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ABSTRACT
The zero point energy associated to a hermitian massless
scalar field in the presence of'perfectly reflecting plates in a
three dimensional flat space-time is discussed . A new.technique
to unify two different methods - the zeta function and a variant
of the cut-off method - used to obtain the sc called Casinir
.energy is pfesented,and the proof of the analytic equivaleince

between both methods is given.

Key-words: Quantum field theory; Renormalization.
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I-Introduction

In a previous paper" we have introduced a new technique of

comparison between two usual methods for obtaining the Casimir

(2)

energy , viz : the cut-off method and the zeta function

3)(4) (S
methog'¥ W )

.Using this approach we proved the analytic
equivalence between these two methods in a two-dimensional
spacetime.The pixrpose of this work 1s to extend ;his previous
result to a higher dimension. )

The problem of the renormalization of ill defined quantities
leading to a physically significant result is a fundamental and
ubiquitous gquestion of gquantum field theory.Although many
regularization methods have been employed, a proof that all these
different methods lead to the same result is still lackingm’”).

The clgssical example of a ill defined quantity is that of
the zero point energy of a quantum field in a flat spéce timé. The
~Wick normal ordering procedure may elude this divergence.However,
casimir showed that this procedure is not adequate to the study of
fields in the presence of surfaces when the fields satisfies
boundary conditions.Using the idea that |, although formally
divergent , the zero point energy can suffer a finite change if’
~ the physical configuration is modified,he derived a finite result
for the energy of the vacuum state of an electromagnetic field in
the presence of conducting parallel plates.This method can be
summarized in the following steps:a complete set of mode solutions
and the respective eingenfreguencies of the classical wave

equation satisfying appropriate boundary conditions . is foﬁnd;the

divergent zero point energy of the quantized field is regularized
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by means of a cut-off function and then is renormalized using
auxiliary configurations which are added and subtracted.
Subsequently another methods , 1like the Green function-

(11) (12)

method™ P the dimensional regularization method and

the zeta function method ™% yere employed to obtain a
finite result for the vacuum energy.Even in the well studied case
of the Casimir energy,however a proof of the equivalence between
some of these different techniques was not available.In this
article an analytic proof of the equivalence between the =zeta
function and the cut-off method for obtaining the Casimir energy
of a scalar field confined in rectangular cavities satisfying
Dirichlet boundax"y conditions is presented for the case D=3 (three
dimensional space time).The generalization to D > 3 and fields of
higher spin is straightforward. .

This paper is organized as follows:

In section II the zeta function regularization method is
briefly presented. |

In section III the exponential cut-off method is carefully
studied.

In section IV the zeta function method is interpreted as an
"algebraic” cut-off method. |

In section V the unification between these two methods is
achieved using the mixed cut-off procedure.The equ.'walence between
these methods is obtained as a consequénce of the analyticity of a
certain complex function of two variables.

Conclusions wre given in section VI,

In this paper we use h=¢c =1,
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II-The Casimir enerqgy obtained using the zeta function,methodA

For a massless scalar field confined }in a two-dirensional
rectangular box satisfying Dirichlet boﬁndary conditions the
eingenfrequencies are given by:

o [ (5 + (2] e

1 2

n,m=1,2,3,...

where L ,L, are the lengths of the sides of the box.
The zero point ecnergy is

-
E(LI'L2)= -—2-— W (2.2)
n, n=)
where ©hm is given by eq (2.1).This expression is divergent and
can be written as

_ 1 -2s | '
B(LLs)= 5 ) v, (2.3)

n, m=l
for s = -1/2. '

The expression (2.3) is analytic for Re(s) > 1.The zeta
function method consist in evaluating the analytic extension of
this function at the point s = ~-1/2, thereby obtaining a finite
result.Algebraic manipuiations of eq..(2.3),using eq.(2.1) gives:

E(L, L, 8)= - A{( )% (- )%28)+
1 2

L 28 L 28
-T2 ke,

(2.4)
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where A(a,b;2s) is the Epstein zeta function and (2s) is the
Riemann zeta function.So E(L‘,Lz;zs) is analytic in s € €\{1/2,1}
and the evaluation of E(IH,IE;-I/Z) gives the Casimir energy

U(L,,L,),

_ n 1 1
u(L, L)= ( LTI, ]*

LL R -3/2
1 2 2 2 2 2
T T w E [P L, *qu] . (2.5)

P.g=-w

The prime sign in the summation means that the term p=g=0 is to be
excluded. '
To obtain tﬁe Casimir energy given by eq(2.5) through this

’method there is apparently no need of a normalization scheme and a
finite result comes out automatically.This aspect will be
discussed later. |

| An important remark'is that the contribution of the field
outside the box for the Casimir energy apparently was not taken in
acbount at any moment..This is not a trivial matter because the
two configurations illustrated by Fig.l.a and Fig.1l.b are
physically quite different.In the box configuration there is field
in the whole space ,while in bubble configuration theré is field
only inside the cavity.

Pig 1.a-The box fig 1.b-The bubble
configuration ’ configuration
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IIXI-The exponential cut-off method
The divergent expression given by eq(2.2) can be regularized

using a exponential cut-off function such as
e . (3.1)

The regularized energy is then

©
-A W
E(L ,L_,A)= —— w e ne (3.2)
-4 2 nm i
n, m=1

Re(a) > O .

The function given by eqg(3.2) is analytic for Re(A) > 0 but
divergent at A=0. A renormalization procedure is thus required to

enable one to take the limit A +0% without divergences.This method

(1 (14)

was employed by Casimir, Fierz 3),Boyer and others using
éuxiliary configurations in order to obtain a finite result for
the case of parallel plates.

Let us define a function h(a,b,u) whvic.:h will be of use

throughout along this paper:

© _ nn )? mna)21/?
h(a,b,u)= Z e ; [ ( 2 ] ' [ P ) ] .' (3.3)
n,m=1

a,b >0

Then the regularized energy given by eq.(3.2) can be
expressed as:

1 8
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Adding and subtracting terms in eq.(3.3)in order to get a dqubie
summation in n,m € Z ,performing this summation using the Poisson
summation formula,integrating this result in polar coordinates and
using the fact that the two simple summations which are introduced
are geometric series, we get the following expression for the

function h:

[ ] -3
-2 /2
h(a,b,u) = : 't:- u o, : : u E ! ( u’+ 4 pa®+ 4 op* ] +
Ppg=-6%
1 1 1 1 1
- -— - .(3.5)
2 enu/a_ 1 2 enu/b__ 1 4

Defining r,= min {a,b} we see from eq.(3.5) that h(a,b,u)is
analytic for ¢‘-<|u|<2r°,the point u=0 is a second order pole and
the negative powers portion of the Laurent series expansions of h

around u=0 is given by:

. _,ab -2 atbh -
h’ol"(a,b,u)-— > U 5> U -

Substituting eq.(3.5) in eq.(3.4) the regularized energy

becomes:

L L

172 -3 1 -2 n 1 .1
E(Li'l'z’l) =S * -T= Boaﬁﬂ'z“ t 5 Bz( L Lz) +

L L d : =32
-c»--———-‘l’"2 Z ! [ 2%+ 4 p%a®+ 4 gp° ] +
Prqa=-® : ’

%, ), : | (3-6)

vhere Bo and Bz are Bernoulli numbers and g,(2) is analytic in
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IAI<2nin{15,Lh}.

The two divergent terms in eq.(3.6) are proportional to the
"yolume® and to the “perimeter" of the cavity;thus following the
Casimir approach " we need to add and subtract auxiliary
configurations in order that:

a)The final result is a difference between
»jsovolumetric® and »isoperimetric” configuration sets.

b)The auxiliary cohfigqrations should not give
contributions to the finite renormalized energy.

This second prescription is achieved if the distance between
the opposite sides of tﬂe auxiliary cavities becomes infinite, so
lthat the fieid inside this auxiliary boxes tends to the free ,
unconstrained field.

A naive procedure to obtain the Casimir energy 3in the

rectangular cavity case would be to define:

u(L,,L,)= ii‘; E(L,,L,,A) + E(R-L,L_,A) + E(L ,R’'~L_,1)+

R,R'* » ’ r :

.

This can be visualized by Fig(2.a) and Fig.(2.b).

Fig. 2.a and 2.b-Set of configurations employed
. to otain U(L,,Lz) of eq.(3.7)

The problem of this renormalization is that we are adding up
"plates” to the initial configuration.The field inside the
cavities of sides (R-L’,Lz) and (L,,R"-L)) will never tend to the

free unconstrained field as R,R’+» like in the two plates Casimir
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approach, and prescription (b) is thus not satisfied.This
(eq.(3.7)) renormalized energy must be corrected by removing this
"plate” effect.This can be done by means of the following

renormalization:

¥(L,L,R,R’,A)= E(L ,L_,A) + E(R-L ,L_,A) + E(L ,R’-L_,A)+
+ E(R-L ,R’-L_,A) - 4 E(R/2,R'/2,A)+

-[E(Li,R’-Lz,l)+E(R-—L’-,R’-Lz',l) —ZE(R/Z,R'"LZ,A)]+

—[E(R—Ll,Lz,i)+E(R—L1,R’-L2,A) -2E(R-L, R’ /2, 1) ].

(3.8)
Then:
U(L,,L) = lim Y(L ,L_,R,R’,A). (3.9)
1’72 2
A+ 0 :
R,R'"» o

The evaiuation of U(L“Ib) by edq.(3.9) gives the same result
as that obtained using eq.(2.5). It is easy to see that if we use
the fﬁiig;ing auxiliary configuratiohs (illustrafed in fig(3.a)
and (3.b)),which are "isovolumetric" and "isoperimetric" the
finite contribution of the auxiliary cavities to the casimir
energy vanish as R.R’» .This strange configuration gives the

same result as that obtained from eq.(3.9) as expected.

¥ig 3.a and 3.b~ Set of configurations that gives the same
(L, ,L ) as that obtained by egs.(2.5)
and (3.9)
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IV-The zeta function method as an "algebraic" cut-off method
A reqularized energy can be obtained from eq.(2.2) using an

"algebraic" cut-off:

w 7 : (4.1)

nmm
and the regularized energy becomes

E(L,,L,,0)= —5— Z w o ; (4.2)
‘n, m=l )
Re(o) > 3

which is convergent and analytic for Re(c)>3.Algebraic

manipulations of eq. (4.2) using eq.(é.l)»qives:

B(L, L, 0)= - A(( F )% (F ) 7o)+
1 2 .
L o-1 L -1
-F (= s ) e

(4.3)
If o> 3 ,this cut-off works finely and we get a finite
energy.As in any cut-off method, we want to tﬁke the limit o0
starting from 0>3.E§.(4.3) defines an analytic function in
o e C\{2,3}.(See Fig. (4))

Fig 4-The summation of eq.(4.2) 1is convergent in the
shadowed region,while the analytic extension of this function
is a meromorphic function with its poles indicated.

It is interesting to note that eq.(4.3), when evaluated at
0=0, gives the Casimir energy derived in section II. This later
result (of section II) is based on the use of the analytic
continuation of a complex function. Although it seems to be quite

obvious ,ve want to point out that analytic continuations:

a)Are to be performed in open connected domains.
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b)Make use of paths (entirely contained in the domain).f

.ﬁi order to extend the function which is initially definéd only in 5
subset of the domain. o

Since we are dealing with the zeta method as a cut-off '
method,we will move o (our regularization parameter) only along
tﬁe real axis and certain procedures related with the physics of
the problem will be employed.

A careful study of eq.(4.3) leads us to the 'expressi'on:

E(Li,Lz,o)= G’(Li,lb,o) +
LI L 2 L1 + L2

1
+ . - : (4.4)
aT( %) n(o-3) 2 (c-2)

where G, (Li,Lz,cr) is analytic in the whole o~complex plane.As we
move along the real axis from o>3 toward o=0, we find, first a
divergence propprtional to the "volume" of the cavity and, after
that ,a divergence proportional to the "perimeter"' of ﬁhe
cavity.Again, it is clear that it is necessary to use auxiliary
configurations with "isovolumetric" and "i{soperimetric"
subtractions in order to eliminate the divergences along the path..
If we take the auxiliary configurations as in eq.(3.8) or as in |
Fig(3.a) and Fig(3.b) the result will be the same as that of
Sec.I1I,since the auxiliary configurations will not disturb the
value of the analytic continuation of eq.(4.3) at the point o=0 in
the limit R,R’~+ w. o

Since the exponential cut-off is a strong factor of
convergence,the regularized energy, E‘La'Lz'M becomes singular

only when A+0°.Being a weaker factor of convergence,the .qlgebfaic _
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cut-off scatters the singularities of the regularized energy
E(Lﬂla,a) along the path towards the origin,leaving the origin
itself free from singqlarities when we take the analytic

continuation.

V;The mixed cut-off as a tool for unification.
The procedure of the precéding Sections IXXI and IV can be
unified by the use of a mixed cut-off function:

-0 =AW . A ‘
w e ne : . (5.1)

nm
In this case the regularized energy is:

1 - i A wn m
E(LI,LZ,A,O')= -5 Z w o e (5.2)
n, =1 .

nm
» =1

Re(a) > 0 ,0€C or

Re(A)=0 ,Re(c)>3

" “The regularized energy given by eq.(5.2) ;s a function of A
and ¢ is analytic in Re(A)>0,0eC and is continuous in
.'Re(l)zo,Re(o)>3. In A=0,as a function of o ,it cﬁn be analytically
extended to oeC\{2,3}.

Fig 5-The summation of eq. (5.2) converges to an analytic
function(in A,0) in the shadowed region.It converges
also in Re(A)=0,Re(c)>3.The points ¢=2,3 are poles of
the analytic extension of E(LI,LZ,A=0,0).

’

It is interesting to stress that:
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( i)lim ’E(Li,Lz,A,cr=0) does not exist,and
. A+ 0 .

(vii)lim LE(L ,L,,A=0,0) Qoes exist (if we are dealing with the
o+ 0

analytic éontinuation) .

The regularized energy thus obtained in eq.(5.2) can be
renormalized using the same procedures as in Sec. III and
IVv:addition and subtraction of auxiliary configurations.This

procedure can be formalized in the following way.Define:

N 2N
Y(L“Lzl R ,R/,a,0)= z E(L“rl-'mlala) - ZE(L“lelAlo')l
i=1 f=N+1

(5.3)

vhere the original <cavity with 1lengths (L1 ’ Lz) appears
as (L“ , in) .The other Lu yk=1,2 . ,i=2,3...2N are monotonous

functions of R,R’ in such a way that

lim L =w , L 2L, i1 . (5.4)
R ’ R [ 0 | .
Since' we want " isoyolumetric" and "jisoper imetric®

subtraction, it must be imposed that

= | 2N
Z Lu+ L2I = Z Lu+ LZI (5.5)
img JeNel ' )

and
N 2N
z Lu I"z: = Z I"u L2I ‘ (5.6)
img 1=zNe1

In Sec.IV it was proved that the zeta function method is
equivalent to the algebraic cut-off method,which is a particular

case of the use of the mixed cut-off method.This happens when we
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-]_3_
evaluate:
= 1 ’ =
Ung(L‘,La). iimo’ Y(L‘,LZ,R,R +A=0,0) (5.7)
R,R'+ o '

and the Casimir energy derived by the exponential cut-off method

is given by:

= ' =
u_(L,5L,) 171:1‘0 Y(L,,L,,R,R’,2,0=0) (5.8)
R,R'* o«

We claim that the "isovolumétric" and ‘"isoperimetric"
subtraction performed in eq.(5.3) renders the function
Y(IH,IE,R,R',A;O) analytic in |A|<po;oec for some P,>0.
Consequently, eq.(5.7) and eq.(5.8) gives the same result and the
two methods- cut-off and zeta function -~ are analytically
equivalent.Now we conclude the proof demonstrating the
analyticity of Y(Ia,lb,R,R’,A,o) in a domain IA!%po,oeC for some
pP,>0. |

Let us call

Q(po) = {A'€ C;|A|<po} x {0eC} p >0 . . (5.9)

Using an integral representation of the I' function , the
regularized energy given by eq.(5.2) can be expressed for Re(A)>0

or Re(A)=0 and Re(c)>3 as:

1 1 -2 :
E(L_I'LZ'A'O.)_—Z m de X Z e

[+ I n, mal

=(A+x) W .
ne (5.10)

Re( A)>0 or

R:>¢ A)=0 and Re(c)>3.




CBPF-NF-042/90

Using eq.(2.1) ,eq.(3.3) and splitting the above integral in p, we

get: -
po
E(L,L_,A,0)= — 1 ax x°"2 n(L ,L_,A+x)+g.(L.,L_,A,q)
t R L 2 I'(oc-1) 1/ 72! EA P
] (5.11)
Re( A)>0 or

Re( A)=0 and Re(oc)>3,

where gz(Ll,Lz,A,'cr) is analytic in Q(po) .

Defining
. N 2N
H(L,L,R,R’,u)= Y h(L ,L, ,u) - Yh(L ,L ,u) ,
i=1 f=Ne+ 1t
(5.12)
and
o N , 2N o .
Gz(LilelRlR'lllo.)= ZgZ(LHILZlIAIo') - Zgz(L“erllla) ’
i=1 1=N+1
(5.13)
then from egs.(5.3) ,(5.11),(5,12) and (5.13) we have
Po
Y(L.,L,R,R',A,0)= — 1 dx x°~2 H(L,L_,A+x)  +
i LU 2 T(o-1) 41 !
[
+6,(L,,L,,R,R’,2,0) .
(5.14)

8ince Gz(L‘,Lz,R,R',A,a) is a sum of analytic functions in
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(A,a)eﬂ(po),this function is analytic in the same domain.
H(Ll,La,R,R',u) is a sum of 2N functions ,eaéh one analytic
in o<hu<2Min{L“,Lm},with a second order pole at u=0.Then if we

take
p,= Min {L,L)} : . (5.15)

thus from eq.(5.4) it follows that H(Iﬁ,Lb,R,R',u) is analytic at
0<|u|<2po and has ,at worst, a second order pole at u=0.

Using eq.(5.12),the polar portion of each h(L

“,Lz‘,u)

derived in Sec.III and the restrictions imposed upon L, by
egs.(5.5) and (5.6), we find that that the coefficients of the
negative portion of the Laurént series of H(L“I%,R,R',u) (around
u=0) vanish. Then H(IH,Ib,R,R',u) is analytic at Iul<2p° .Thus
using eq. (5.9) and the properties of the I' function we see that
.Y(Ll,Lz,R,R',A,O') has an analytic extension in (A,a)en(po) as we

claimed.

VI-Conclusiohs

In this ﬁaper we developed a consistent method to unify two
hitherto unrelated regularization methods employed to obtain the
Casimir energy , the zeta function method and thé exponential
cut-off method.

Rectangular cavities with Dirichlet boundary conditions in a
three dimensional space-time (D=3) were studied.We pfoved the
analytic equivéience between tﬁe zeté function method and' a

variant of the exponential cut-off method for  this
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configurations. The generalization for higher dimensional
space-times is straightforward.

It is important to remark that it was showed that the zeta
function method perform virtual subtractions of auxiliary
configurations which do not display geometry of the space outside

the box upon which Dirichlet boundary conditions were imposed.In

(2) (13) (14)

Casimir’s original ‘'work and in Fierz ‘and Boyer'’s
papers,once the region outside the plates is the union of two
simple connected domains ( in fact,two semi-spaces) this kind of
problem does not exist and therefore thé contribution of the
exterior modes are canceled out in the rencrmalization procedure .
We have called the cut-off method employed in the article a
variant of the cut-off method becau e hone of the auxiliary
configurations employed reproduce in any sense the georﬁetry of the
spa'ce outside the original cavity. In the case of spherical
shellg¥ 197118} 4+he cut-off method has been employed with the
use of concentr_iéal auxiliary cavities; then oné .of the auxiliary
cavities reproduce the geometry of the space outside the original
shell. For D-2 dimensional parallel plates in i D dimensional
spacetime such problems do not appear'and go it is straightforward
to prove the analytic equi\(alence between the zeta an the

exponential cut-off method for these configurations by means of

the mixed cut-off method.
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