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ABSTRACT
A new muliiavjal strength theory incorporating three

independent stress parameters was developed and reported by
the author in 1984. It was formally incorporated into ASME
Code Case N47-29 in 1990. The new theory provided
significantly more accurate stress-rupture life predictions than
obtained using the classical theories of von Mises, Tresca, and
Rankine (maximum principal stress), for Types 304 and 316
stainless steel tested at 593 and 600*C respectively under
different biaxial stress states. Additional results for Inconel 600
specimens tested at 816*C under tension-tension and tension-
compression stress states are presented in this paper and show
a factor of approximately 2.4 reduction in the scatter of
predicted versus observed lives as compared to the classical
theories of von Mises and Tresca and a factor of about S as
compared to the Rankine theory. A key feature of the theory,
which incorporates the maximum deviatoric stress, the first
invariant of the stress tensor, and the second invariant of the
deviatoric stress tensor, is its ability to distinguish between life
under tensile versus compressrvc stress states.

INTRODUCTION
A new muttiaxial strength theory was developed by the author

and initially reported in 1984 [1] with an additional assessment
reported in 1992 [2]. The theory incorporates four stress
parameters which can be formulated from the three
independent stress parameters: maximum deviatoric stress (S,),
the first stress invariant (//), and the second deviatoric stress
invariant (/,"). The theory distinguishes between tensile (/,>0)

and comprcssive (^,<0) stress states which is not possible using
the classical strength theories of Tresca (maximum shear stress)
and von Miscs (octahedral shear stress) (3J. The new theory
was previously shown by the author to provide significantly
improved creep-rupture life predictions in tests of Type 304 [1]
and 316 (2] stainless steel conducted under constant-load
conditions at 593 and 600'C respectively. During 1990 the
theory was incorporated into ASME Code Case N47 [4] for use
in computing creep-rupture damage and life in elevated
temperature components. In the current paper the accuracies
of both the new and classical theories are assessed for predicting
creep-rupture life in biaxial tests of annealed Inconel 600
conducted under constant-load conditions at 816'C in argon.

Prior investigations of multiaxial creep-rupture behavior
include the works of Chubb and Bolton [5], Kennedy, Harms,
and Douglas [6], Sdobyrcv as referenced by Rabomov [7], Davis
[8], Johnson, Henderson, and Khan (9], Rowe, Stewart, and
Burgess [10], Abo El Ala and Finnie [11J, Hayhurst [12J,
Anderson, Atkins, and Shavety [13], Hayhurst, Leckie, and
Morrison (14], and others. Manjoine [15] has similarly
investigated the stress-state problem and has provided a
summary with discussions of selected strength theories which
have been proposed over the years. Rowe, et al. and Anderson,
et al. investigated creep rupture in tubes of Types 304 and 316
stainless steel under biaxial tension-tension stress states. The
classical theories of von Mises, Tresca, and Rankine differ by
less than ~ 15 percent for these stress states. Chubb, et al. and
Kennedy, et al. investigated creep rupture in tubes of Type 316
stainless steel and Inconel respectively, under both biaxial
tension-tension and compression-tension stress states thus
covering an area of stress space where greater differences exist
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between the Rankine theory as compared to the Tresca and von
Mises theories, Choice of a best strength theory in these and
most of the previously referenced investigations tended to be
both material and temperature dependent with all three of the
previously noted classical theories selected as being the best
candidate for at least one test material and one test
temperature. The classical theories all provide a relatively poor
fit to the data for compression-tension stress states.

Several key investigations which have provided a base of
mechanistic support for the current work are those of Cane
116], Speight and Bcere [17], Deere and Speight (18], Hellan
[19], and Dyson [20]. In particular Cane's publication was very
useful. Cane, in referencing the other cited authors' work,
summarizes the stages of fracture by the classical grain
boundary cavuation process as being the production of cavity
nuclei (Stage I), the deformation of stable cavities and their
growth to produce discrete cracks (Stage II), and linkage of
discrete cracks to produce final fracture (Stage III). In terms of
continuum mechanics variables, Cane relates the stress state
dependence of these processes to the von Miscs equivalent
stress, "a, the hydrostatic stress, J,C>, the maximum principal
stress, <7,, and the maximum deviatoric stress, S,. In
development of the author's strength theory, these same stress
parameters, when appropriately formulated, have resulted in
significantly improved life predictions relative to the three
previously noted classical theories.

The balance of this paper summarizes the improved strength
theory, the experimental Inconel 600 creep-rupture data on
which the current theory assessments are based, assessment
results, and some brief conclusions.

STRENGTH THEORY
For a multiaxial stress state with ordered principal stresses

o ( > OJ>OJ, the new strength theory defines the uniaxially
equivalent stress as

-fir,

v,- i (4)

and

(5)

( I )

where

(2)

and
]j — 1st invariant of the stress tensor,
J2 = 2nd invariant of the stress tensor,
}{ = 2nd invariant of the deviatoric stress tensor,
S, = maximum dcviaioric stress,
iT = von Mises equivalent stress,
a^, = normal stress on octahedral plane, and
T«i = shear stress on octahedral plane.

For a = 1.0, the new theory reduces to the form
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(6)

which removes any dependence of o, on maximum deviatorie
stress, Sjt while maintaining dependence on the hydrostatic
stress component, Jl (or octahedral normal stress), and the
octahedral shear stress, J2" (or a). Parameters <T,J,, and S, are
all stress invariants (i.e., can be expressed in terms of the
principal invariants of the stress tensor).

The invariant stress parameters in the new theory (Jt, S,, and
o) are graphically illustrated in Fig. 1. Parameters a and 6 are
constants which can vary slightly from material to material. For
best life predictions, the constants can be determined by a least -
squares fit of the theory to multiaxial stress-rupture data for a
range of stress states. A minimum of two test points arc
required to fit the constants a and b in Eq. 1, with the
recommended tests being one torsion and one equal biaxial
tension test, or a minimum of one test is required to Hi the
constant b in Eq. 6 with the recommended test being n pure
torsion test. Stress parameters incorporated in the new theory
have been shown by Cane and others to correlate with the
mechanistic creep-rupiure processes of cavity formation, growth,
linkage, and failure [1, 16-20].

Five materials (two fcrritic steels and three nickel-base alloys)
have been studied to date and have been found to have
somewhat universal values of a and b for creep-rupture life
predictions. Results for Types 304 and 316 stainless steel,
Inconel 600, modified 9 Cr-1 Mo steel, and 2 1/4 Cr-1 Mo steel
have indicated that parameter a tends to have a value in the
range of 0.8S-1.10 with 1.0 being a good universal value to use
in the absence of data to define a "best fit" value. A value of
a = 1.0 also assures one that the shape of the "prismatic" 3-D
isochronous failure s'irface in a,, c2, o, space will be circular
in planes of constant f, similar to contours for the von Mises
strength theory. Par <r.cier b tends to have a value in the 0.15-
0 3 0 range for the previously noted materials. The value of b
•^ermines the appropriate magnitude of the hydrostatic-stress
effect in the strength theory, thus determines differences in
equivalent stress and life under tensile ( / ;>0) versus
compressive (/, <0) stress states. The author has found that life
predictions made using the new strength theory arc significantly
better than predictions made using the previously noted classical
theories both when the optimum constants a and b are used
and also when the universal values of a=1.00 and 6=0 24 are
used.

In general, time to creep-rupture, 1,, is approximately linear
in log (time) versus log (stress) space and was, therefore,
represented for the purposes of this paper by the equation

, )

where at denotes the "uniaxially equivalent" stress. Consistent

FIG. 1 GEOMETRIC REPRESENTATION OF NEW
STRENGTH MODEL STRESS PARAMETERS

with the usual design approach, constants Ao and A, are
defined by a least-squares fit of Eq. 7 to baseline uniaxial creep-
rupture data. It is then assumed that a complex multiaxial
stress state can be reduced mathematically, through the
"strength theory" (Eq. 1 or Eq. 6) to a uniaxially equivalent
value c, such that the uniaxial correlation (Eq. 7) in
conjunction with the equivalent stress from Eq. 1 (or Eq. 6) can
be used to predict the failure time for a component under a
complex multiaxial stress state. For the assessments presented
in this paper, it is assumed that the time required to initiate a
crack is approximately equal to the rupture time for the biaxial
tubular test specimens.

MATERIAL AND SPECIMEN
Assessments of the strength theories reported in this paper are

based on test results for annealed Inconel 600 as reported by
Kennedy, Harms, end Douglas [6]. The nominal composition
of the Inconel 600 material utilized in their tests was 80 Ni-15
Cr-5 Fe. Their tubular specimens were nominally 21.4-mm
inside diameter, 1.52-mrn wat! thickness, and 63.5-mm gage
length.

EXPERIMENTAL DATA
Tests reported by Kennedy et a), were conducted in argon at

816*C under constant-load conditions. Uniaxial tests were
conducted using the same tubular specimen design as used for
their biaxial tests. Four tests were conducted under a pure axial
load tc produce uniaxial tension in ihe tube. Three tests were
conducted under a combination of axial compression and
internal pressure which produced a 'pure" hoop stress with zeio
axial stress. These seven tests provided the data for
development of a baseline "uniaxiar stress rupture correlation
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(i.e. the small radial stress in the "pure" hoop stress icsis was
ignored). The biaxial tests of Kennedy et al. were performed
under combinations of axial laid (tension and compression) and
internal pressure. ITicir stress rupture results, from some 15
tests, are summarized in Table 1. Since ihe seven "unianal"
tests were conducted using a tubular specimen rather than a
conventional umaxiat solid bar specimen, these seven data points
were included in the biaxial data set used for strength theory
assess mems.

To use the individual biaxial lest data in Table 1 to objectively
assess stress state effects, the effects of material and testing
variability should be minimized. As was done in the author's
pnor publications (1,2), un "averaged biaxial data set" was
created from the data in Table 1. This was accomplished by
linearly averaging, in log (stress) versus log (rupture time) space,
each subset of the biaxial lest data having the same stress state
(i.e., the same hiaxia! stress ratio, R-oJo,). This reduced the
45 data in Table 1 IO the 20 data points summarized in Table
2 with only one representative point for each independent stress
state.

A IcaM-sqiwcs fit of the linear stress-rupture equation (Uq.
7) to the seven umuxial dam in Table 1 resulted in the baseline
uni&via! strcss-rupiurc correlation given by.

TAHLli 1 SUMMARY OP BIAXIAL STRI-SS-RUPTURE
DATA FOR ANNEALED INCONKL 600 TESTED AT
816'C

k>g(r,J=9.183O-4.3O34 log(o) (8)

Since ihe "pure" hoop stress rupture data tended to form a
stress rupture line falling below (i.e., shorter l>vcs) the axial
tension data, a lot-centered fitting technique was used to
determine the slope of the uniaxiai line in Eq. 8. Using ihis
technique, the average value of log(f,) and log(o) for each
subset (i.e. each lot of data) was subtracted from the individual
data values for the lot. A leasi-squares fit of the resulting
combined data sets determined the "lot-centered slope"
representing all ihe fitted data. The intercept constant, 9.1830,
was then determined by forcing the stress rupture line with the
lot-centered slope to pass through the cemroid of the total
uniaual data set (i.e., through the average log(O and average
tog(ff) point for the total uniaxiai data set). The resulting data
correlation is given in Eq. 8 and is plotted in Fig. 2,

RESULTS
As in the author's two prior publications [1,2], results of the

assessment of the new versus the classical strength theories are
summarized in four comparative forms: (1) standard 2-D biaxial
isochronous stress- rupture contours; (2) polar plots of deviations
in the ratio of predicted-to-observed life as a function of stress
state showing which stress states result in the best and worst life
predictions; (3) the usual logarithmic stress versus rupture time
correlations; and (4) a statistical assessment of the new and
classical theories partitioning the total error between predicted
and observed life into a strength theory error, which
is dependent on s'.rcss state, and a random error, which is
attributed to material and testing variability,

T«>t

No.

1
2
3
4
5

e
7
8
0

10
11
12
19
14
15
18
17
1S
16
20
21
22
29
24
25
29
27
28
20
30
31
32
33
34
35
30
37
30
39
40
41
42
43
44
45

0.00
0.00
0.00
0.00
0.17
0.23
050
0.50
0.50
0.50
0.50
0.87
0.75
1.00
1.00
1 00
1.00
I.2O
.33
.£0
.60

1.71
1.85/
2.00
2.00
2.00
2.00
4.00
4.00
4.00
4.00
4.00

00

QD

-0.25
•1.00
-1.00
-1.00
•2.00
•2.00
-2.00
-2.00
-4.00
-•.00

a
I

<MP«)

41.370
41.370
27.530
20.685
41.370
27.500
41.3/0
34.47S
27.560
27.580
20.085
41.370
27.580
41.370
87.580
20 083
20.085
34.475
20.085
27.580
17.230
24.133
22.400
20.085
20.085
13.760
10.343
10.343
10.343
0.805
6.805
5.171
0.000
0.000
0.000

•55.100
-41.370
-27.580
•20.085
-20.065
-20.085
-13.700
-10.343
-0.805
-8.095

* Source: Kanntdy. Herm*,

" A T -

AC

P-

> axial tension

m ajdaj compression

internal pressure

a
e

(MPt)

0.000
0.000
0.000
0000
0.805
0.805

20.685
17.238
13.700
13.700
103*3
*'.5OO
20.665
41.870
27.580
20.085
20.085
41.370
27 W0
41.370
27.580
41.370
41.370
41.370
41.370
27.580
20.085
41.370
41.370
27.580
27.560
20.085
41.370
27.580
20.085
13.700
41.370
27.580
20.085
41.370
41.370
27.560
20.085
27.580
27.500

o,

(MP«)

0.000
0.000
0.000
0.000
•0.400
-0.400
-1.478
•1.227
•0.070
•0.070
•0.738
•1.065
•1.478
•2.044
• 1.005
•1.470
•1.470
•2.044
-1.085
•2.044
•1.005
•2.044
-2.044
•2.044
-2.044
-1.005
-1.470
-2.044
•2.044
-1.005
-1.005
-1.470
-2.044
-1.005
•1.470
-0.070
•2.044
•1.005
-1.470
•2.044
-2.044
-1.005
-1.470
•1.O05
•1.005

and Douglass. R»i. 6

t Specimen

(h)

100.0
330.2

2140.0
4460.6
240.0

1040.0
231.0
635.0
082.0

1040.0
3000.0
317.0
717.0
01.2

040.0
2765.8
3124.0

134.0
001.3
120.0
880.0
125.3
100.2
70.0
85.0

020.0
1072.0
100.0
100.7
308.0
487.0

1611.0
08.0

540.0
1000.0
108.0
47.0

235.0
1200.0

00.2
154.0
308.0

1221.0
470.3
008.4

Loading
Mod*"

AT
AT
AT
AT

AT&P
AT&P
AT&P
AT&P
AT I P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AC&P
AC&P
AC&P
AC&P
AC&P
AC&P
AC&P
AC&P
AC&P
AC&P
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TABLE 2 AVERAGED BIAXIAL STRESS-RUPTURE DATA
FOR ANNEALED INCONEL 600 TESTED AT 816°C

Date

Subttt

No.

1

2

a
4

5

a
7

a
9
10
i t
12

13

14

15
10

17

18

19
20

0.00
0.17
0.25
0.50
0.07
0.75
1.00
1,20
1.33
1.50
1.00
1,71
185

2,00
4.00

m

-0.25
•1.00
•2.00

-4.00

°x

(MPa)

3)434

41.370
27.580

29.529
41,370

27.580
26.432

34.475

£0.685

27.580
17.238
24.193

22.409

15.710
7.655
0.000

•2b.?34

-15.7v'
•6.695

°a

(MPa)

0.000

6.885
6.885

14.764
27.580

20.085

26.432
41.370
27.580

41.370
27.580
41.370

41.370

31.431

30.620
28.083

13.790
28.084
,>',434

Zi 590

°,
(MPa)

0.000

•0.490
•0.490

•1.048
-1.805

•1.470
•1.885
•2.844

•1.965

-2.944
•1.965
-2.844

•2.844

•2.242

•2.184
•2.040
•0.979

•2.040

•2.240
•1.865

Spsclmtin

Loading

(h) Mod. ••

855.7
249.0

1840.0
983.7
317.0
717.0
647.2
134.0
001.3
128.0
060.0
125.3
100.2
289.9
403.0
449.4
168.9
243.5
251.0
560.0

AT
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
AT&P
ATf P
AT&P
AC&P
AC&P
AC&P
AC&P

* Source: tonrwdy, Harm*. «nd Douijla*. R*>. 0
** AT - axial tension

AC • axial compraMion
P - Internal praasur*

A nonlinear least-squares fit (based on Eq. 7) of the new
theory (Eq. 1) to the averaged Inconel data set in Table 2
resulted in "optimum" values <a=0.9984 and 6=0.2481. These
constants were used for assessments 1-4 noted above. For
assessment 4 two other sets of constants were also evaluated
The second set of constanis consisted of ihe assigned value of
a= 1.00 and the value of 6=0.2480 obtained from a nonlinear
least-squares fit of Eq. 7 to the averaged biaxial data set in
Table 2. The third set consisted of the assigned values of
a = 1.00 and 6=0.24, which the author has used as universal
constants in the two prior papers (1,2), since they were not
fitted to the material data sets. The accuracy of the new theory
is not highly sensitive to small changes in these values.
Constants of a= 1.0859 and 6=0.2893 were previously
determined for annealed Type 304 stainless sieel [1] and values
of a =0.8631 and b =0.2058 previously determined for annealed
Type 316 stainless steel [21. The universal values of a = 1.0 and
6=0.24, although not optimum values, still result in significantly
better life predictions for Types 304 and 316 stainless steel and
Inconel 600 than the classical theories; However, life predictions
were not quite as accurate as obtained using the alloy-specific

1 8

I 1.6

in

12

10

-1 ' (NCONELBOO1 1

UNI AM AL DATA, 616*0
• TUBE, AXIAL TENSION
• TUBE, HOOP TENSION

LEAST SQUARES FIT UNE
PLUS/MINUS 2 3TD ERROR!

LOQ(T.) -B.1S30-4.3034LOQto)
STD ERROR - 0.4242

1.8 2.2 2.6 3.4 3.8

LOG IRUPTURE TIME (Nl

FIG, 2 BASELINE UNIAXIAL STRESS VERSUS RUPTURE
TIME DATA

values. Since the values of constants a and 6 for Inconcl were
almosi identical for the three cases where (1) optimum values
of both a and b were obtained from a least-squares fit, (2) the
value of a s 1.00 was assigned and b obtained from a least-
squares fit, and (3) universal values of a=1.00 and 6=0.24 were
assigned (no fit), only the optimum values of a=0.9984 and
6=0.2481 were used for the assessments summarized in this
paper.

Isochronous Stress-Rupture Contour
Biaxial isochronous stress-rupture contours for both the new

and the classical strength theories are shown in Fig. 3. Each
averaged data point from Table 2 was shifted along a stress
rupture line of slope At=-4.3034 (i.e., slope of the uniaxial
stress rupture line, from Eq. 8) to a common rupture time, and
the resulting isochronous biaxial stress point plotted in Fig. 3.
One can see that the new theory fits the Inconel data
significantly better than the classical theories in the second and
fourth quadrants for the tension-compression stress states. This
was also true for the 304 and 316 stainless steel results reported
previously. In the first quadrant, neither the classical strength
theories or the new theory represent the data very accurately.
The data irend in the first quadrant for biaxial stress ratios in
the range 2sojoti<*> does not follow the usual data trend
[1,2]. It is possible that instability may have influenced the data,
however no attempt was made by the author to investigate the
instability problem. Internal pressure also results in lube
diameter growth during a test which continuously alters the
biaxial stress ratio during the test. This was not taken into
account in the correlations developed in this paper. The data
trend in quadrant 1 of Fig. 3, if real, would indicate significant
anisotropy in Inconcl 600 since the contour is not symmetrical
about a 45° line. Trie agreement demonstrated by Types 304
and 316 stainless steel in quadrants 1, 2, and 4, as reported in

R. L. Huddlcslon



FIG. 3 BIAXIAL ISOCHRONOUS STRESS-RUPTURE
CONTOUR FOR INCONEL 600

the author's two previous publications |1.2J, was significantly
belter than is demoastratcd in Fig. 3 for ihe Inconel data.

The 3-D isochronous rupture surface for Inconel COO has a
geometric "bottle shape" similar to that reported previously for
Type 304 stainless steel and reproduced in Fig. 4 (1). iTie
bottle shape indicates larger stresses under comprcssive stress
stales than under tensile stress states for the same rupture time.

Peter Plots
Polar plots provide an excellent means for displaying

deviations between predicted and observed life as a function of
the biaxial stress state. Plots of this type, based upon the
averaged data set in Table 2, are given in Figs. 5-8 for the new
and classical sircngth theories. The ratio of predicted-to-
observed rupiure time is plotted radially in logarithmic scale
with the plot axes and angle mapping the principal stress axes
in ihe tubular specimen wall. For each biaxial lest, Ihe tangent
of angle, 8 , in the polar plot is equal to the biaxial stress ratio
in ihe specific test. For a perfect strength theory the data
would fall on a circle of radius 10" (i.e., predicted life equals
observed life). A circle (labeled as SM-20), denoting a safely
margin of 20 on life (approximate safety margin in Appendix T
of ASME Code Case N-47 (3j), is placed on each plot for
reference. Similarly, a circle (labeled OCM-5) is shown on each
plot and denotes an arbitrarily selected margin of 5 on life as a
reference for overly conservative design.

A comparison of ihe four polar plots shows that the new
theory' (Fig. 5) did an excellent overall job of modeling strcss-
staie effects in Inconel 600 both in terms of a lack of excessive
conservatism and minimum erosion of a safety margin of 20 on
life (i.e., the points all fall close to the 10° circle). In
comparison, both the Tresca and the von Miscs theories (Pigs.
6 and 7 respectively) gave highly conservative life predictions for
biaxial tension-compression (T-C) stress states (i.e., in second
quadrant) and wcrj also slightly less accurate ihan the new
theory for tension-tension (T-T) stress stales (i.e., in first

304 SS
B93°C

• UNI AXIAL TENSILE VALUE

FIG. 4 THREE-DIMENSIONAL ISOCHRONOUS STRESS-
RUPTURE SURFACE FOR TYPE 304 STAINLESS STEEL

quadrant). The Rankine theory provided significant life
overpredictions under some T-C stress stales while providing a
significant life under prediction for at least one T-C stress state.
The trends demonstrated in the first quadrant (for T-T stress
stales) were somewhat similar for all the strength theories with
the new theory being slightly better at reducing the data scatter.
Overall, these general trends which were observed in Inconel
are very similar to the trends previously observed and reported
by the author for Type 304 and 316 stainless steel.

Stress-Rupture Plots
Stress versus rupture time correlations for the new and the

three classical strength theories are given in Figs. 9-12. These
plots compare predicted specimen lives to observed lives for all
the biaxial data summarized in Table 1. Since these correlations
are based on individual test results rather than on the averaged
data set (Table 2), they encompass the total scatter due to
inaccuracy of the strengih theory in precisely predicting stress-
slate effects as well as the scatter introduced by material and
testing variability. The baseline uniaxial stress-rupture
correlaiion (Eq. 8) is shown on each plot as a solid line and
represents the predicted life line. The individual data are
plotted in each figure. Each plot contains one dashed and two
doited lines. The dashed line is a least-squares fit of the biaxial
data in Table 1, based on ihe specific strength theory noted in

R. L. HuddfcsioQ
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90*
Prlix-'MlSirsa*
Axe* (unoraorad)

180*

>1NCONEL 600
socrc
Mod* Conelami.

ISO*
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A X M (moraerad)

270* b-0 2481

INCONEL800
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FIG. 5 CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED LIFE WITH STRESS STATE BASED ON THE
NEW THEORY

FIG, 7 CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED LIFE WITH STRESS STATE BASED ON THE
VON MISES THEORY

180* 180*

270*

INCONEL 600
were

FIG. 6 CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED UFE WITH STRESS STATE BASED ON THE
TRESCA THEORY

FIG. 8 CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED UFE WITH STRESS STATE BASED ON THE
RANKINE THEORY
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the plot, assuming the biaxial line has the same slope Al as the
unmxial (solid) baseline. The two dotted lines represent *2
statistical standard errors (denoted as =2 Sy) relative lo the
dashed (biaxial) line. The dashed and doited lines thus
represent, respectively, the observed mean biaxial behavior and
the scatter bounds withm which about 95% of the biaxial data
should fall. The scatter bounds, although symmetric relative to
the biaxial (dashed) line are asymmetric relative to the predicted
(uniaxial, solid) line. Each of the scatter bounds can thus be
represented as a factor on life relative to the predicted life line
(i.e., a factor above or below the predicted life). These factors
arc noted on each plot to facilitate a comparison of the strength

theories. The total "range of scatter" is obtained by dividing the
upper bound life by the lower bound life (i.e., by multiplying the
two factors on the dotted lines given in each plot).

For these analyses the Sy for each strength theory was
computed ui.^ 5 the siandard staiisiical equation

(9)
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where x - L O G ( < j , )

.v
SSQDev=£ (D<rv)(

l (10)

(H)

and degrees of freedom, v, is given by

(12)

A/ is the total number of data, and k is the number of material
parameters (constants) obtained from the least-squares fit.
Since the slope of the biaxial line is assumed to be the same as
I he uniaxial line, only the biaxial line intercept constant was
fitted along with the constants in the strength theory. For the
classical theories no constants were flttcd, thus only the biaxial
line intercept constant was fitted to the data, giving v = AM.
For the ne v theory, if both parameters a and b were fitted
along wiih the biaxial line intercept, then v = JV-3, whereas if
parameter a was fixed as 1.0 and only b fitted, then v = A/-2.

From the stress versus rupture time correlations given in Figs.
9-12, it is apparent that the new strength theory is more
accurate than the three classical theories in predicting life and,
therefore, in reducing data scatter. The data scatter range for
the new theory is 6.26 as compared to ranges for the classical
theories of 14.85 (Tresca), 15.20 (von Mises), and 30.83
(Rankine). For these data, the new theory, thus, reduced the
scatter by a factor of about 2,4 on life relative to the von Mises
and Tresca theories, which are the two most widely used
strength theories used in high-temperature structural design
codes.

Partitioning of Error
It is of interest to partition the total error between predicted

and observed life into two components, one due to error in the
strength theory and the second due to random scatter which is
attributed to material and testing variability. A statistical mode!
[linear in log (stress) vs log (rupture time) space] was used for
this purpose. The model will be briefly described after which
th - results will be presented.

The total biaxial data set (Table 1) consisting of A'data points
is partitioned into m subsets with the data in each subset having
the same stress state. Each subset,/, has «• data points. The
centroid (average log) of the n;- data ' ibset / is denoted as
(Jf;,?;). It is assumed that the biaxial data in each subset falls
along a unique stress-rupture line having the same slope, A,, as
the uniaxial data correlation, Eq. 8. Given these assumptions,
which can be shown to be valid for the present

Y.| + 2 3 »

y - L O G ( t , l

FIG. 13 STATISTICAL MODEL PARAMETERS

data, the model can be expressed by the following equation and
is depicted graphically in Fig. 13:

(13)

The first two terms (Ao+A, xfi in Eq. 13 are ibe uniaxially
predicted part of y .̂ Parameter a, represents the error due to
inaccuracy of the strength theory for subset /'. The last term
represents the random error which is ascribed to material and
testing variability. The standard error, Sr determined from the
random error values, «f, was calculated in the usual manner
according to the equation

' \

(14)

where N-k denotes the number of degrees of freedom. To be
statistically correct, two or more data points are needed at each
stress state in order to estimate the average behavior and
partition the total error into theory and random components.
There are only nine data subsets of this type in Table 1. These
nine subsets were used in calculating Sy This provided A/=34
points. The value of k was determined by the total number of
constants fitted in Eq. 13. The ccntroid (Xj .5}) of each of the
nine data subsets was fitted. There were no fitted constants in
the classical strength theories, however, two constants (a and 6)
were previously fitted for the new strength model. Since these
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TABLE 3 SUMMARY OF STATISTICAL RESULTS
PARTITIONING RUPTURE-TIMt ERROR AT EACH STRESS
STATE INTO STRENGTH THEORY AND RANDOM SCATTER
(MATERIAL AND TESTING) ERROR COMPONENTS
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-2 00
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«3TATIST1CAL ANALYSIS RESULTS FOR

STRENGTH THEORY SHOWN •

NEW
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2.19
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289
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0.42

0.48
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034
0 28

0.33

0.32
0.51
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0.43

VON MISE3

a
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0.61

099
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0.53
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029
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021
0.29
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299
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TRESCA

a
10

159
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1.57

2.30
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1.00
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0.74
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1.54
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RANKINE

a
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1,91

1,35
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0.74

0.73

0.80
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0.78

0.89

0.75

0.83

053
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0.56
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0.48

0.59

10

2.90

2.78

3.58

2.51

3.51
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0.39

.0.43

0.34
0.41
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040
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032

Number* > 1.0 Indicate Iff* underpredlctJon {coniervative)
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S,v *tatiatlcal»tandard*rror computed from the random •rrere,

for * * total biaxial data let In Table 1

- 0.1349 ( 1 0 M y -1 .88 )

10°a
 . I avreg« obearved biaxial IWe at the dailnrwted ittee* ttate

predicted IK* bated on the unlaxlal correlation, Eq. 8, and
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ttate + 2 «tand*rd errora

predicted Irte bated on the unlaxlal correlation, Eq. 8. and
equivalent etrete, at, tor Ihe detlgnated ttrength theory

two constants are associated with stress state (i.e., with afi and
not with material and testing variability (i.e. not with <y) they
were not included in Eq. 14. The value of k used was,
therefore, 9 for all the strength theories. For those stress states
in Table 1 having only one data point, this point was taken as
the centroid (AJ, Yt) for thai stress state (i.e., stress state effect).
No attennpt was made to statistically quantify the uncertainty
associated with the a, values since these values do not satisfy
the conditions for a Gaussian distribution.

Results of the statistical analysis are summarized in Table 3.
AJihough the error components were determined in linear log

(stress) vs log (rupture time) space, the antilogs of the resulting
o; and Sr values are summarized in Table 3 and represent
factors on life. Analysis results indicate that the random error
(i.e., t2S, which was attributed to material and testing
vanablilty) introduced a factor of ~ 1.86 (as a multiplier or as
a divider) on life. Factors on life due to strength-theory error
(antilog of a,) are stress-state dependent as was obvious from
Figs. 5-8. The furiher ihe factors summarized in Table 3
deviate from 1.0, the greater the strength-theory error. For
stress states in the tension-compression quadrant tl.cse factors
were significantly greater than the factors associated with
material and testing variability. Considering the results in Table
3 as a whole (i.e., divide the most conservative factor by the
most nonconservative factor for each theory), then the new
strength theory provided the least range of error (13.1) followed
by the Rankine (40.3), Tresca (44.3), and von Mises (53.9)
theories in that order.

CONCLUSIONS
The new muliiaxial stress-rupture strength theory resulted in

significantly improved life predictions for specimens of annealed
Inconcl 600 tested at 816'C in argon under different biaxial
stress states. The improvement for Inconcl was not as great
and as dramatic as reported earlier for Types 304 and 316
stainless steel, however the improvement was still quite
significant. The scatter in stress vs rupture time data was
reduced by a factor of about 2.4 (on (ife) relative to scatter for
the theories of Mises and Tresca and by a factor of about 5
relative to the Rankine theory. As was found in the earlier
papers on 304 and 316 stainless steel, theory errors, ait for the
new theory tended to be about the same magnitude for the
various biaxial stress states evaluated whereas errors for the
classical theories tended to be significantly larger in the T-C
quadrant of stress space than in the T-T quadrant.
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