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ABSTRACT

RIPLEY (1977. Journal of the Royal Statistical Society, B39 172-212) proposed an
estimator for the spherical contact distribution H,{»), of a spatial point process observed in a
bounded planar region. However, this estimator is not defined for tome distances of interest, in
this bounded region. A new estimator for H,{y), is proposed for use with regular grid of sampling
locations. This new estimator is defined for all distances of interest. It also appears to have a
smaller bias and a smaller mean squared error than the previously suggested alternative.
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1 Introduction

The second order methods (RIPLEY.1977), represent a. natural and valu-
able starting point for the description of a spatial point process, but do not
give a complete picture, since these method* cannot distinguish processes
which have identical second order properties. RIPLEY(1977) has suggested
looking at the spherical contact distribution - the distribution function of
the distance from an arbitrary location to the nearest point of the process.
This function is defined by

JMtfl-Pi(7<») (1)

where the random variable Y denotes the distance between an arbitrary
location and the nearest point of the process. An equivalent definition of
U.{y) - given by

H0) (2)
where N[b(o,y}] is the number of points in the disc t>(o,y), with center the
origin and radius y (see STOYAN et al, 1886, pp 43).

The estimation of H,[y) Is complicated by the bounded nature of the
pattern being studied. For example, the disc of radius y surrounding a
location is certain to overlap one or more of the boundaries of the sampling
window as y increases. Also the position of the nearest neighbour to a loca-
tion will only be known with certainty for those locations lying within the
interior of the study region. Thus edge effects play a significant role in the
estimation of H,{y), and as would be seen in the sequel, estimators without
edge correction have great downward biases and cannot be recommended
for use in & bounded region.

In this paper another edge-corrected estimator of H,(v) is proposed
and compared with the existing estimators using simulation technique. We
illustrate the results for the new estimator in the analysis of a set of data
relating to the positions of Biological cells.
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2 The sampling locations

In this paper, we assume a rectangular window W, and our edge-corrections
relate only to a regular lattice of sampling locations aa favoured by DIG-
GLE(1979). Our results are based on a lattice obtained by partitioning a
rectangular window into {k + 1)* similar subwindovrs and then using the
m = fc* inner corners of these subwindows. That is, for a given window W
of dimensions a by b, the position of the (»,/)'* sampling location Pt, say,
where i j = l,2,3,...,k; and h = i + k[j - 1) is

(3)

When collecting information for the refined distance analysis using the
estimators of H,(]/), opinions have varied over a suitable choice of m -
the number of sampling locations(see UPTON and FINGLETON 1985,
ppSl). Given that the sampling window contains n points, DOGUWA and
UPTON(lOSSa) have chosen the integer k so that

f
\ otherwise

where Int[x) means the integer part of x.

Suppose yt is the value of the random variable Y in the i** sampling
location. Then the m locations yield yu to,...,ym observations, with mean
g. DE VOS(1973) suggested the use of the statistic

(5)

which follows an JV(0,1} distribution in an infinite plane, to test the null
hypothesis of spatial randomness. For a bounded finite region, DOGUWA
and UPTON(1988) use the regular lattice of locations to provide revise
expressions for E(g) and Var($) as:

0.5Aot 0.5219,4°' O.1O44P

and
Var(5) =

0.04445/* A0* 0.1265A

(6)

(7)

where A is the area of the region W, P is its perimeter and n is the number
of points observed in it. These revised expressions can then be used to test
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the randomness hypothesis. The rejection of the null hypothesis of spatial
randomness may not be an end in itself, but should be seen as an aid to
a more ambitious analysis involving tests based on, say some functional
statistics of H,{y). However such tests are normally based on unbiased
estimates of H,(y).

3 The estimators of Ht(y)

We are concerned with the m locations whose positions are known in W.
We denote the distance from location i to the nearest boundary of W and to
the neaVest point within W by T\ and yt respectively. For a given value
of y, there an six situations of interest, which are summarised in Table 1.

3.1 The existing estimators

For an infinite plane, H,{y) can be estimated by

where

0 otherwise

(8)

(9)

However for a finite region W, the estimator H°(v), ii biased downwards
because of edge-effects, and cannot therefore be used to analyse mapped
spatial point patterns.

RIPLEY(1977) suggested an estimator for H.(y) which we denoted as
Hl(y) defined by

HAv]- a / t i n ) (10)

The estimator H\{y) restricts attention to the sampling locations belonging
to the sets 1,2 and 3; which are locations that can be surrounded within W
by a complete circle center the given location and radius y. As y increases,
the number of informative locations contained in these sets diminishes, and



the estimator la undefined whenever f(y,rf) = OVi. In the cue of a wctan-
gular window of dimensions a by b, with a < b, the maximum value of y for
which an estimate of H.(y) is possible when using the RIPLEY's estimator
is }. This estimator cannot therefore give us any information about the
observed pattern for values of y > }. Furthermore, as y approaches f the
variance of this estimator will increase considerably.

3.2 The new estimator

Whibt H](y) is based on a rational approach to the problem of estimating
^Mv), it will be seen that this estimator uses only the information in the
sets 1,2 and 3 of Table 1. In the spiritof DOGUWA and UPTON(1989b)
we shall provide another estimator H](y), which uses all the information
in the six sets of sampling locations given in Table 1.

Consider a realisation of a Poisson process of intensity \, in W. Also
consider location i say, within the sampling window. Suppose that y > r(,
so that b{i,y), the disc of radius y and centred on location i cuts the
boundary of W. Denote the unobservable portion of b(i,y) as u(ij) and
the observable part at o(i,y). Also let the area of u(ijr) be Ai[y). In order
to obtain an idea of the value of H](y), we must consider the conditional
probability 8t(jf), relating to the observable region o(i,y).

Specifically for sampling locations in set 6 we define $i(y] as

9dv) = Pr(tf[Ki,y)| > 0 \ JV|o(t,y)j = 0)

and for a Poisson process, the above expression reduces to,

(11)

(12)

From this result, combined with the clear-cut results for the remaining 5
sets of sampling locations, we obtain the new estimator defined by

jyiYy) = Mm\w\yt'V) f ^tvuvimv/)] ,1 3j

where
(14)

(15)

Simply stated Pr(rt,yi) = 1 if location t belongs to set 6 and is zero, oth-
erwise. Thus, the new estimator is the mean score of all the m sampling
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locations, where the score is 1 if b(ij) contains a point, and the score is
8i(v) if b(ijf) is empty and cut* the boundary of W. We can therefore
expect that the extra stability that results from using all the six sets of
sampling locations will amply offset any minor bias that has been induced.

4 Ht{y) for a Poisson process

For a Poisson process, the theoretical values of D(r) - the nearest neighbour
distribution and H.(y) are identical, since the existence of a point at a par-
ticular location a, say, has no bearing on the distribution of the remaining
number of points in the disc i(aS) v). Thus for this process,

Jf.(y) = l - « - * « * (16)

Figure la summarises the results obtained from 500 realizations of a
Poisson process of intensity A = 25 in a rectangular region of sides lOv/fTI
by y/(il. This Figure shows the dependence of the bias of the estimators of
H,(y) upon y for the 500 trials (Note that the bias for the three estimators
have all been multiplied by-10). It appears that the uncorrected estimator
denned in (S) clearly underestimate H,{y), and should therefore not be
used to analyse bounded patterns.

The new estimator denned in (13) is much better than the other es-
timators in terms of the bias and is therefore preferable. Note that the
RIPLEY's estimator denned in (10) cannot be used to estimate H,(y) for
values of y greater than 0.16. While the RIPLEY's estimator has reported
a much smaller bias than the uncorrected estimator, it has also recorded a
much larger mean squared error than the uncorrected estimator (see Figure
lb). However, the new estimator has in addition to recording a smalt bias,
has also reported a much smaller mean squared error than all the other two
estimators. This suggests that the new estimator is preferable.
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5 Ha(y) for a Parent-daughter process

In this section we consider a Parent-daughter process in which both parents
and mothers are present. Parents are distributed according to a Poisson
process with Intensity p per unit area. To each parent is attached a number
of daughters, the number being realised independently for each parent from
a Poisson distribution with mean /i.

In order to obtain an explicit formula, DIGGLE(1975) proposed that
each of the daughters should be independently distributed uniformly on
the circumference of the circle of radius a centred on the corresponding
parent. He further gave an explicit formula for the case when a = 1. For
any value of a > 0, an explicit formula for H,(y) (see DOGUWA 1988), for
the Parent-daughter clustered process is given by

H.(v) - 1 ~

where

and
HM-I)

t\l-t=M^=U\dt

(17)

(18)

(19)

For our simulations we used the window IOI/OTT and \/oT, with p = 5,
ft = 4 and <* — 0.1. In order to obtain a correct representation within the
window, the simulation was performed over a larger rectangle and points
outside the central rectangle, W were then ignored.

Figure 2a shows the dependence of the bias of the three estimators
upon y obtained for the 600 realisations. The most obvious feature of this
Figure is the increased bias associated with the uncorrected estimator.
RIPLEY's estimator cannot be used to estimate H,{y) for larger values of y.
The new estimator has the least bias for almost all the distances considered.

Figure 2b also shows the dependence of the mat of the H,(y) estimators
upon y, obtained for the 600 simulated realisations. The new estimator
has recorded a much smaller rose than all the other two estimators. This
suggests that the new estimator is preferable for clustered patterns. Note
also that both the values for the bias and mat have been multiplied by 10.
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6 Ha{y) for a Lattice process

DIGGLE(1975) suggests «uperImposing a Poisson process with intensity
p per unit area upon a square lattice of side d to provide a continous
range of patterns from extreme regularity when p is iero, towards complete
randomness as p tends to infinity. For simplicity in the model, we consider
the extreme regularity. From the results in DIGGLE, it is easy to see that
when p = 0, the distribution function H,(y) is given as,

(20)

where

(21)

In order to generate this realization, a starting point for the Lattice was
chosen at random in the sampling window, and the angle of inclination of
the Lattice was also chosen at random in (0,2x). All points of the lattice
that fall outside the window W were ignored.

Figures 3(a and b) summarise the results of the simulation study ob-
tained from 500 partial realisation of the Lattice process generated in the
rectangular window. Figure 3a shows the dependence of the bias of the
estimators of H,(y) upon y for the 600 realizations. The two corrected esti-
mators have reported a much smaller bias than the uncorrected estimator.
However, RIPLEY's estimator seems to be marginally preferable to the
new estimator.

Figure 3b shows the dependence of the mat of the estimators upon y. It
la of interest to note that «ven though RIPLEY's estimator has reported
a smaller bias than the uncorrected estimator, it has also reported a much
larger mean squared error. However the new estimator is more stable in
that it has recorded a much smaller mat than the uncorrected estimator.

Repeated simulations using different values of these parameters for the
three processes considered produce very similar results.

-8-



7 Application

As an example of the application of the estimator H*(y), we consider some
data explored previously by RIPLEY(197T) and DIGGLE(1S83). These
data illustrated in Figure 4a show the positions of 42 cell centen in the
unit square.

To test for deviations from randomness, UPTON and FINGLETON(1B85)
suggest plotting the function c{y) against y. For the case of n points in a
window W of area A, this function is defined by

e(y) = H}(y) — 1 + e~ i?~ (22)

For a Poisaon process of intensity A, e(y) will be close to tero. For a
clustered alternative, there will be a smaller number of small location to
point distances than would be the case in a Poisson process, and so c(y)
would be less than lero. However for a regular alternative, there will be a
greater number of small location to point distances than would be the case
in a random pattern and so c(y) would be much greater than cero.

In order to assess the significance of any departure from a Poisson pro-
cess, we first simulate 00 Poisson processes consisting of 42 points in the
same size window as the Biological cells pattern. Using the new estimator,
we estimate c(y) for each simulated realisation, and Figure 4b displays the
two dashed lines showing the upper and lower simulation envelopes for the
realisations.

The solid line in Figure 4b indicates the value of c(y) obtained for the
Biological cells pattern. This line penetrates the upper simulation envelope
for some values of y, thus providing evidence at the 1 % level of significant
regularity in the pattern.
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8 Conclusions

A new method is proposed for estimating the spherical contact distribution
H,(y) for spatial point processes. The proposed estimator is compared with
the existing estimators, using three different processes whose theoretical
H,(y) functions are known. The results showed that: (i) for all the values
of y considered, a considerable reduction in the m«e is associated with the
proposed estimator, (ii) the bias associated with the proposed estimator
was very negligible for all the three processes considered.
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TABLE 1

Usage of the sampling loca t ions In W for the va r ious nethods

of es t imat ing HB(y)

Set
1
2
3
4
S
6

Description
y < U < ift
y < V( < T(

Vi < V < U

rt<vt<V
U < V < W

*
*

*
*
*

Estimator defined in
(10)

•
*

0

a
o

(13)
*
*
*

*
*
*

IsJV|4(i,v)l>0T
no
no

yes

yes
yes

maybe

key for Table: * means the sampling location to used in the estimation
of /f*(v). ° means the sampling location a not used in the estimation.
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Captions for Figures

Fig 1: The bias (a) and the owe (b) of the three estimators of H,(i)
for a Poisson process of intensity A = 25, to a rectangular region of sides
1000.1) by 00.1).

Fig 3: The bias (a) and the tnse (b) of the three estimators of H,(ti)
for a Parent-daughter clustered process with parameters p = S, n = 4, and
a s 0.1 In a rectangular window 1000.1) by 00 .1) .

Fig 3: The bias (a) and the mse (b) of the three estimators of H.{y)
for the Lattice process with parameter d = 0.25 in a rectangular region of
side 1000.1) by 00.1).

Key for Flgfl, 3 and 3: Hf[y) is denoted by dashed line with a o on
it. The dashed line with a square on it denotes H}(y). The solid line with
a * on it, denotes H*(y.

Fig 4: (a) The positions of 42 cell centers in a unit square, (b) The
nines of c(y) for the cell* data (solid line), together with the corresponding
envelope (dashed lines), resulting from 99 simulations of a Poisson process
of the same Point intensity and in the same sixe window.

-n-

0.00 0.12

The distance y
Fig.U



Ts -0.4

« -1.6 \-

-2.2

-2.8

1—

\

-

— i — '

\
\
\
\
\
\
\

vs

i

/

\
\

~n

/

V
\

1 ""

—1 -1 1 1

1 
. 

1
 

1
 

1
 

. 
1

 
I.

-

-

/ .
s

*s- - - - T ' "

0.01

0.01

0.23

The distance y

0.23

The distance y Fig.2b

-15-

0.45

0.45

>•!».•»•«: '• It

-0.9
0.01

0.01

0.11

The distance y Fig.3a

0.22

0.10

The distance y Fig.3b

-16-



1.0

0.8

0.6

0.4

0.2

0.0

* *

* * • *

+ * * * * •

0.00 0.50

X axis **«•*•

1.00

0,2

0.1 -

I 0,0
I
f o.o

-0.1

-0.1

-

-
__/

//_ / A

\\\

r

A

///J

/̂
1

A i
VV

/

A
r\ /

TSf—

A

•«. J • " •

v /

V

\
\

—

T~

\

I

:

-

-

\ . _

•

i

•J
—
-

0.00 0.10

The distance y Fig.4b

0.19

-17-

T T




