
объединенный 
ИНСТИТУТ 
ядерных 

исследований 
дубна 

V.A.Nikolaev, O.C.Tkachev 

FEW-BARYON SYSTEMS 
IN THE SU(2)-SKYRME MODEL 

E4-89-848 

Submitted to "Few-Body Systems" 

1989 



1. Introduction 
The success of the Skyrme model[1] in describing nucleons as quan

tum states of the chiral soliton makes it natural to apply the model to 
nuclei. In traditional physics nuclei are considered as bound states of 
nucleons. The first attempt to describe nuclei within the Skyrme model 
was the potential approach[2]. In such an approach one has to calculate 
the potential of interaction between the skyrmions at all distances R. 
Nuclei would then arise as bound states of skyrmions in this potential. 
There are some difficulties in such way of constructing the nuclei. First 
of all the distance R between skyrmions is determined absolutely arbi
trary and the potential V(R) has some sense only for large R, where the 
potential must be identical to the one-pion exchange potential. To obey 
the last condition one usually uses the so-called Product Ansatz for chiral 
field configurations and has the problem to obtain the intermediate-range 
attraction in effective nucleon-nucleon potential. The last problem is in
tensively discussed now, and is to be solved soon. 

But this approach is not the only one to describe the nuclei-like states 
and is unnatural for the Skyrme model. The Skyrme model gives us 
straight way for constructing a system with an arbitrary baryon charge. 
We have to look for solitons of classical fields with the corresponding 
topological charge and then to quantize solitonic degrees of freedom to ob
tain an object with nuclear quantum numbers. From the investigations of 
the system with baryon number equal to 2,3 and 4 without vibrations[3]-
[7] and including the breathing mode[8]-[9] one may conclude that the 
intermediate attraction problem is to a great extent artificial or technical 
one. It is seen from this fact that even the first variational approxima
tions and more precise calculations lead to a high value of the binding 
energy for a system with 5 = 2. We have to emphasize that the binding 
energy of light nuclei in such an approach is bigger when we take into 
account the monopole vibrations. Naturally, the distance parameter R 
does not appear here in any way. In general we can assume that nucle
ons must be born only out of nuclei or at their surface. Strictly speaking 
nucleons do not exist in the interior of nuclei. Indeed, the skyrmion must 
have a possibility to rotate freely in the space and isospace in order to 
obtain nucleon quantum numbers. But it is not the case in nuclei be
cause the interaction potential between the skyrmions depends on their 
relative orientation in space and isospace. As a result, only nuclei as a 
whole may have right nuclear quantum numbers. (See[10j). 

Up to now there are some papers concerning calculations of nuclear 
states in the Skyrme model. The most impressive results were obtained in 
the calculations of minimal-energy solitons for configurations with topo
logical charge two by numerical methods [4], [5]. Recently a variational 
ansatz was proposed independently in[ll], [12]. This ansatz obeys the 
symmetry conditions formulated in[5], [6] and, being very simple, gives 
the possibility to do one more step in analytical analysis of the problem 
and to take vibrational modes, for example, the monopole one.mto ac-
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count in a simple way. This analyses gives a natural explanation of the 
origin of the ansatz from[3] and also gives some new solutions. Among ̂  
them we have solutions that we may interprete as compound nuclear; 
states including antibaryons and meson-like states composed of skyrmion-!; 
antiskyrmion pairs. We have to note that our analysis is very similar to!' 
the one in[13] in the part concerning to В = 2 states. But in[13] possible 
contributions to the skyrmion-antiskyrmion pairs in the nuclear struc-1 
ture, that take place for l ф 0 states, were not discussed. (In our easel 
number \ has in general the same sense as in[13] and will be introduced 
later). 

2. The Properties of Static Field Configurations 
In view of the above consideration, it seems to be very important to 

express such solutions in an analytical form. It is useful to investigate -
them analytically step by step and to perform numerical calculations at 
the end. 

2.1 Generalized Ansatz for the Static Solutions 
It is well known that historically the first stationary solution of the 

Skyrme model in a sector with topological charge N was the hedgehog 
configuration or the so-called Skyrme-Witten solution 

Usw(r) = cos(F(r)) + i(f • N)sin(F(r)). (1) 

Here JV determines a definite direction in the isotopic space, and hedge
hog configuration is specified by the vector N = fjr,and r* are the Pauli 
matrices. In (1) F(r) is the chiral angle describing the absolute value 
of the pion field. The function F(r) obeys the following boundary con
ditions F(0) = n • ir, F(oo) = 0. These conditions ensure finiteness of 
the energy for a soliton with a topological number n, which is equal to 
a baryon number B. It was shown in [7] that the only configuration that 
provides minimum energy of the soliton with n = 1 is that given by (1). 
However, for other sectors such a form is not obligatory. For example, 
in[3] the solutions defined by the пкфп configuration: 

N = {соз{кф) • sin(6), зт(кф) • sin(9), cos(0)}, (2) 

(9, ф) being the angles of vector f in the spherical coordinate system, have 
been considered. In (2), к is an integer determining also the topological 
charge. Some interesting properties of the states generated by these 
solutions were described in [3], [14]. In the sector with baryon charge 
В = 2, this form of the solution gives us low mass states in the range of 
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about two nucleon masses. Quantization procedure generates rich spectra 
of rotational bands[l4]. 

In the present paper, we use a new form of the solution given by the 
next vector[ll],[12] 

N = {соз{Ф(ф)) • sin(T{B)), зт(Ф(ф)) • зт(Т(в))у cos{T(9))}, (3) 

where Ф(^), Т(в) are some arbitrary functions. 
It will be shown that this ansatz is a generalization of the hedgehog 

and "^"-configurations. In some sense the present ansatz gives an ex
planation of the origin and approximate character of the last. As it will 
be seen, (3) leads to a series of new solutions in baryon and topologically 
trivial sectors. Some of these new states are classically stable. 

2.2 Mass Functional and Solutions for Stat ic Equat ions 
Let us consider the Lagrangian density £ for the stationary solution: 

£ = ^J • Tr(LkLk) + J L . Tr[Lk, L]\ (4) 

Here Lk = U+dkU are the left currents. After some tedious algebra, (1), 
(3), (4) lead to the expression 

£ = £ 2 + £ 4 , (5) 

where 

* ~ ? •{<*•>-+e£-<#r+<n*l-^} w 
and 

sin2F r ain2T , „ , „ „ sin2F rsin2T, 
£4 = 

In (6), (7) we use the symbol prime to denote the following derivatives 

, . <*Ф m , dT „ . dF 

The variation of (5) with respect to Ф(^) gives us 

Ф" = 0 , that is Ф(ф) = к-ф + Const. (9) 

3 



We consider only solutions with a vanishing value of this constant. The 
number к must be an integer in order to obtain a single-valued solution 
U(r) in the whole r*-space. 

Now we have the following expression for the mass of the soliton 

M = Mt + Af4, (10) 

M2 = lf dxx2 J dSsinel (F'f + 
n n V 

ain2T >'\2 
sin28 к2 + (Г) 

sin3F\ 
(И) 

OO Ж 

M4 = 7- f dx • x2 J d0 • зтв • 

Ш*+ m\ (F')2+"""2" "Г'к\Г)Л-x2 згп2в J . (12) ту + 5 ! ^ ! « ! ^ и ^ » 1 ^ 

where 7 = ir • F»/e and i = F» • e • r. 
In order to minimize the functional M, the functions T(ff) and F(a) 

have to obey the following equation 

SM л SM „ 
(13) 

or more strictly 

[x2 + 2asin2F]F" + 2xF' + [а(Р*)2 - J - 2b^^]sin(2F) = 0, (14) 

2-U + k2.B-^^]-T"-k2.A' 
ат(2Г) 
«n 20 + 

+ M ^ d T + e - M ' » - » ' * ^ ] - » ' <15> 
Т £ш 2 т; 1 

лгп2б • 

The coefficients a,b and Л,В in (14), (15) are the following integrals: 

a = Л * 2 ^ + w } ™ 9 *• ь=кЧ 3^r?3in ш> ( l 6 ) } *"*' r/m>4 
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A = ]sin*F.{± + (F')*]dz, B = JS-~dx. (17) 
о о 

From (10)-(12) and (16),(17) we conclude that the function T(0) has to 
be some integer factor of 7r for в = 0 and в = ir. We consider only the 
configurations with finite masses; that is why we have F(Q) = n • ж with 
integer n. Without loss of generality we take .F(oo) = 0. It is not difficult 
to prove that the asymptotic behaviour of F is presented by 

F(x) —• ——, for x —* oo, with p = . (18) 

In the vicinity of the coordinate system origin 

F(x) -+ 7Г • n - a • z p , (19) 

where a is some numerical factor. 
It is clear that Т(в) has the following behaviour near the boundary 

of the domain of its definition 
T{6) -> 6k, for6-+0; T(0) -> 7Г • I - (n - в)к, fm-в-ж. (20) 

Here / is an integer number. 
Now all solutions UnM are classified by the set of integer numbers n, к 

and /. The solutions of (14)-(15) are graphically represented in Figs.1,2 
for some values of к and I. 

2.3 Baryon Charge Distribution and the Soliton Structure 
Now we consider more carefully the structure of solitons. For that pur

pose let us calculate the baryon charge density 

J ? ( 0 = -~~i • eo^TriL^L,). (21) 

The straightforward calculation gives 

твип--1 ™H dF sinT dT te 
0 { } ' " 2ж* " r* " dr ' sinO ' d$' Ц • K U ) 

Here we have used (1) and (3). The expression for the topological charge 
density, (22), is the generalization of the one for "кфп ansatz from[3] and 
the Skyrme-Witten ansatz. 
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Equation (22) immediately results in the expression for the corre
sponding topological charge 

B=^- [ l -««(* . / ) ] . (23) 

One can see now that for even / we have meson- like solitons. In Fig.3 the 
baryon charge distributions are schematically presented in the (X, Z) -
plane for solitons characterized by the number к, п (F(0) = r-n, .F(oo) = 
0) and boundary conditions T(0) = 0, T(ir) = тг • I, I = 2,3,4. 

In Table 1 we symbolically present the structure of solitons, the total 
baryon charge and the values of the mean square radius for some number 
of к and I. For example, we point out 2525 structure for к = 2, 1 = 2 
solution when the baryon charge distribution divides the whole space into 
four axially symmetric regions. One unity of a positive baryon charge is 
concentrated in two of them and one unity of a negative charge in two 
others. 

Table 1 Structure of states (n = 1, k, I) and the mean 
square radii of baryon charge distributions 

к 11 1 2 3 

1 
В = 1 (S) 

„2 _ „2 _2 
rx = ry = rz 

= 1.49 

B = 0(S-S) 
r2

x=rl = 0 
B = 1(S-S-S) 

r2 =r2 = -4 .1 
r2

r = 22.8 

2 
В = 2 (2S) 

rl=r\= 6.5 
T\ = 2.9 

В = 0 (25 - 25) 
rl = r j = 0 

В = 1 (25 - 25 - 25) 
rl = r2

v = - 8 . 7 
7^=62 

3 
В = 3 (3S) 

rl = r\ = 16.2 
rl = 4.2 

В = 0 (35 - 35) 
rl = rl = 0 

г2

г =0 

В = 3 (35 - 35 - 35) 
r2

x = r2

y = - 9 . 9 
r2

r = 114.3 

The mean square radii demonstrate a very different form of the ob
tained stationary configurations. Some of the mean square radii are nega
tive. Evidently only the negative (antisoliton) baryon charge distribution 
may lead to such values. 

In Figs.4,5 we present our more detailed results for the baryon density 
distribution in the (X, Z) plane and "3-dimensioned picture" of the same 
distribution for a dibaryon. It is easy to obtain from Fig.4 that the peak 
in the baryon-number density is near p = y/x2 + у2 ~ 1.5/F»e, z = 0. 
The solution with к = 2, 1=1 has the toroidal structure, as was pointed 
out in [5]. 

In Fig.6,7 one sees the contour plots for baryon density distribution 
for 5 — 5 — 5 skyrmions that give us concrete knowledge about such a 
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Pig.4 Contour plot for baryon-number density 
distribution in the (X, Z)-plane for a two-skyrmion 

configuration. Contour interval /i=0.0035. 

Fig.5 "Three-dimensional" picture for baryon-number 
density distribution for a two-skyrmion configuration. 
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Fig.6 The same as in Fig.4 for S-S-S skyrmion 
configuration. Contour interval /i=0.004. 
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Fig.7 The same as in Fig.5 for S-B-S skyrmion 
configuration. 



complicated object. Evidently this soliton has not the simple toroidal 
structure. Only one antiskyrmion (with В = — 1) has the toroidal struc
ture and two others have not. One may conclude that 6 = 0 and I = 4 
solitons (see Fig.3) consists of one toroidal skyrmion, one toroidal an
tiskyrmion and a skyrmion-antiskyrmion pair of the nontoroidal form 
localized near z-axis. 

We have to note here that the quantum states of the 5 — S — S 
type (k = 1, 1=3) should experimentally appear as compound nuclear 
states in the interactions of a stopped antiproton with a deuteron. So we 
have unusual possibility to include antinucleons in the compound state 
structure in the same manner as nucleons. 

2.4 The Masses of Classical Solitons 
When we discuss multiskyrmion configurations we search for and in

vestigate not only classically stable configurations .(The decay in two or 
more skyrmions is forbidden energetically). Nonstable configurations are 
also in our attention because they may become stable after the quanti
zation procedure. 

The numbers presented in Table 2 correspond to our calculations in 
the chiral symmetry limit (pion mass mv is taken to be zero). The 
variational procedure with the chiral symmetry breaking term 

F2m? 
£ . = - - Y * • Гг(1 - tf) , (24) 

which takes into account nonvanishing pion mass, gives us a possibility 
to compare our numerical results for some of the solutions with those 
from [15]. For this aim we choose the constants Fr = 108 MeV and 
e = 4.84 which used in[15]. Our results for diskyrmion mass is 1670 
MeV and the skyrmion mass from[15] obtained by the so-called "hat"-
method is 1660 MeV. Our results and those from[15] for more weight 
multi-skyrmion are in the following correspondence: 3-skyrmion - 2580 
MeV and 2530 MeV; 4-skyrmion - 3572 Mev and 3452 MeV; 5-skyrmion 
- 4635 Mev and 4420 MeV. Some descrepances in the calculated mass 
values of the multi-skyrmions give us a possibility to estimate the errors, 
probably introduced by the variational ansatz. The errors are less than 
5 percent for В < 5. Here, we have to present the virial theorem that 
allows us to estimate our numerical errors in the framework of the ansatz. 
The following quantity 

Д = 7 . { { Л | - Л 1 } . а + В-Ь-С] (25) 

must be zero. Неге Ax, Аг, С are given by 
oo oo oo 

Ax = -/sin'F, A2 = f(F')2 • sin2F dx, С = i J(F' • x)2 dx . (26) 
0 0 0 
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For the quantity Д we obtain Д ~ 1 MeV for the most "difficult" case 
(jfe=4, /=3). 

Table 2 The classical masses calculated in the present 
paper with the generalized ansatz 

kfl 1 
11.605 
22.458 
34.585 
47.675 
61.569 

26.358 
45.536 
68.701 
80.310 
113.119 

46.332 
73.533 

103.081 
134.450 

71.169 
106.609 
144.321 

The calculated soliton masses for n = 1 and some values of к, I 
are presented in Table 2 in the units of (n-Fv/e). So we extended the 
soliton spectrum up to n • к multi-baryon configurations for odd 1. For 
example, a three-baryon state corresponds to the k = 3, n = l, I— 1 
member of Table 2 with the binding energy of about 5.4 MeV per baryon. 
Moreover, we also have the spectrum meson-like (N-k/2 -baryon - ra-fc/2 -
antibaryon) configurations for even 1. (See, for example, the к = 2, n = 1, 
1 = 2 case that corresponds to a two-baryon - two-antibaryon meson-like 
configuration with the mass about 3192 MeV). Some of the obtained 
configurations are classically stable objects which are seen from Table 2 
(they are marked by the boldface letters). The mass of such object is less 
than the sum of the masses of their baryon components. The classical 
"binding energy" of these states may easily be obtained by using Table 
2 for arbitrary values of F* and e. 

From Table 2 one sees almost linear dependence of the classical masses 
on the baryon charge. Such a dependence dramatically differs from M ~ 
B(B + 1) that may be obtained for the hedgehog ansatz[16]. 

3. Spectra of Quantum States 
The purpose of this part is to obtain the quantum mechanical effec

tive Hamiltonian in the framework of the collective coordinate method. 
We use the breathing and rotational degrees of freedom as collective co
ordinates and calculate the masses ana binding energies of the lowest 
states in this method. 

3.1 Effective Hamiltonian in Terms of Collective Variables 
Let us describe the important steps necessary to obtain the effective 

Hamiltonian. Now the chiral fields are considered to be time-dependent 
and of the form: 

U(r, t) = e a ! p{iV • I»(t) • JV'(lft**) • F(ze-X)} , (27) 
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where R(t) and I(t) are the spatial and isospin rotation 3x3 matrices, 
and X(t) is the time-dependent parameter of the dilatational vibrations. 
Inserting (27) into the Lagrangian in which the time components L0 of 
the currents now play their impotant role, we have 

L = -M + £ . f Tr(L0L0)d*r + J ^ J • / Г ф о , L k \ 2 d*r. (28) 

Performing the canonical transformation and determining canonically 
conjugate variables 

V = — , Г* = ^-^i $ = -—- , (29) 

where the angular velocities fi,- and a;* for the rotation and isorotation 
are given by 

R*Rki = ецкак1 / a ( / - 1 ) w = « « V , (30) 

we obtain the Hamiltonian for fc ф 1 
A2 Ji2 £2 

& = М ( А ) + ^ 7 Т Т + ^ Т Т Т + 

- ±M 
2 \ Q r ( 

2тп(Л) 20 ^A) 2<?S(A) 

(Х) + Щх)-оЩ) П • ( 3 1 ) 

Here the symbols p, Г and S are interpreted now as follows: impulse 
p corresponds to the vibrational operator, T and S are the isospin and 
spin operators. The vibrational potential M(A) is given by the following 
expression 

M(\) = M2 • exp(-X) + M4 • exp{X). (32) 

For the inertial values m(A), Qr(A), <?s(A), Q(X) we have : 

2ir 

о 

°° -ЗА 

о 

+ e - ^ / [ f e ^ + ( r r ] « n ^ } ^ , (33) 
о 

д т(Л) = 1^Jx4zfsinede{-e-*^(k*a-^cos'T+(rr)+ 

12 



,sin3T , ^ „ л я ^ ( 
W f [ £ _ + e -A( ( F ? + [кг>21± + ( Г ? ] ^ ) ] ( 1 + co,T)}(34) 

<?s(A) = у-ъ j хЧх j sin9d${sin*F • p — + 

- ^ ^ ( ' ^ « л + С П 4 ) } . ( 3 5 ) 

Q(A) = £ - /*»& / j f c l ft»{-e-*^*»=^+ 
^ v ' F*e3 J У l г 2 «n 2 0 

W F [ ^ + e-*({Fy + [ k ^ + ( I - ) « ] ^ ) ] - i » T } . (36) 

3.2 Spectrum of Few-Baryon States 
It shoud be noted that 5 3 — fc • 2j/ . = 0. It is a constraint for 

the wave function of the quantized Skyrmion. More strictly, the wave 
function is given by 

< I, R\TK, SM, L >= № + № + 1) • DT

KL{I) • Ds

M_k.L(R) , (37) 

as in[3], and its parity is given as P = (—1)*. If we neglect the vibrational 
degrees of freedom, we obtain the expression for the mass spectrum for 
В = 2 (Jb = 2, 1 = 1): 

f. (for an arbitrary value of F,. and e). 
> Now we present some numerical results for the calculated soliton 
;; states with 5 = 2 (see Table 3.) and lowest multibaryon states with 
й В = 3,4 (Table 4.). The calculations were performed in the harmonic 

approximation with the values of the constants: e = 4.84 and F„ = 108 
MeV (Mnvci = 931 MeV). 
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Table 3. The calculated energies for the B=2 (k=2t1=1) 
soliton states with isospin T, spin parity Sp and quantum 

number n=0 corresponding to the vibrational mode 
1?~ 

Ё - 2Mnud (ШУТ 
o+ 

-214 -172 
0+ 

-154 
1+ 

-118 -53 

Table 4. The lowest multibaryon states (k = 2,3, 1 = 1) 
~ff 

S 
"2Г 

E - BMnV£t (MeV) 

ж 
3/2 
Ж 
-268.0 

3/2 
372 ж 

-210.5 -324.0 -312.7 
0 

-294.5 
One can see that all candidates to the light nuclear states have very 

high binding energy values. But nuclear state-like configurations should 
not be identified with nuclei since a lot of quantum corrections is not yet 
taken into account. 

The calculation shows that the classically nonstable state к — 4,1 = 1 
has the binding energy +88 MeV and becomes stable when the quantum 
correction is taken into account (see Table 4). This may have a more 
general sense. 

At the end of this section, we give some remarks of technical nature 
about the numerical procedure. One can see that A = 0 is not the stable 
point (minimum of the effective potential) when we take into account the 
rotations of a skyrmion. So A r o j n is to be obtained before the solution 
of the Schrodinger equation is performed. In our calculations of the 
quantum spectra of masses the role of such a procedure was not essential 
except for the nucleon case. The contributions of vibrational degrees of 
freedom as well as rotational ones are seen from Table 5 where we give 
our results for A m < n , rotational energy Erot (this value includes classical 
mass), and energy of the vibrational phonon hw^a, for F„ = 108 MeV 
and e = 4,84. The values Xmi„ = 0 correspond to the cases when the 
procedure of A-minimizing the effective potential has not been performed. 

f Cable 5. Spectrum of Tribaryons 
^min Г S T3 

Erot (MeV) hwvibr (MeV) 
0.0 1/2 3/2 1/2 2461 

-.027 1/2 3/2 1/2 2460 127 
0.0 3/2 3/2 1/2 2526 

-0.071 3/2 3/2 1 2 2519 125 
0.0 5/2 1/2 1/2 2601 

-0.117 5/2 1/2 1/2 2582 123 
0.0 5/2 3/2 1/2 2633 

-0.133 5/2 3/2 1/2 2607 122 

14 



3.3 Few Remarks about the Existence of the Nucleon- Antin-
ucleon Sta tes 

The 1 = 2 solutions correspond to В = 0 states. Some of these states, 
being correctly quantized should be considered as nucleon-antinucleon 
bound states. One can see that the "classical" mass of these states is of 
the order of two nucleon masses (k = 2). So one hopes that if these states 
will be stable after inclusion of the quantum corrections, the binding 
energy will be small compared with two nucleon masses. The same is 
true for the other cases with 1 = 2. 

We have calculated the T = S = 0 states taking into account only 
the breathing mode. In accordance to our numerical results, the states 
which were stable before quantization remain stable and after inclu
sion of the breathing mode. The state к = 1, I = 2 that was unsta
ble before quantization procedure (Md(k= 1,1= 2)-2-Mei(k=l,l=l) =220.7 
MeV) performed is yet unstable (56.7 MeV). The states with к = 2,3,4, 
I = 2 are stable. Some of these last states may appear as compound 
states in the reactions with stopped antinucleons. 

4. Conclusions 
The bound states with baryon number В = 2,3,4 with the toroidal 

structure have been investigated in the framework of the very general as
sumption about the form of the solution of the Skyrme model equations. 
The meson-like states with baryon number В = 0 have been obtained. 
They are not of the toroidal structure. More complicated baryon states 
consisting of toroidal solitons and nontoroidal substructures have been 
obtained as well. Some of these last states may appear as compound 
states in the reactions with stopped antinucleons. The searches for such 
states are very desirable to confirm the chiral soliton picture of strong 
interacting system. 

We have constructed the effective quantum Hamiltonian taking into 
account the breathing mode and rotational degrees of freedom. We have 
shown that all the candidates to the light nuclear states have very high 
binding energy values. But nuclear state-like configurations should not 
be identified with nuclei since a lot of quantum corrections is not yet 
taken into account. 
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Николаев В.А., Ткачев О.Г. Е4-89-848 
Малобарионные системы в 511(2)-модели Скирма 

В рамках очень общего предположения относительно формы 
решений уравнений модели Скирма исследованы классически 
стабильные солитоны с барионными числами 1,2,3,4. Некото
рые из этих солитонов имеют тороидальную структуру, другие 
же - более сложную. Получен эффективный квантовомеханичес-
кий гамильтониан и его спектр в методе коллективных пере
менных. Все полученные состояния с квантовыми числами лег
чайших ядер имеют энергию связи больше эксперимен
тально наблюдаемой. Некоторые из полученных состояний, со
держащих антибарионы как свои структурные единицы, могут 
проявиться в реакциях с остановившимися антибарионами как 
ядерные компаунд-состояния. 

Работа выполнена в Лаборатории теоретической физики 
ОИЯИ. 
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Nikolaev V.A., Tkachev O.G. E4-89-848 
Few-Baryon Systems in the SU(2)-Skyrme Model 

The classically stable solitons with baryon number 1, 
2,3,4 have been investigated in the framework of the very 
general assumption about the form of the solutions for the 
Skyrme model equations. Some of the solitons have the to
roidal structure and some of them are more complicated. 
The effective quantum-mechanical Hamiltonian and its spe
ctrum are obtained by using the collective variable me
thod. All the states with quantum numbers of light nuclei 
have the binding energy greater than the experimental one. 
Some of the calculated states containing antibaryons as 
substructure units should appear in the experiments with 
stopped antibaryons as compound nuclear states. 

The investigation has been performed at the Laboratory 
of Theoretical Physics, J I 1 . 
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