 consider the case of helium-bathed magnets but require a 
computer calculation. Complete solutions of time-dependent Eqs. (9) and (10) can only 
be derived numerically. References 26 to 29 deal with helium-bathed magnets. The 
case of potted magnets can be derived from reference 27 when the heat-transfer 
coefficient to the helium tends towards zero, while references 30 and 31 provide 
approximate solutions for the time-dependent Eq. (9) which lead to results qualitatively 
comparable to those of reference 23. Reference 32 presents a variation on non-
uniformly bathed magnets, where only one side of the conductor is in contact with the 
helium, and for which Eq. (10) has to be rewritten taking into account the transverse 
diffusion through the conductor cross section (this study seeks to describe the coil 
configuration of the ISABELLE dipole). Lasdy, Reference 33 studies the effect of the 
curvature in the U-I characteristic of the conductor described in paragraph 3.2, but 
using a representation different from the N-power function of Eq. (3a). 

4.2.1.3 Measuring the Critical Energy. Numerous experiments have been 
undertaken in order to measure Wei and to verify the previous theories. In most of the 
cases the energy is deposited by means of a small electric heater glued onto the 
conductor and powered by a capacitor bank or by pulsed current. The experiment 
consists of firing the heater with increasing voltage charge or current pulse and 
determining the minimum electrical energy Qe that can cause a quench. However, a 
non-negligible part of the electrical energy is consumed in heating both the electrical 
insulation between the heater and the conductor and the heater itself (or it is transferred 
to the coolant), so that only a fraction of 2e is actually deposited on the conductor. To 
derive the correct value of Wei, one must therefore evaluate the energy losses, which 
present a not-so-trivial problem. References 34 to 36 provide measurements on a 
conductor sample, references 37 and 38 on a model solenoid, and reference 39 on an 
ISABELLE dipole prototype. 

Another way of modeling an energy deposit, which avoids the losses in the 
insulator or the coolant, consists of depositing the energy by means of induction 
heating. As we described in paragraph 3.2, the conductor contains a large fraction of 
copper. One can thus think of winding a small wire around a delimited section of 
conductor, which, powered by a fast pulse of current, will generate a high-frequency 
magnetic field along me conductor axis and induce transverse eddy currents in the 
copper. The problem is then to calculate the Joule heating resulting from these eddy 
currents; this can be done relatively easily for a cylindrical conductor geometry. 
Measurements by this technique can be found in references 40 and 41. 
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4.2.1.4 Limiting Our Ambitions. As I have tried to show in this introduction the 
estimation of the critical energies and of the minimum propagating zones constitutes a 
complex question, widely debated in the literature, and yet without any definite 
answers. This is not the place to discuss the details of this problem, nor to try to 
synthesize all the studies mentioned above, although references 42 and 43 already 
provide very broad reviews. I shall thus content myself with a very simple approach, 
which will lead me to simple formulae and allow me to introduce some basic notions. 
However, some of the simplifying assumptions on which these calculations lay can be 
partially justified, and it is my belief that the results achieved are of the right order 
magnitude. (These results will be lengthily exploited in paragraph 5.2 in order to study 
the parameter influencing the magnet reliability.) The presentation I make here is 
largely inspired by reference 44. 

4.2.2 Critical Temperature at a Given Current 

Let us one more time consider a magnet coil initially in the superconducting state 
at a temperature To carrying a constant current/, such that 

/ < Anax(T0) • 

As we have described in paragraph 2.1, a quench can be triggered in the coil if the 
temperature in a small volume of the conductor increases to To + AT, such that 

/ > /m ax(T 0 + 4T) . (2) 

At current /, the minimum temperature increase, 4Tmin. that can trigger a quench 
is thus given by 

/ = /max(T 0 + 4 r m i n ) . (12) 

Let us define the critical temperature at current I, TQ, as 

Tci = T 0 + z i r m i n at/. (13) 

Replacing / m a x in Eq. (12) by its definition shows that, at a given current, T ci is the 
solution of the implicit equation 

I = h(T,fP{D) at/. (14) 

From this definition, the minimum energy that can trigger a quench thus appears to be 
that required to overheat the conductor from To to TQ. A critical energy per unit 
volume of conductor, Ecu can thus be defined by 

Ta 

£ci(To,0 = JdT C{T) (Jm-3), (15) 

where C is the specific heat per unit volume of conductor. 
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Figure 5. Diffusion of a thermal disturbance. 

4.2.3 Minimum Propagating Zone 

Let us now consider a given turn of the magnet coil and let us assume that, at 
r = 0, an instantaneous disturbance overheats uniformly to Tci a length J of 
conductor.* Let us idealize the conductor transition to the normal resistive state by 
Eq (5); when switching to the normal resistive state the conductor thus starts to 
dissipate a power density Pj 

Pi = •41 (Wm-3), (16) 

where pis the conductor resistivity in the normal state and A is the conductor's cross-
sectional area. 

During the first instants following the disturbance, the main thermal phenomenon 
is the diffusion along the conductor of the initial sawtooth of temperature, as illustrated 
in Figure 5. Assuming that the conductor behaves adiabatically, it can be shown that 
this sawtooth progressively flattens with a characteristic time to 4 5 

TO 2 D th 
(17) 

where Do, = k/C is the conductor's thermal diffusivity ( m V 1 ) and k is the conductor's 
thermal conductivity. 

An instantaneous deposit of energy Wo can be introduced in Eqs. (9) and (10) by replacing (dW/dt) 
with S(I)WQ where 8 is the Dirac function. 
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The diffusion of the initial thermal disturbance is then relayed to the Joule heating, 
and the main thermal phenomenon becomes the quench propagation. The time in 
needed to initiate a quench can be evaluated by considering the rate at which Pj is 
consumed in overheating the superconducting zone from To to To, that is 

En 
*i = -pj • (18) 

Of course the relay in question must take place if a quench is to occur. This means that 
the initial sawtooth must not vanish before the quench propagation has begun. In other 
words, a quench can only be triggered if 

TO > Tq . (19) 

It follows that the length of the initial disturbance must be such that 

/ > ia = V ^ r 2 1 • cw 
If the initial disturbance is longer than la, a quench will be triggered; if the initial 
disturbance is shorter than la, the normal zone will collapse and the conductor will 
recover the superconducting state, /ci is thus the length of the minimum propagating 
zone defined in paragraph 4.2.1.1. (Li our model of uniform disturbance over the 
conductor cross section, the volume VQ is simply A la-) 

4.2.4 Minimum Energy Deposit. 

The last step of our calculations is simple. From the definitions of £ci and lei, it 
follows that, at a given operating temperature and at a given current, the minimum 
energy deposit that can trigger a quench is 

•J Wciffo, D-EciA la = A / ^ ^ E c i 7 A 2 . (21) 

where, in the numerical applications, we shall take the value of Dtf, at Ta-

4.2.5 Practical Example. 

To illustrate these calculations, let us consider the case of the 4-cm aperture, 17-m 
long SSC dipole prototype DD0019.8 9 The parameters of the inner-layer conductor 
wound in this magnet are listed in Table I. The peakfield function of the magnet is that 
of Eq. (8). The material properties at cryogenic temperatures of copper and niobium 
titanium are given in the Appendix. For To = 4.35 K and / = 6500 A (the 
operating point of the current SSC design), we get 

Tci = 4.52 K, £ CI = 477 Jnr 3, / a = 436 u\m, Wa = 2.5 uJ. 

According to these calculations, a few micro-Joules deposited on half a millimeter of 
conductor are thus sufficient to trigger a quench! 
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The interesting thing about magnet DD0019 is that it provides a mean to evaluate 
the actual disturbances that occur in such a magnet. Like for magnet DD0017, the 
testing included two cycles separated by a warm-up to room temperature. The two 
cycles were done following the same procedure: the magnet was first cooled down to a 
nominal temperature of 3.5 K, and ramped up and down several times from zero to a 
maximum current of 6800 A; it was then warmed up to a nominal temperature of 4.35 
K, and ramped to quench as described in paragraph 2.3. For both cycles, the magnet 
reached 6800 A at 3.5 K without quenching; the current-at-quench plots for the 
subsequent testings at 4.35 K are given in Figures 6a to 6c. (The current-at-quench 
versus temperature-at-quench data are presented on two separate plots, because the 
offsets and the gains of the temperature signal amplifiers were accidentally changed 
between cycles. The temperature for quench 8 is missing.) Figures 6b and 6c show 
that two of the quenches were energy-deposited — quenches 1 and 6. 

These two energy-deposited quenches at 4.35 K occurred at a current level of 
6500-6600 A, which is less than the 6700-6800 A reached during the preliminary 
conditioning at 3.5 K. Since all the other parameters were kept constant (including the 
current ramp rate, 16 As-1) the only difference was the operating temperature, and thus 
the critical energy. It follows that the energy release, Q, at the origin of these quenches 
is such that 

Wci(4-35 K, 6500 A) < Q < WCi(3.5 K, 6700 A) . 

With the numerical data for DD0019, this becomes 

2.5 \JJ < Q < 16.7 jiJ . 

The energy release that triggered quenches 1 and 6 was thus of the order of 10 nJ. 
This is also the order of magnitude of the critical energies measured in References 37 
and 38 for the high values of fraction of short sample. 

4.2.6 Limits of the Calculation 

In the course of the above calculation, we introduced a certain number of 
assumptions, which limit the validity of our results. They are: 1) that the conductor 
transition can be represented by a step function at temperature Ta, 2) that the conductor 
behaves adiabatically, and 3) that the energy deposit was instantaneous and uniform 
over the conductor cross section. I shall now try to justify, at least partially, some of 
these assumptions. 

4.2.6.1 Transition Temperature. The selection of the temperature at which the 
transition "really" happens is an important parameter, for a variation of a few tenths of a 
degree in the upper limit of the integral defining E& could greatly influence the result. 
An indirect verification that Tci is the right choice can be done as follows. We have 
seen that a characteristic time Tq of the quench propagation could be defined by 
Eq. (18). Let us make To tend towards TCi; it follows that Eci and thus Tq tend 
towards zero. This predicts that for 7"n tending towards TCi, which is equivalent to / 
tending towards ISS(T0), or the fraction of short sample tending towards 1, the quench 
tends to propagate infinitely rapidly. On the other hand, if we can verify experimentally 
that the quench tends to propagate infinitely rapidly when the fraction of short sample 
tends towards 1, this would provide a proof that /ss(To) orT ci are the thresholds that 
"really" matter in the transition. Reference 2 present measurements of the quench 
propagation velocities in the SSC dipole prototypes; it appears that both the longitudinal 
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velocity (along the conductor) and the transverse velocity (from turn to turn) increase 
dramatically when the fraction of short sample tends towards 1. Although these 
velocities remain measurable, they reach values that can be qualified as quasi-infinite at 
the scale of the "usual" thermal phenomena. 

4.2.6.2 Hypothesis of Adiabaticity. The second assumption consisted of 
admitting that, at the time scale of the quench initiation, the conductor could be regarded 
as behaving adiabatically. In other words, we assumed that the amount of heat 
transmitted to the conductor's surroundings during the time Tq was negligible. An 
indirect verification of this assumption can be done by comparing ih to the turn-to-tum 
propagation time Ti-to-t, m a t l s ' t 0 t n e t i m e n e e ded for the heat to diffuse from the actual 
conductor to its neighbors and to switch them to the normal resistive state. The data on 
the transverse propagation given in reference 2 show that for the whole range of 
fraction of short sample 

Tt-KM > 2.5 ms . 

On the other hand, for magnet DD0019 at 4.35 K and 6500 A (same calculations as in 
paragraph 4.2.5), we get 

Tq =2p.s . 

These two times thus differ by several orders of magnitude, which can prove that not 
much heat is transferred outside the conductor during the time of the quench initiation. 

4.2.6.3 Geometry of the Energy Deposit. The last hypothesis deals with the 
geometry of the energy deposit and is probably the most questionable. Indeed, we 
assumed that the energy was uniformly deposited on the whole conductor cross 
section. However, as we shall see in the next paragraph, a quench can be caused by 
the motion of a single strand, or because of a small crack or a debonding in the resin 
impregnated in the conductor. The energy released by such disturbances, involving a 
couple of strands and their neighbors, is thus only deposited on a fractional of the 
conductor cross section, and has yet to diffuse through the remaining {\-f)A. A 
characteristic time % of the transverse thermal diffusion is given by 

ru-~otpJ ' ( 2 2 ) 

where P& is the diffusion perimeter, that is the perimeter of/ft in contact with (l-f)A, 
Dtr = ka/C is the transverse thermal diffusivity of the conductor, and ku is the 
transverse thermal resitivity of the conductor. Evaluating fc^is not a simple problem; 
however, since the thermal conductivity of niobium titanium is very small, ktt is 
certainly less than the thermal resistivity of copper fccu 

ktt < kcu • (23) 

Let us assume an energy deposit on 4 strands of magnet DD0019 conductor, and let us 
take for Pd the thickness of this conductor (1.6 mm). We get 

Du < 0.070 mis-1 and % > 529 nm. 
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The time % appears very large compared to the time r q calculated from the uni-
dimensional model. We should thus redo the calculation of the critical energy starting 
from Eq. (9), taking into account the transverse thermal diffusion. This, of course, is a 
significant problem, but one which largely overreaches the framework of this 
presentation. I shall therefore stop here, assuming in the following that the orders of 
magnitude of la and Wc\ given by Eqs. (20) and (21) remain valid, even if the energy 
is deposited on a fraction of the conductor cross section. (Clues on how to treat the 
three-dimensional problem can be found in references 23,30, and 32. Some 
experimental investigations of the effect of the conductor size can also be found in 
references 46 and 47.) 

4.3 Possible Training Causes 

4.3.1 Introduction 

Three mechanisms can be envisioned as responsible for sudden energy releases 
when ramping up the current in a magnet and thus applying strong Lorentz forces: 
1) frictional heating due to wire motion, 2) failures in the epoxy impregnation, and 
3) microyielding in the niobium titanium. Since these causes are all of mechanical 
nature, we shall call the quenches they trigger mechanically-induced quenches. As we 
shall see shortly, mechanically-induced quenches seem to be the best explanation of 
magnet training, and though for the purpose of clarity I shall now discuss each cause 
separately, giving, when possible, some indication of how to limit their occuirence, we 
should bear in mind that the training of a real magnet results from a mixture of the 
three. The presentation given here is largely inspired from reference 48. (Energy 
releases can, of course, also result from the development of a short between two rums 
of a coil, or between the coil and its mechanical support, but the discussion of such 
topics is not suitable to an academic presentation....) 

4.3.2 Wire Motions 

4.3.2.1 Training Model. The first cause of training to have been identified was 
frictional heating due to wire motions.49 As described in paragraph 3.2, the conductors 
used in accelerator magnets are made of several strands twisted together, with a 
compaction factor of about 90%. This leaves 10% of unfilled space, along with many 
interfaces between the strands, where sliding can occur. In addition, the conductor is 
helically wrapped with several layers of insulation. The twist pitch of the inner layers 
of insulation is usually small to allow overlapping and to ensure good electrical 
insulation, but the twist pitch of the outer layer is usually larger, leaving a channel 
between turns for helium circulation. This is illustrated in Figure 7, which depicts the 
insulation scheme of the SSC conductor. Thus in the conductor insulation there are 
also mechanical tolerances and many interfaces where sliding can occur. 

When energizing the magnet, strong Lorentz forces are applied to the conductor 
strands and are then transmitted to the mechanical supports through the insulation. In a 
geometry as complex as that of a dipole coil, there are many interfaces in a friction 
configuration, that is, where the Lorentz force has a tangential component. One can 
therefore imagine that, at some current level, somewhere in the coil, a static-friction 
coefficient is exceeded so that sliding can occur which, if inelastic, dissipates heat. If 
the heat dissipation exceeds the critical energy, a quench can then be triggered. 
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Figure 7. Current insulation scheme of the SSC dipole conductor. 

One can also imagine that the strand or conductor motion responsible for die 
quench has put the strand or the conductor in a better position, so that during the 
subsequent energization, the distribution of the Lorentz force in that region is 
improved, and the same current level can be reached without exceeding the static-
friction coefficient. In this case the current can be increased until, somewhere in the 
coil, another static-friction coefficient is exceeded, which can in turn provoke a 
frictional motion large enough to trigger a quench — and so on. Quench after quench 
the current level would increase until it reaches the critical current. This is one possible 
explanation for magnet training. 

As was described above, the interfaces where friction can occur are strand-to-
strand and conductor-to-insulator. Of course, the physics of the phenomena taking 
place at these interfaces is much more complicated than the single static-friction 
coefficient we evoked. In fact, in the case of the conductor-to-insulator interface, it has 
been shown that the macroscopic creep is preceded by so-called microslips, which 
occur at the microscopic scale when the shear stress locally exceeds the yield stress of 
the softer material (here, the insulator), provoking plastic flows.50'51 The energy 
released by these microslips is believed to be sufficient to induce a quench.52-5* 
Further investigations of the role of friction can be found in reference 54, while 
references 55 and 56 study the effects of the insulation spacing. 
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4.3.2.2 Evaluating the Energy Release. The Lorentz force, F, on one strand of 
conductor, of length /, is 

„ IB I 
F=-^r • C24) 

where m is the number of strands in the conductor. Let us assume that the strand 
moves a distance 8 against friction, so that the work heats the conductor. The energy 
deposit Q on the conductor is therefore 

a -H1' • 
This deposit can only trigger a quench if 

Q>Wa . (26) 

The minimum wire motion 5™ that can trigger a quench is thus 

x. = _w_Eci „ ~ 
° m m I B l a " K ' 

Let us now consider the actual specifications for the SSC dipole inner-layer 
conductor listed in Table 1 (/w is 23), and let us take forfi the peakfield value given by 
Eq. (8). We saw in paragraph 4.2.5 that at 4.35 K and 6500 A the minimum energy 
deposit was of the order of 10 \sJ on half a millimeter of conductor. We get 

c^in = 10 p.m. 

At the operating conditions, a frictional displacement of 10 |im of one strand of the 
conductor is thus enough to trigger a quench! 

Of course, this calculation is very crude and should not be regarded as a precise 
solution. First, the Lorentz force is not perpendicular to the conductor, but also has a 
tangential component; the equations describing the turn equilibrium are thus more 
complicated than the single radial projection considered above.57 Also, we assumed 
that all the energy was transformed into heat, when actually part of it is consumed in 
bending the wire (it would thus be more more correct to speak of wire bending instead 
of wire motion.55) However, it is our belief that the order of magnitude given by 
Eq. (27) is correct. (We shall see in paragraph 5.2.2 another way to evaluate the size 
of the quenching disturbances from the mechanical energy stored in the coil.) 

4.3.2.3 Preventing Wire Motions. We are thus faced with the imperative task of 
limiting the risk of wire motions. Two paths present themselves. First is that of resin 
(epoxy) impregnation, which would serve as a glue to prevent sliding, and would also 
both enhance the coil's rigidity and allow it to be assembled in one block. However, as 
we shall see in the next paragraph, epoxy resin, because of its brittleness at low 
temperatures, introduces a new source of quenching which is thought to be even less 
controllable than wire motion. Therefore, in modem accelerator magnets, epoxy 
impregnation is restricted to the minimum necessary for coil assembly, and great care is 
taken to limit the epoxy's contact with the conductor. 
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