March 1993

Þ

Theoretical Status of J/ψ Suppression

Sean Gavin

Department of Physics Brookhaven National Laboratory Upton, NY 11973

ABSTRACT

Evidence of high densities in nucleus-nucleus collisions is extracted by comparing hadron-nucleus and nucleus-nucleus measurements of J/ψ suppression.

Invited talk at the Second International Conference on Physics and Astrophysics of Quark Gluon Plasma, Calcutta, India, 19-23 January 1993

This manuscript has been authored under contract number DE-AC02-76CH00016 with the U.S. Department of Energy. Accordingly, the U.S. Government retains a non-exclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes DISTRUCTION OF THIS DOCUMENT IS UNLIMITED

THEORETICAL STATUS OF J/ψ SUPPRESSION

SEAN GAVIN

Physics Department, Brookhaven National Laboratory Upton, New York 11973, USA

ABSTRACT

Evidence of high densities in nucleus-nucleus collisions is extracted by comparing hadron-nucleus and nucleus-nucleus measurements of J/ψ production.

High energy heavy ion collisions are expected to produce hadron densities far beyond the density in nuclei,¹ $\rho_0 = 0.16 \text{ fm}^{-3}$. Remarkably, no single measurement from the AGS and SPS light ion programs with projectiles $A \leq 32$ stands out as unambiguous evidence of these extreme densities.² To separate the high density signals from the background effects that result, *e.g.* from scattering with primary nucleons, careful systematic studies of hadron-nucleus, hA, and nucleus-nucleus, AB, data are needed.

In this talk I survey the ongoing systematic study of the most notorious case in point — J/ψ suppression. In principle, measurements of J/ψ suppression provide a probe of the densities obtained in AB collisions that is also sensitive to quark gluon plasma production.³ The latest results from SPS experiment NA38 reported by A. Romana in these proceedings show that the ratio of cross sections in the dimuon channel $B_{\mu\mu}\sigma_{\psi}/\sigma_{\rm cont}$ is reduced by a factor 0.50 ± 0.05 in central S+U compared to minimum bias pU collisions at 200 AGeV.^{4.5} This is precisely the sort of suppression that one expects if high densities are obtained. On the other hand, a target-mass dependence suggestive of this suppression is found in hAcollisions^{6,7} where high densities are not expected. At 200 GeV, NA38 finds that $B_{\mu\mu}\sigma_{\psi}/\sigma_{\rm cont}$ falls to 0.84 ± 0.08 in pU compared to pCu. The hA suppression in this kinematic regime is likely due to a combination of nuclear effects:^{8,9} nucleon absorption¹⁰⁻¹² and shadowing.^{13,14}

To interpret the AB data as evidence of high densities, one must determine the contribution of these nuclear effects. Following a brief discussion of the NA38 results, I consider the nucleon absorption contribution to J/ψ suppression in detail. Satz, Thews, Vogt and myself have estimated the maximum contribution of nucleon absorption to J/ψ suppression in AB. In a comparative study of pA and AB data, we have demonstrated that nucleon absorption alone cannot account for all of the measured suppression. Next, I list other nuclear effects that can influence J/ψ production, and consider the case for high density matter at the SPS. For other reviews that treat different aspects of J/ψ suppression, see Refs. 15 and 16. NA38 measures J/ψ production in the rapidity range 2.8 < y < 4 via its decay to $\mu^+\mu^-$ pairs. These pairs appear as a resonance peak at $M_{\mu^+\mu^-} \approx 3.1$ GeV above a continuum largely due to the Drell Yan process. In addition, there is an experimental background of false coincidences from semileptonic π . K and D decays that can, in principle, be subtracted by measuring $\mu^+\mu^+$ and $\mu^-\mu^$ pairs. Fischer and Geist have pointed out that a substantial fraction of the $\mu^+\mu^$ continuum comes from the simultaneous semileptonic decay of $D\overline{D}$ pairs.^{17,18}

To gauge the centrality of the event that produced the J/ψ , NA38 also operates a electromagnetic calorimeter. Transverse energy E_T is correlated with centrality because more energy is diverted from the beam in central than in peripheral collisions. The calorimeter covers the pseudorapidity range $1.7 < \eta < 4.1$, and measures the E_T of neutral hadrons with a small contamination from charged hadrons. NA38 now presents spectra as a functions of a neutral E_T^0 corrected for this charged contamination.

To exhibit the suppression effect in O+U and S+U collisions, NA38 presents the cross section ratio

$$\frac{B_{\mu\mu}\sigma_{\psi}}{\sigma_{\rm cont}} \equiv \frac{B_{\mu\mu} \left(d\sigma/dE_T^0 \right)_{\psi}^{AB}}{\left(d\sigma/dE_T^0 \right)_{\rm cont}^{AB}},\tag{1}$$

where the $\mu^+\mu^-$ continuum cross section consists of pairs in the mass range 1.7 < M < 2.7 GeV. While different choices of the continuum mass range and the E_T scale have been given in publications referenced in Ref. 4, the overall trend has consistently been that the J/ψ -to-continuum ratio is reduced in central collisions by roughly a factor of two. This effect is truly a suppression of the J/ψ rather than an enhancement of the continuum, since the E_T integrated continuum cross section³ varies with the target mass as $A^{1.01\pm0.04}$.

Empirically,^{6,7} the production of J/ψ in hA is known to increase with the target mass as A^{α} with $\alpha \sim 0.93$, in contrast to Drell Yan dilepton production, which grows as A. The traditional explanation of this suppression is nucleon absorption — a J/ψ can be dissociated by scattering with a nucleon as it traverses the target nucleus. The cross section for $\psi N \rightarrow D\overline{D} + X$ is essentially unknown, although scaling from other hadronic cross sections suggests that it is roughly $\sigma_{\psi N} \sim 4$ mb. Let me assume for the moment that the J/ψ hadron is formed instantaneously, so that it can interact with the hadronic cross section $\sigma_{\psi N}$ inside the target. I also take the nucleus to be undisturbed by the hA collision, so that its density is $\rho_A \approx \rho_0$. Following Ref. 12, I will start by investigating the phenomenological implications of these traditional approximations, and then consider how more realistic assumptions can modify the results.

In a high energy hA collision the probability of the J/ψ 's survival is

$$S = \exp\left\{-\int dz \,\rho_A\left(z,\vec{b}\right)\sigma_{\psi N}\right\},\tag{2}$$

where \vec{b} is the impact parameter, z is the longitudinal distance, and ρ_A is the nuclear density. The standard expressions for the cross sections of J/ψ and continuum production are then

$$\sigma_{\psi}^{pA} = \sigma_{\psi}^{NN} \int d^2 b dz \,\rho_A S \qquad \text{and} \qquad \sigma_{\text{cont}}^{pA} = \sigma_{\text{cont}}^{NN} A. \tag{3}$$

To draw quantitative conclusions from data one must numerically integrate σ_{ψ}^{pA} using Fermi density distributions. However, by taking the density $\rho_A \approx \rho_0 \equiv 3/4\pi r_0^3$ and the nuclear radius $R \approx r_0 A^{1/3}$, one can estimate $\sigma_{pA}/A \sim \exp\{-3\rho_0 R \sigma_{\psi N}/4\}$. The traditional power law $\sigma_{pA} \sim A^{\alpha}$ for $\alpha \sim 1-3\sigma_{\psi N}/4$ follows from the numerical coincidence $A^{1/3} \approx \log A$.

For AB collisions of a given impact parameter b, the differential cross section for J/ψ production is

$$\left(\frac{d\sigma}{d^2b}\right)_{\psi}^{AB} = \sigma_{\psi}^{NN} \int d^2s dz dz' \,\rho_A\left(s,z\right) \rho_B\left(b-s,z'\right) \,S_A S_B,\tag{4}$$

where $S_{A,B}$ are the survival probabilities (2) for the target A and projectile B. The continuum cross section is

$$\left(\frac{d\sigma}{d^2b}\right)_{\rm cont}^{AB} = \sigma_{\rm cont}^{NN} \int d^2s dz dz' \,\rho_A(s,z) \,\rho_B\left(b-s,z'\right). \tag{5}$$

The E_T^0 dependent cross sections in (1) are then

$$\left(\frac{d\sigma}{dE_T^0}\right)_{\psi,\,\text{cont}}^{AB} = \int d^2 b \, P\left(E_T^0, b\right) \left(\frac{d\sigma}{d^2 b}\right)_{\psi,\,\text{cont}}^{AB},\tag{6}$$

where $P(E_T^0, b)$ is the probability that an AB collision of impact parameter b produces transverse energy E_T^0 in NA38's acceptance from Refs. 8 and 9. To demonstrate that $P(E_T^0, b)$ describes the correlation between E_T and centrality correctly, we compare our calculations to the measured S-U continuum in Fig. 1.

Can nucleon absorption (3) and (4-6) describe the NA38 pA and AB data consistently for a choice of the parameters $\sigma_{\psi N}$ in S and the overall prefactor $\Re_{NN} \equiv B_{\mu\mu}\sigma_{\psi}^{NN}/\sigma_{\text{cont}}^{NN}$? The answer is no! To demonstrate this disagreement, I fix the parameters using pA data and then extrapolate to AB. Comparing the A dependence of (3) to NA3 data for pPt and pp, one finds that $\sigma_{\psi N} = 4.8$ mb, a value close to expectations. Comparison to the NA38 pCu and pU data then implies $\Re_{NN} = 2.4$. Alternatively, a fit to NA38 data ignoring the high statistics NA3 results implies $\sigma_{\psi N} = 7$ mb and $\Re_{NN} = 2.8$. In Fig. 2, I show these pA fits along with the corresponding extrapolations to S+U. Observe that there is a 10% systematic uncertainty in comparing pA and AB ratios due to pion contamination of the proton beam.⁴ Nucleon absorption does not describe the S+U data within

Figure 1: NA38 data for the continuum compared to (5,6) for $\sigma_{\text{cont}}^{NN} = 1.6$ mb. Note that both data and calculations are scaled by the experimental bin width $\Delta E_T^0 = 9$ GeV.

Figure 2: NA38 data for the ratio (1) compared to (3-6) for \Re_{NN} taken from a pA fit. These \Re_{NN} values agree with QCD estimates.

this uncertainty; O+U data are in similar disagreement. For completeness, one can also try to fix \Re_{NN} using the O+U and S+U data. The results in Fig. 3 show similar disagreement.

Figure 3: Same as above for \Re_{NN} taken from a *AB* fit. Here, the \Re_{NN} are at variance with QCD estimates.

Satz, Thews, Vogt and I argue¹² that the pA fit in Fig. 2 is the most physically relevant, *i.e.* that nucleon absorption underestimates the suppression in AB. Production cross sections $B_{\mu\mu}\sigma_{\psi}^{NN} = 4.9$ nb and $\sigma_{\rm cont}^{NN} = 1.8$ nb calculated following Refs. 19 and 17 respectively are in agreement with the $\Re_{NN} \sim 2.7$ extracted from pA data. Furthermore, Fig. 1 shows the measured continuum cross section in comparison with calculations using (2) and (3) for $\sigma_{\rm cont} = 1.8$ nb. The magnitude of the calculated cross section is in excellent agreement with data. Note that the highest measured E_T^0 bin in Fig. 2 corresponds to the top $\sim 5\%$ of the cross section in Fig. 1. Most collisions contributing to this bin have impact parameters b < 3, corresponding to a mean path length through the nucleus $3(R_S + R_U)/4 \sim 8$ fm. The authors of Ref. 10 describe S+U data using a simplified nucleon absorption model, but only by assuming an unphysical path length of ~ 12 fm.

Of course, the traditional estimates (3) and (4-6) are very naive. Projectile stopping modifies the spacetime evolution of the collision in the path integrations in (2-5). Formation effects in J/ψ production reduce the absorption cross section relative to the hadronic value $\sigma_{\psi N}$.

Stopping does not change the traditional estimates (3) and (4) if formation effects are neglected. The NN interactions that occur during a 200 GeV pU collision slow down the projectile, shifting its rapidity by $\Delta y \approx 2.5$ units. At the same time the $N_A \sim 5$ participant target nucleons are accelerated to about $\delta y \sim \Delta y/N_A$. A J/ψ of lab rapidity y_{ψ} therefore encounters target participants with density $\gamma \rho_0$ over a longitudinal distance R/γ , where $\gamma \equiv \cosh(y_{\psi} - \delta y)$. Nevertheless, the survival probability (2) is $S \equiv \exp\{-\int_0^{R/\gamma} \gamma \rho_0 \sigma_{\psi N} dz\} = e^{-\sigma_{\psi N} \rho_0 R}$, which is the traditional result.

More important is the effect of the J/ψ 's formation on nuclear absorption. When first produced in a hard interaction, the $c\bar{c}$ pair is small compared to the size of the J/ψ bound state, with a spatial extension of about $M_{\psi}^{-1} \simeq 0.06$ fm. The time needed for the pair to separate to its binding radius is roughly $\tau_{\psi} \sim 1.2$ fm (this estimate accounts for the fact that 40% of J/ψ come from $\chi_c \to J/\psi + \gamma$). Brodsky and Mueller²⁰ observed that the dissociation cross section for a color singlet $c\bar{c}$ pair is reduced relative to the hadronic cross section $\sigma_{\psi,N}$, because the smaller pre-hadronic pair is harder to hit. To illustrate the associated reduction of absorption, one supposes¹¹ that the cross section of the growing $c\bar{c}$ increases geometrically,

$$\sigma\left(\tau\right) = \sigma_{\psi N} \left(\tau/\tau_{\psi}\right)^{2},$$

for $\tau < \tau_{\psi}$; afterwards $\sigma(\tau) = \sigma_{\psi N}$.

The introduction of the J/ψ formation time reduces the amount of suppression relative to the traditional estimates (3) and (4), since $\sigma(\tau) \leq \sigma_{\psi N}$. Taking $\tau = z/\gamma\beta = z \sinh y_{\psi}$, I use (2) and (8) to find

$$S = \exp\{ - \sigma_{\psi N}
ho_0 R ~~ \left(R/d_\psi
ight)^2 / 3 \} \leq \exp\{ - \sigma_{\psi N}
ho_0 R \},$$

where the r.h.s. is the traditional result. The absorption is therefore reduced over the portion of the path $d_{\psi} \equiv \tau_{\psi} \sinh y_{\psi}$ covered while the $c\bar{c}$ is small. In the presence of stopping, the formation length $d_{\psi}(\delta y) \propto \sinh(y_{\psi} - \delta y)$ is reduced by the rapidity shift δy of the participants. One then finds

$$\sigma_{\psi N} \rho_0 R \ \{R/d_{\psi}\}^2/3 \le \sigma_{\psi N} \rho_0 R \ \{R/d_{\psi}(\delta y)\}^2/3 \le \sigma_{\psi N} \rho_0 R,$$

showing that the suppression is greatest in the conventional eikonal description and least in the case of a finite J/ψ formation time and no stopping.

There are two rather general consequences¹² of (10): First, in a typical pA experiment $R/\gamma\beta \gg \tau_{\psi}$, so that the nascent J/ψ is tiny as it crosses the nucleus. In the 800 GeV interactions studied by Fermilab's E772 a physical J/ψ at $\langle x_F \rangle \simeq 0.3$ appears 100 fm from the center of the target.⁷ Therefore, nucleon absorption has very little to do with the measured "suppression" in pA. Second, since J/ψ formation effects always reduce absorption, the traditional approximation to (2) provides an *upper bound* on the possible suppression. Even this upper bound cannot account for the AB data.

If nuclear absorption alone cannot account for the systematics of J/ψ suppression, what can? There are many possibilities. Various partonic and dense matter effects certainly must contribute to J/ψ nuclear effects at some level. Partonic effects such as initial state scattering,²¹⁻²³ EMC/shadowing effects^{13,14} and intrinsic charm⁹ are important in understanding a range of hard processes in nuclei. Initial state scattering modifies J/ψ and Drell Yan transverse momentum distributions, but does not effect integrated quantities such as (1) (except possibly at high x_F , see Ref. 23). This effect explains the p_T dependence of J/ψ production.¹⁶ EMC and the related shadowing effects are discussed by R. Gavai in these proceedings.

Recent work by Gupta and Satz show that shadowing may explain high x_F NA3 and E772 pA data, but cannot explain NA38 AB data.¹³ Intrinsic charm may also be relevant at high x_F .⁹ It is the current consensus of model builders that these parton effects also do not describe the AB data.

Dense matter effects such as comover scattering^{20,8,9} and possibly plasma screening³ are needed to describe the AB data. Comovers are produced particles that travel along with the J/ψ . Hadronic comovers – pions and resonances – can dissociate the J/ψ by reactions such as $\psi\pi \to D\overline{D}$. Earlier in the evolution of the AB system when the density is higher, partonic scattering processes like $g + (c\overline{c})_{bound} \to c + \overline{c} + g$ can also play a role.

Figure 4: NA38 data for the continuum compared to (4-6) with comovers included.

To illustrate the role of these comovers, one can multiply the integrand in (4) by an additional comover survival probability.¹² I write $S \approx \exp \{-\int d\tau v_{\rm rel}\sigma_{\rm co}n\}$, where $\tau = z/v_{\rm rel}$ is the time in the J/ψ 's rest frame and $v_{\rm rel} \sim 0.6$ is the average relative velocity between the J/ψ and the comovers. The cross section for dissociation by comovers is assumed to be $\sigma_{\rm co} \sim 2\sigma_{\psi N}/3$. Furthermore, the comover density varies as $n = n(\tau_0)\tau_0/\tau$ from the comover formation time, $\tau_0 = 2$ fm, until interactions effectively cease at $\tau_F \simeq R_A/v_{\rm rel}$. In Fig. 4 $n(\tau_0)$ is varied to fit the NA38 S+U data. A density $n(\tau_0) \sim 0.8$ fm⁻³ $\sim 5\rho_0$ gives reasonable agreement with both S+U and O+U data. These results agree with $n \sim 1$ fm⁻³, found in earlier J/ψ analyses.^{8,9} Densities of this magnitude are quite consistent with the assumption that comovers are hadrons.

I stress that the estimate of nucleon absorption in Fig. 4 is an upper bound, so the actual comover density may be higher. As an alternative extreme, one can assume following Gupta and Satz^{13} that all of the suppression measured in pA is due to shadowing rather than absorption. My estimate of AB including their

shadowing estimate together with comover scattering yields $n(\tau_0) \sim 1.6 \text{ fm}^{-3}$. Reality is likely between these extremes.

In summary, I have surveyed the evidence of high densities in nuclear collisions at the SPS from J/ψ suppression. The traditional explanation of J/ψ suppression – nucleon absorption – cannot consistently account for the available J/ψ data from pA and AB collisions. Additional suppression is necessary, and a likely source is interactions with hadronic comovers at densities of perhaps five to ten times nuclear matter density.

I am grateful to H. Satz, R. Thews and R. Vogt for their collaboration, and to P. Bordalo, M. Gyulassy, Y. Pang, A. Romana, T. Schlagel and W. Schaffer for helpful discussions.

References

- 1. K. Kajantie, Nucl. Phys. A498 (1989) 355c.
- 2. B. Müller, Nucl. Phys. A544 (1992) 95c, and refs. therein.
- T. Matsui and H. Satz, Phys. Lett. B178 (1986) 416; F. Karsch and H. Satz, Zeit. Phys. C51 (1991) 209.
- 4. C. Baglin et al. (NA38), B270 (1991) 105.
- 5. O. Drapier et al, Nucl. Phys. A544 (1992) 209c.
- 6. J. Badier et al. (NA3), Z. Phys. C20 (1983) 101.
- 7. D. M. Alde et al. (E772), Phys. Rev. Lett. 66 (1991) 133, 2285.
- 8. S. Gavin and R. Vogt, Nucl. Phys. B345 (1990) 104.
- 9. R. Vogt, S. J. Brodsky, and P. Hoyer, Nucl. Phys. B360 (1991) 97.
- 11. J.-P. Blaizot and J.-Y. Ollitrault, Phys. Lett. 217B (1989) 386.
- 12. S. Gavin, H. Satz, R. L. Thews and R. Vogt, BNL Preprint 48606 (1993).
- 13. S. Gupta and H. Satz, Zeit. Phys. C55 (1992) 391.
- 14. R. V. Gavai and S. Gupta, Phys. Lett. 227B (1989) 161.
- 15. J.-P. Blaizot, Nucl. Phys. A498 (1989) 273c.
- S. Gavin, in Proc. 4th Conf. on the Intersections Between Particle and Nuclear Physics, Tucson, May 24-29, W.T.H. Van Oers, ed., AIP Conf. Proc. 243 (1991) 879.
- H. G. Fischer and W. M. Geist, Zeit. Phys. C19 159; S.N. Ganguli, A. Gurtu, and R. Raghavan, Phys. Rev. D32 (1985) 1104.
- 18. K. J. Anderson et al., Phys. Rev. Lett. 42 (1979) 944.
- 19. V. Barger, W. Y. Keung and R. J. N. Phillips, Zeit. Phys. C6, (1980) 169.
- 20. S. J. Brodsky and A. H. Mueller, Phys. Lett. B206 (1988) 685.

21. G. T. Bodwin et al., Phys. Rev. Lett. 47 (1981) 1799.

•

5

S. Gavin and M. Gyulassy, Phys. Lett. 214B (1988) 241; J. Hüfner, Y. Kurihara, and H. J. Pirner, Phys. Lett. 215B (1988) 218; J.-P. Blaizot and J.-Y. Ollitrault, Phys. Lett. 217B (1989) 392.

.

23. S. Gavin and J. Milana, Phys. Rev. Lett. 68 (1992) 1834.