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ABSTRACT

RIPLEY (1977, Journal of the Royal Statistical Society, B39 172-212) proposed an
estimator for the spherical contact distribution H,{s), of a spatial point process observed in a
bounded planar region. However, this estimator is not defined for some distances of interest, in
this bounded region. A new estimator for H,(y), is proposed for use with regular grid of sampling
locations. This new estimator is defined for all distances of interest. It also appears to have a
smaller bias and a smaller mean squared error than the previously suggested alternative.
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1 Introduction

The socond order methods (RIPLEY,1977), represent a natural and valu-
able starting point for the description of a apatial point process, but do not
give a complete picture, since these methods cannot distinguish processes
which have identical second order properties. RIPLEY(1977) has suggested
looking at the spherical contact distribution - the distribution function of
the distance from an arbitrary location to the nearest point of the process.
This function is defined by

H,(y) = Pr(Y <) . m

where the random variable Y denotes the distance between an arbitrary
Jocation and the nearest point of the process. An equivalent definition of
H, (”) In given by ' :

H,(y) = 1 — Pr(N[bo,y)} = 0) @
where N([b(o,y}] is the number of points in the disc b(o,y), with center the
origin and radius y (see STOYAN et al, 1986, pp 43).

The estimation of H,(y) is complicated by the bounded nature of the
pattern being studied. For example, the disc of radius y surrounding a
location is certain to overlap one or more of the boundaries of the sampling
window as y increases. Also the position of the nearest neighbour to a loca-
tion will only be known with certainty for those locations lying within the
interior of the study region. Thus edge effecta play a significant role in the
estimation of H,(y), and as would be seen in the sequel, estimatora without
edge correction have great downward biases and cannot be recommended
for use in a bounded region.

In this paper another edge-corrected estimator of H,(y) is proposed
and compared with the existing eatimators using simulation technique, We
illustrate the results for the new eatimator in the analysis of a set of data
relating to the positions of Biological cells.
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2 The sampling locations

In this paper, we assume a rectangular window W, and our edge-corrections
relate only to a regular lattice of sampling locations as favoured by DIG-
GLE(1978). Our results are based on a lattice obtained by partitioning a
rectangular window Into (k + 1)* similar subwindows and then using the
m = k? inner cornem of these subwindows. That is, for a given window W
of dimensiona a by b, the position of the (£, 5}** sampling location P, say,
where ij =1,2,3,...kiand h =i+ k(5 — 1} is
ia b
Po=Gree (3)

When collecting information for the refilned distance analysis using
estimators of H,(y), opinions have varied over a suitable choice of m -
the number of sampling locations{ses UPTON and FINGLETON 1985,
pp81). Given that the sampling window contains n points, DOGUWA and
UPTON(1989s) have chosen the integer k so that

k___{\/i if vner )

Int(y/n+1) otherwise

where Int(z) means the integer part of x.

Suppose y,; is the value of the random variable Y in the i** sampling
location. Then the m locations yield y;, ¥4, .. ., Y Observationa, with mean
§. DE VOS(1073) suggested the use of the statistic

NZe)

which follows an N(0, 1} distribution in an infinite plane, to test the null
hypothesis of spatial randomness. For a bounded finite region, DOGUWA
and UPTON(1988) use the regular lattice of locations to provide revise
expressions for E(f) and Var(§) as:

0.5A%%  0.52194%% 0.1044P
E(9) = vn T T i + i 1188 (6)

and 0.04445P A%  0.12654

Var(g) = = o ;‘um'r )
where A is the area of the region W, P is its perimeter and n is the number
of points observed in it. These revised expressions can then be used to test
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the randomness hypothesis. The rejection of the null hypothesis of spatial
randomness may not be an end in itself, but should be seen as an aid to
a more ambitious analysis involving tests based on, say some {unctional
statistics of H,(y). However such tests are normally based on unbiased
estimates of H,(y).

3 The estimators of H,(y)

We are concerned with the m locations whose positions are known in W.
We denote the distance from location i to the neareat boundary of W and to
the nearest point within W by r; and y; respectively. For & given value
of y, there are six situations of interest, which are summarised in Table 1.

3.1 The existing estimators

For an infinite plane, H,(y) can be estimated by

a) = T fwey) ®
where "
70 ={ 3 v ®

However for a finite region W, the estimator Hf(y). is biased downwards
because of edge-effects, and cannot therefore be used to analyse mapped
apatial point patterns.

‘RIPLEY(IDT'I) suggested an estimator for H,(y} which we denoted as

Hl(y) defined by
Hily) = iz f.;(!liv!l)f{ﬂ'- ri) 10

. (y) Eiz:t f(y‘ fl') ( )

‘The estimator H,’”(y) restricis attention to the sampling locations belonging

to the sets 1, 2 and 3; which are locations that can be surrounded within W

by a complete circle center the given location and radius y. As y increases,

the number of informative locations contained in these sets diminishes, and
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the estimator is undefined whenever f(y, ;) = 0V4., In the case of a rectan-
gular window of dimensions a by b, with a < b, the maximum value of y for
which an estimate of H,(y) is possible when using the RIPLEY’s estimator
is 4. This estimator cannot therefore give us any information about the
observed pattern for values of y > §. Furthermore, as y approaches § the
variance of this estimator will increase considerably.

3.2 The new estimator

Whilst Hi(y) is based on a rational approach to the problem of estimating
H,(y), it will be seen that this estimator unes only the information in the
sets 1,2 and 3 of Table 1. In the spirit of DOGUWA and UPTON(1989b)
we shall provide another estimator Hi(y), which uses all the information
in the six seta of sampling locations given in Table 1.

Consider a realisation of a Poisson process of intensity A, in W. Also
consider location | way, within the snmpling window. Suppose that y > r,
so that bfi,y}, the disc of radius y and centred on location i cute the
boundary of W. Denote the unobservable portion of b{i,y) ss u(i,y) and
the observable part as ofi,y). Also let the area of u(i,y} be A;(y). In order
to obtain an idea of the value of H."(y), we muat consider the conditional
probability &(y), relating to the observable region ofi,y).

Specifically for sampling locations in set 6 we define 8;(y) as

0i(y) = Pr(N[b(i,¥)] > 0 \ Nlo(s,y)] =0) (11)
and for a Poisson process, the above expression reduces to,
b(y) = 1 - el (12)

From this result, combined with the clear-cut results for the remaining 5
seta of sampling locations, we obtain the new estimator defined by

H'g'(y) = 2.-:;[)’(%; y) :‘npj(ri) yl)"(y)' (13)

where
Bylriw) = 1~ F(w: 01 = £ (v, 7)) (14)
afy) =1 -4, (15)

Simply stated P,(r:,¥) = 1 if location i belongs to set 6 and is zero, oth-
erwise. Thus, the new estimator is the mean score of all the m sampling
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locations, where the score is 1 if b(i,y) contains a point, and the score is
8:(y) if b(i,y) is empty and cuts the boundary of W. We can therefore
expect that the extra stability that results from using all the six sets of
sampling locations will amply offset any minor bias that has been induced.

4 H,(y) for a Poisson process.

For a Poisson process, the theoretical values of D(r) - the nearest neighbour
distribution and H,(y) are identical, since the existence of a paint at a par-
ticular location a, say, has no bearing on the distribution of the remaining
number of points in the disc b(a,,y). Thus for this process,

Hy)=1-¢" (18)

Figure la summarises the results obtained from 500 realizations of a
Poisson process of intensity A = 25 in a rectangular region of sides 10+/0.1
by +/0.1. This Figure shows the dependence of the bias of the esthmators of
H,(y) upon y for the 500 trials (Note that the bias for the three estimators
have all been multiplied by-10). It appears that the uncorrected eatimator
defined in (8) clearly underestimate H,(y), and should therefore not be
used to analyse bounded patterns.

The new estimator defined in (13) is much better than the other es-
timators in terms of the bias and is therefore preferable. Note that the
RIPLEY’s estimator defined in {10) cannot be used to estimate H,(y) for
values of y greater than 0,16. While the RIPLEY’s eatimator has reported
2 much smaller bias than the uncorrected estimator, it has also recorded a
much Jarger mean squared errer than the uncorrected estimator (see Figure
1b). However, the new estimator has in addition to recording & small bias,
has also reported a much smaller mean aquared error than all the other two
eatimators. This suggests that the new estimator is preferable.
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5 H,(y) for a Parent-daughter process

In this section we consider a Parent-daughter process in which both parents
and mothers are present. Parents are distributed according to a Poisson
process with intensity p per unit area. To each parent is attached a number
of daughters, the number being realised independently for each parent from
a Poisson distribution with mean 4,

In order to obisin an explicit formula, DIGGLE(1975) proposed that
each of the daughters should be independently distributed uniformly on
the circumference of the circle of radius o cenired on the corresponding
parent. He further gave an explicit formula for the case when o = 1. For
any value of ¢ > 0, an explicit formula for H,(y) (see DOGUWA 1988), for
the Parent-daughter clustered process is given by

Hi(y) = 1 - e*rlo o) (17)
where - R
) = f_‘:"_" 1 - e gy (18)
and
_ P+t —
B=t—ge—" (19)

For our simulations we used the window 10v/0.1 and 0.1, with » = 5,
# = 4 and ¢ = 0.1. In order to obtain a correct representation within the
window, the simulation was performed over a larger rectangle and points
outside the central rectangle, W were then ignored.

Figure 2a shows the dependence of the bias of the three estimators
upon y obtained for the 500 realisations. The most obvious feature of this
Figure is the increased bias associated with the uncorrected estimator.
RIPLEY’s estimator cannot be used to estimate H,(y) for larger values of y.
The new estimator has the least bias for almoat all the distances considered.

Figure 2b also shows the dependence of the mase of the H,(y) estimators
upon y, obtained for the 500 simulated realisations. The new estimator
has recorded a much smaller mae than all the other two estimators, This
suggents that the new estimator is preferable for clustered patterns. Note
also that both the values for the bias and mase have been multiplied by 10.

6 H,(y) for a Lattice process

DIGGLE(1975) suggests guperimposing a Poisson process with intensity
P per unit area upon a square lattice of side ¢ to provide a continous
range of patterns from extreme regularity when p is zero, towards complete
randomness as p tends to infinity. For simplicity in the model, we consider
the extreme regularity. From the results in DIGGLE, it is easy to see that
when g = 0, the distribution function H,(y) is given as,

=- fo<y<f
Hy)={ Wl h gy g (20)
1 Hy> j;

where P .
4= uin'l(———;”zy ) (21)

In order to generate this realization, a starting point for the Lattice was
chosen at random in the sampling window, and the angle of inclination of
the Lattice was also chosen at random in {0,2x). All points of the lattice
that fall outside the window W were ignored.

Figures3(a and b) summarize the results of the simulation study ob-
tained from 500 partial realization of the Lattice process generated in the
rectangular window. Figure 3a shows the dependence of the bias of the
eatimators of H,(y) upon y for the 500 realizations. The two corrected esti-
mators have reported a much smaller bias than the uncorrected estimator.
However, RIPLEY’s estimator seems to be marginally preferable to the
new estimator,

Figure 3b shown the dependence of the mae of the estimators upon y, It
in of interest to note that even though RIPLEY's estimator has reported
s smaller bias than the uncorrected estimator, it has also reported a much
larger mean squared error. However the new estimator is more stable in
that it has recorded & much smaller mse than the uncorrected estimator.

Repeated simulations using different values of these parameters for the
three processes considered produce very similar results,



7 Application

As an example of the application of the estimator H ,’“[y), we consider some
data explored previcusly by RIPLEY(1977) and DIGGLE(1983). These
data illustrated in Figure 4a show the positions of 42 cell centers in the
unit square,

To test for deviations from randomness, UPTON and FINGLETON(1985)
suggest plotting the function c{y) against y. For the case of n points in a
window W of area A, this function is defined by

ot argd

o{y) = H¥y) -1+ "% (22)
For a Poisson process of intensity A, c(y) will be close to zero. For a
cluitered alternative, there will be a smaller number of small location to
point distances than would be the case in a Poisson process, and #o c(y)
would be less than zero. However for & regular alternative, there will be a
greater number of amall location to point distances than would be the case
in a random pattern and so c(y) would be much greater than zero.

In order to assess the significance of any departure from a Poisson pro-
cess, we first simulate 90 Poisson processes consisting of 42 points in the
same size window as the Biological cells pattern. Using the new estimator,
we estimate c¢(y) for each simulated realisation, and Figure £b displays the
two dashed lines showing the upper and lower simulation envelopes for the
realisations.

The solid line in Figure 4b indicates the value of ¢(y) obtained for the
Biological cells pattern. Thia line penetrates the upper simulation envelope
for some values of y, thus praviding evidence at the 1 % level of significant
regularity in the pattern.

_ 8 Conclusions

A new method is proposed for estimating the spherical contact distribution
H,(y) for spatial point processes, The proposed eatimator is compared with
the existing estimators, using three different processes whose theoretical
H,(y) functions are known. The results showed that: (i} for all the values
of y considered, a considerable reduction in the mase is associated with the
proposed estimator. (i} the bias associated with the proposed estimator
was very negligible for all the three processes considered.
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TABLE 1

Usage of the sampling locations in W for the various methods
of estimating .H-(y)

Eatimator defined in

Set Description (8) (10) (13) Is Nlb(s,¥)| >0 7
1 y<rn<# * * > no
2 ySmsn x * * no
3 w<Sysn o+ * * yes
4 wEn<y ° * yes
5 mn<wiy * o * y:'
6 ri<y<wy_* ° * mayne

key for Table: » means the sampling location is used in the estimation
of H*(y). o means the sampling location is not used in the estimation. -
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Captlons for Figures

Fig 1: The bias (a) and the mse (b) of the three estimators of H,(y)
for a Poisson process of intensity A = 25, in a rectangular region of sides

10,/{0.1) by /(0.2).

Fig 3: The bias (a) and the mse (b) of the three estimators of H,(y)
for a Parent-daughter clustered process with parameters p = 5, 4 = 4, and
& = 0.1 in & rectangular window 101/{0.1) by \/{0.1).

Fig 3: The bias (a) and the mse (b} of the three estimators of H.(y)
for the Lattice process with parameter d = 0.25 in 8 rectangular region of

side 10,/{0.1) by /(0.1).

Key for Figsl, 3 and 8: HJ(y) is denoted by dashed line with a 0 on
it. The dashed line with a square on it denotes H}(y). The solid line with
a # on it, denotes Hi(y.

Fig 4: (a) The positions of 42 cell centers in a unit square. (b) The
valuen of c(y) for the cells data (sclid line}, together with the corresponding
envelope {dashed lines), resulting from 99 simulations of a Poisson process
of the same Point Intensity and in the same size window.
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