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ABSTRACT

The zero point energy associated to a hermitian massless

scalar field in the presence of perfectly reflecting plates in a

three dimensional flat space-time is discussed . A new technique

to unify two different methods - the zeta function and a variant

of the cut-off method - used to obtain the so called Casirair

energy is presented,and the proof of the analytic equivalence

between both methods is given.

Key-words: Quantum field theory; Renormalization.
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I-Introduction

In a previous paper * we have introduced a new technique of

comparison between two usual methods for obtaining the Casiroir

energy , viz : the cut-off method<2) and the zeta function

method 3 .Using this approach we proved the analytic

equivalence between these two methods in a two-dimensional

spacetime.The purpose of this work is to extend this previous

result to a higher dimension.

The problem of the renormalization of ill defined quantities

leading to a physically significant result is a fundamental and

ubiquitous question of quantum field theory.Although many

regularization methods have been employed, a proof that all these

different methods lead to the same result is still lacking'6't7).

The classical example of a ill defined quantity is that of

the zero point energy of a quantum field in a flat space time. The

Wick normal ordering procedure may elude this divergence.However,

Casimir showed that this procedure is not adequate to the study of

fields in the presence of surfaces when the fields satisfies

boundary conditions.Using the idea that , although formally

divergent , the zero point energy can suffer a finite change if

the physical configuration is modified,he derived a finite result

for the energy of the vacuum state of an electromagnetic field in

the presence of conducting parallel plates.This method can be

summarized in the following steps:a complete set of mode solutions

and the respective eingenfrequencies of the classical wave

equation satisfying appropriate boundary conditions is found/the

divergent zero point energy of the quantized field is regularized
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by means of a cut-off function and then is renormalized using

auxiliary configurations which are added and subtracted.

Subsequently another methods , like the Green function

»ethod(8)(9)(10),the dimensional regularization methodmHl2) and

the zeta function method <3)(4)(5) were employed to obtain a

finite result for the vacuum energy.Even in the well studied case

of the Casimir energy,however a proof of the equivalence between

some of these different techniques was not available.In this

article an analytic proof of the equivalence between the zeta

function and the cut-off method for obtaining the Casimir energy

of a scalar field confined in rectangular cavities satisfying

Oirichlet boundary conditions is presented for the case D=3 (three

dimensional space time).The generalization to D > 3 and fields of

higher spin is s'traightforward.

This paper is organized as follows:

In section II the zeta function regularization method is

briefly presented.

In section III the exponential cut-off method is carefully

studied.

In section IV the zeta function method is interpreted as an

"algebraic" cut-off method.

In section V the unification between these two methods is

achieved using the mixed cut-off procedure.The equivalence between

these methods is obtained as a consequence of the analyticity of a

certain complex function of* two variables.

Conclusions c.re given in section VI.

In this paper we use h » c = 1 .
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II-The Casiroir energy obtained using the zeta function method

For a massless scalar field confined in a two-dimensional

rectangular box satisfying Dirichlet boundary conditions the

eingenfrequencies are given by:

n,B=l,2,3,...

where L.L are the lengths of the sides of the box.

The zero point energy is

CO

E(L ,L) = ~- Y (J (2.2)
n , m=l

where w is given by eq (2.1).This expression is divergent and

can be written as

E(L ,La,s)« -§- £ un J
2S (2.3)

for s = -1/2.

The expression (2.3) is analytic for Re(s) > l.The zeta

function method consist in evaluating the analytic extension of

this function at the point s « -1/2, thereby obtaining a finite

result.Algebraic manipulations of eq.(2.3),using eq.(2.1) gives:

7 at 7 1

Ll 2 S L2 2 S

(2.4)
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vhere A(a,b;2s) is the Epstein zeta function and <(2s) is the

Riemann zeta function.So E(L ,L ;2s) is analytic in s € C\{1/2,1}

and the evaluation of E(L ,L ;-l/2) gives the Casimir energy

32 n ' • v **i ' "* "•> i * ( 2« 5)

p,q=-»

The prime sign in the summation means that the term p=q=O is to be

excluded.

To obtain the Casimir energy given by eg(2.5) through this

method there is apparently no need of a normalization scheme and a

finite result comes out automatically.This aspect will be

discussed later.

An important remark is that the contribution of the field

outside the box for the Casimir energy apparently Was not taken in

account at any moment. This is not a trivial matter because the

two configurations illustrated by Fig.l.a and Fig.l.b are

physically quite different.In the box configuration there is field

in the whole space ,while in bubble configuration there is field

only inside the cavity.

Pig l.a-The box fig l.b-The bubble
configuration ' configuration
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III-The exponential cut-off method

The divergent expression given by eq(2.2) can be regularized

using a exponential cut-off function such as

-A CJ
e "' . (3.1)

The regularized energy is then

. ^ -Aw
E(L ,L2,X)= -\- ^ «B . e " " (3.2)

Re(A) > 0 .

The function given by eq(3.2) is analytic for Re (A) > 0 but

divergent at A=0. A renorraalization procedure is thus required to

enable one to take the limit A -*0+ without divergences.This method

was employed by Casimir, Fierz(13),Boyer<14) and others using

auxiliary configurations in order to obtain a finite result for

the case of parallel plates.

Let us define a function h(a,b,u) which will be of use

throughout along this paper:

h(a,b,u)« 2^ e

n,in«l

a,b >0

Then the regularized energy given by eq.(3.2) can be

expressed as:

| | L2,A) . (3.4)
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Adding and subtracting terns in eq.(3.3)in order to get a double

summation in n,« e Z ,performing this summation using the Poisson

summation formula,integrating this result in polar coordinates and

using the fact that the two simple summations which are introduced

are geometric series, we get the following expression for the

function h:

h(a,b,U> = -44- U'% -14- * £ ' ( U*+ 4 PV + 4 qV
p,q=-eu

2 enu/a_ 1 2 enu/b_ x 4 -i3'51

Defining rQ= roin {a,b} we see from eq.(3.5) that h(a,b,u)is

analytic for r<|u|<2r ,the point u-0 is a second order pole and

the negative powers portion of the Laurent series expansions of h

around u=0 is given by:

Substituting eq.(3.5) in eq.(3.4) the regularized energy

becomes:

X'K B < V L ) A " 2 +

-3

JT+ 4 pzaz+ 4 q b

p,q«-e»

where BQ and B2 are Bernoulli numbers and gt(A) is analytic in
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The two divergent tents in eq.(3.6) are proportional to the

fvolume" and to the "perineter" of the cavity;thus following the

Casinir approach we need to add and subtract auxiliary

configurations in order that:

a) The final result is a difference between

•isovoluntetric" and **isoperimetricN configuration sets.

b)The auxiliary configurations should not give

contributions to the finite renormalized energy.

This second prescription is achieved if the distance between

the opposite sides of the auxiliary cavities becomes infinite, so

that the field inside this auxiliary boxes tends to the free „

unconstrained field.

A naive procedure to obtain the Casirair energy in the

rectangular cavity case would be to define:

U(L ,L)« lim E(L ,L ,A) + E(R-L ,L ,X) + E(L4,R'-L ,
X-*0

^ l i # R / . L a f X ) - 4 E(R/2,R'/2.X). (3.7)

This can be visualized by Fig(2.a) and Fig.(2.b).

Fig. 2.a and 2.b-Set of configurations employed
to otain U(LjfL2) of eq.(3.7)

The problem of this renormalization is that we are adding up

"plates" to the initial configuration.The field inside the

cavities of sides (R-L.LJ and (L.,R'-LJ will never tend to the
1 2 * 1 Z

free unconstrained field as R,R'-»« like in the two plates Casinir
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approach, and prescription (b) is thus not satisfied.This

(eq.(3.7)) renoriaalized energy must be corrected by removing this

"plate" effect.This can be done by means of the following

renormalization:

,R'-L2,A)+

E(R-LirR'-L ,X) - 4 E(R/2,R'/2.A)+

-Li,R'-L2,X) -2E(R/2,R'-L2.A)

-Ll,R'/2,X) 1

( 3 . 8 )

Then:

U(L ,L) = lim Y(L. ,L -R,R',X). (3.9)
1 2 A-» 0 * 2

R,R'-» »

The evaluation of U(L ,L ) by eq.(3.9) gives the same result

as that obtained using eq. (2.5). It is easy to see that if we use

the following auxiliary configurations (illustrated in Fig(3.a)

and (3. b)),which are "isovolumetric" and "isoperimetric'^the

finite contribution of the auxiliary cavities to the Casimir

energy vanish as R.R'-* «.This strange configuration gives the

same result as that obtained from eq.(3.9) as expected.

Fig 3.a and 3.b- Set of configurations that gives the same
U(L ,L ) as that obtained by eqs.(2.5)

1 f ' and (3.9)
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IV-The zeta function method as an "algebraic" cut-off method

A regularized energy can be obtained from eq.(2.2) using an

"algebraic" cut-off:

and the regularized energy becomes

E(L,,L .<r)~ -±- > u u , (4.2)
* 1 2 2 ^^ n a n * ' * '

* n, »=1

Re(cr) > 3

which is convergent and analytic for Re (<r)>3. Algebraic
manipulations of eq.(4.2) using eq.(2.1) gives:

1
8

L cr—1 L_ cr—1»

(4.3)

If <r > 3 ,this cut-off works finely and we get a finite

energy.As in any cut-off method, we want to take the limit <r-*0

starting from <r>3.Eq.(4.3) defines an analytic function in

cr € C\{2,3}. (See Fig. (4))

Fig 4-The summation of eq.(4.2) is convergent in the
shadowed region,while the analytic extension of this function
is a meromorphic function with its poles indicated.

It is interesting to note that eq.(4.3), when evaluated at

tr=O, gives the Casimir energy derived in section II. This later

result (of section II) is based on the use of the analytic

continuation of a complex function. Although it seems to be quite

obvious ,we want to point out that analytic continuations:

a)Arc to be performed in open connected domains.
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b)Make use of paths (entirely contained in the domain)

in order to extend the function which is initially defined only in a

subset of the domain.

Since we are dealing with the zeta method as a cut-off

method,we will move <r (our regularization parameter) only along

the real axis and certain procedures related with the physics of

the problem will be employed.

A careful study of eq.(4.3) leads us to the expression:

E(L ,L ,cr)= G (L ,L ,<r) +

L L L + L,
1 2 l * ' (4.4)

n(<r-3) iT-(<r-2)

where Gl(Li,L2,<r) is analytic in the whole cr-complex plane.As we

move along the real axis from o>3 toward <r=0, we find, first a

divergence propprtional to the "volume" of the cavity and, after

that ,a divergence proportional to the "perimeter" of the

cavity.Again, it is clear that it is necessary to use auxiliary

configurations with "isovolumetric" and "isoperimetric"

subtractions in order to eliminate the divergences along the path.

If we take the auxiliary configurations as in eg. (3.8) or as in

Fig(3.a) and Fig(3.b) the result will be the same as that of

Sec.II,since the auxiliary configurations will not disturb the

value of the analytic continuation of eq.(4.3) at the point <r=0 in

the limit R,R'-» ».

Since the exponential cut-off is a strong factor of

convergence,the regularized energy, E(L ,L,A) becomes singular

only when A-»(>*. Be ing a weaker factor of convergence, the algebraic
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cut-off scatters the singularities of the regularized energy

E(L ,L ,<r) along the path towards the origin,leaving the origin

itself free from singularities when we take the analytic

continuation.

V-The mixed cut-off as a tool for unification.

The procedure of the preceding Sections III and IV can be

unified by the use of a mixed cut-off function:

-a -X to
(j e n " . (5.1)
n •

In this case the regularized energy is:

n , B=1

- £ Wn u Un e ^ » (5.2)

Re (A) > 0 ,<reC or

Re(X)=O ,Re(<r)>3

'The regularized energy given by eq.(5.2) as a function cf X

and <r is analytic in Re(X)>0fcreC and is continuous in

Re(X)fcO,Re(cr)>3. In X=0,as a function of a ,it can be analytically

extended to tree\{2,3}.

Fig 5-The summation of eq.(5.2) converges to an analytic
function (in A,<r) in the shadowed region. It converges
also in Re(A)=0,Re(cr)>3.The points cr=2,3 are poles of
the analytic extension of E(L ,L ,A=O,cr).

It is interesting to stress that:
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( i)lim E(L .L ,X,a=O) does not exist,and

(ii)lim E(L -L ,A=O,<r) does exist (if we are dealing with the
<r» 0* * 2

analytic continuation).

The regularized energy thus obtained in eg.(5.2) can be

renornalized using the sane procedures as in Sec. Ill and

IV:addition and subtraction of auxiliary configurations.This

procedure can be formalized in the following way.Define:
M 2N

Y(IyLa, R ,R\A,cr)= £ E ( L
1 , '

L
2 l ' *'

a) " I E<Lt,'
L
2,'

X'°"> '
1=1 i = N + l

(5.3)

where the original cavity with lengths (L ,L ) appears

as(L ,L ).The other L ,k=l,2 . , i*=2,3...2N are monotonous

functions of R,R' in such a way that

llm Lk|=» , IV lttV l Ul . (5 .4 )
R,R'-» e»

Since* we want •' isovolumetr ic" and "isoperimetric"

subtraction,it must be imposed that
• N 2K

and
N 2N

X LU L2, * I LU L 2, ' < 5 ' 6 >
1-1 I>N>1

In Sec. IV it was proved that the zeta function method is

equivalent to the algebraic cut-off method,which is a particular

case of the use of the mixed cut-off method.This happens when we
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evaluate:

lim + Y(Li,Li,R,R',X-O,ff) (5.7)

and the Casimir energy derived by the exponential cut-off method

is given by:

U (L,L)= lim Y(L ,L ,R,R',A,a=O) (5.8)
exp 1 £ X-» 0

R,R'-» »

We claim that the "isovolumetric" and "isoperimetric"

subtraction performed in eg.(5.3) renders the function

Y(L ,L2,R,R' ,A,cr) analytic in |A|<po,(reC for some Po
>0«

Consequently, eq.(5.7) and eq.(5.8) gives the same result and the

two methods- cut-off and zeta function - are analytically

equivalent.Now we conclude the proof demonstrating the

analyticity of Y(LirL2,R,R',A,<r) in a domain |A|<po,aeC for some

Po>0.

Let us call

H(P0) * {* € C;|X|<p0} x {treC} p>0 . (5.9)

Using an integral representation of the r function , the

regularized energy given by eq.(5.2) can be expressed for Re(X)>0

or Re(A)*0 and Re(o-)>3 as:

f
^ e nm (5.10)

n, »»i
Re( \)>0 or

R:( A)«0 and Re(o-)>3.
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Using eq.(2.1) ,eq.(3.3) and splitting the above integral in pQ we

get:.

ff
1,L2,A,or)= -|- r^--^

J (5.11)

Re( A)>0 or

Re( A)=0 and Re(<r)>3,

where g (L ,L ,\,<r) is analytic in il(p )

Defining

2N

1=1 |BH*1

(5.12)

and

2N

1*1 1-N+l

(5.13)

then from eqs.(5.3) , (5.11),(5,12) and (5.13) we have

f
t* (y. 1 ) dx Xa""2

(5,14)

Since G iL.L.R^',^^) is a sum of analytic functions in
2 1 Z
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(À,<r)eíJ(p ) ,this function is analytic in the same domain.

H(L ,L2,R,R',u) i s a sum of 2N functions ,each one analytic

in 0<|u|<2Min{Ln,L21},with a second order pole at u=O.Then if we

take

P0»Min { \ , \ ) (5.15)

thus from eq.(5.4) it follows that H(L ,L2,R,R' ,u) is analytic at

0<|u|<2p and has ,at worst, a second order pole at u=0.

Using eq.(5.12),the polar portion of each h(L ,L2l,u)

derived in Sec.Ill and the restrictions imposed upon L by

eqs.(5.5) and (5.6), we find that that the coefficients of the

negative portion of the Laurent series of H(L ,L ,R,R',u) (around

u=0) vanish. Then H(L ,L2,R,R' ,u) is analytic at |u|<2p .Thus

using eq. (5.9) and the properties of the T function we see that

.Y(LJ,L2,R/R',X/<r) has an analytic extension in (A.,<r)efi(po) as we

claimed.

VI-Conclusions

In this paper we developed a consistent method to unify two

hitherto unrelated regularization methods employed to obtain the

Casirair energy , the zeta function method and the exponential

cut-off method.

Rectangular cavities with Dirichlet boundary conditions in a

three dimensional space-time (D=3) were studied.We proved the

analytic equivalence between the zeta function method and a

variant of the exponential cut-off method for this
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configurations. The generalization for higher dimensional

space-times is straightforward.

It is important to remark that it was showed that the zeta

function method perform virtual subtractions of auxiliary

configurations which do not display geometry of the space outside

the box upon which Dirichlet boundary conditions were imposed.In

Casimir's<2> original work and in Fierz(13) and Boyer's(14)

papers,once the region outside the plates is the union of two

simple connected domains ( in fact,two semi-spaces) this kind of

problem does not exist and therefore the contribution of the

exterior modes are canceled out in the rencrmalization procedure .

He have called the cut-off method employed in the article a

variant of the cut-off method becau e none of the auxiliary

configurations employed reproduce in any sense the geometry of the

space outside the original cavity. In the case of spherical

shells<14><15)(16) the cut-off method has been employed with the

use of concentrical auxiliary cavities; then one of the auxiliary

cavities reproduce the geometry of the space outside the original

shell. For D-2 dimensional parallel plates in a D dimensional

spacetime such problems do not appear and so it is straightforward

to prove the analytic equivalence between the zeta an the

exponential cut-off method for these configurations by means of

the mixed cut-off method.
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