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ABSTRACT

A new multiaxial strength theory incorporating three
independent stress parameters was developed and reported by
the author in 1984. It was formally incorporated into ASME
Code Case N47.29 in 1990. The new theory provided
significantly more accurate stress-rupture life predictions than
obtained using the classical theories of von Mises, Tresca, and
Rankine (maximum principal stress), for Types 304 and 316
stainless steel tested at 593 and 600°C respectively under
different biaxial stress states. Additional resuits for Inconel 600
specimens tested at 816*C under tension-tcnsion and tension-
COmMPression stress states are presented in this paper and show
a factor of appraximately 2.4 reduction in the scatter of
predicted versus observed lives as compared to the classical
theories of von Mises and Tresca and a factor of about 5 as
compared to the Rankine theory. A key feature of the theory,
which incorporates the maximum deviatoric stress, the first
invariant of the stress tensor, and the second invariant of the
deviatoric stress tensor, is its ability to distinguish between life
under tensile versus compressive stress states.

INTRCDUCTION

A new multiaxial strength theory was developed by the author
and initially reported in 1984 {1] with an additional assessment
reported in 1992 (2]. The theory incorporates four stress
parameters which can be formulated from the three
independent stress parameters: maximum deviatoric stress (),
the first stress invariant (J;), and the sccond dewviatoric stress
invariant (; 7). The theory distinguishes between tensile (J,>0)
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and compressive (J, <0) stress states which is not possible using
the classical strength theorics of Tresca (maximum shear siress)
and von Mises (ovtahedral shear stress) (3]. The new theory
was previously shown by the author to provide significantly
improved creep-rupture life predictions in tests of Type 304 (1}
and 316 [2] stainless steel conducted under constant-load
conditions at 593 and 600°C respectively. During 1990 the
theory was incorporated into ASME Code Case N47 [4] for use
in computing creep-rupture damage and life in elevated
temperature components. In the current paper the accuracies
of both the new and classical theories are assessed for predicting
creep-rupture life in biaxial tests of annealed Inconel 600
conducted under constant-load conditions at 816°C in argon.

Prior investigations of multiaxial creep-ruptute behavior
include the works of Chubb and Bolton |5}, Kennedy, Harms,
and Douglas (6], Sdobyrev as referenced by Rabotnov [7), Davis
{8, Johnson, Henderson, and Khan (9], Rowe, Stewart, and
Buigess [10], Abo Ef Ata and Finnie {11), Hayburst {12},
Anderson, Atkins, and Shavely [13}, Hayhurst, Leckie, and
Morrison [14), and others. Manjoine (15] has similarly
investigated the stress-state problem and has provided a
summary with discussions of selected strength theories which
have been proposed over the years. Rowe, et al. and Anderson,
et al. investigated creep rupture in tubes of Types 304 and 316
stainless steel under biaxal tension-tension stress states. The
classical theories of von Mises, Tresca, and Rankine differ by
lcss than ~ 15 percent for these stress states. Chubb, et al. and
Kennedy, et al. investigated creep rupture in tubes of Type 316
stainless steel and Inconel respectively, under both biaxal
tension-tension and compression-tension stress staies thus
cavering an area of stress space where greater differences exist
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batween the Rankine theory as compared to the Tresca and von
Mises theones. Chowe of a best strength theory tn these and
most of the previously referenced inveshigations tended to be
both material and temperature dependent wath all three of the
previously noted classical theonies sclected as being the best
candidate fur at least one 1¢st matenal and one test
temperature. The classical theones all provide a relauvety poor
fit to the data for compression-iension stress states.

Several key investigatons which have provided a base of
mechanistic support for the current work are those of Cane
[16], Speight and Beere [17), Beere and Speight {18], Hellan
(19}, and Dyson [20}. In parucufar Cane's publication was very
uscful. Cane, 1n referencing the other cited authors’ work,
summarizes the stages of fracture by the classical grain
boundary cawitation process as being the production of cavity
nuclei (Stage [), the deformauon of stable cavines and their
growth to produce discrete cracks (Stage 11), and linkage of
discrete cracks 1o produce final fracture (Stage 11I). In terms of
continuum mechamics vanables, Cane relates the stress state
dependence of these processes 10 the von Mises equivalent
stress, o, the hydrostatic stress, J,/3, the maximum principal
stress, ¢, and the maximum deviatone stress, S, In
development of the author's strength theary, these same stress
parameters, when appropnately formulated, have resulted in
sigmficantly improved life predictions rclative to the three
previously noted classical theories.

The balance of this paper summarizes the improved strength
theory, the experimental Inconel 600 creep-rupture data on
which the current theory assessments are based, assessment
results, and some bnief conclusions.

STRENGTH THEORY

For a multiaxal stress state with ordered principal stresses
a,> o;>0y, the new strength theory defines the uniaxally
equivalent stress as

°.=%S.(-23-—§:)‘uv[b(%'.-l)] 0
where
J,=0,+0,¢a, @
= 30,
a=[(0,-0,)*+(0,-0, +(a,-0,)'}2 @

S=0,- — 4)

and

s,:“o?q o;'o; (5)
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= 7,
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and
J, = 1st invanant of the stress tensor,
J, = 2nd invariant of the stress tensor,
J," = 2nd invariant of the deviatoric stress tensor,
§, = maximum deviatoric siress,
¢ = von Mises equivalent stress,
d,, = normal siress on octahedral plane, and
T shear stress on octahedral plane.

1
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For a = 1.0, the new theory reduces to the form
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which removes any dependence of ¢, on maximum deviatoric
stress, §,, while maintaining dependence on the hydrostatic
stress componeat, J; (or octahedral normal stress), and the
octahedral shear stress, J,° (or o). Parameters g, J;, and S, are
all stress invariants (i.e, can be expressed in terms of the
principal invaniants of the stress tensor).

The invariant stress parameters in the new theory (;, S, , and
@) are graphically iltustrated in Fig. 1. Parameters a and b are
constants which can vary slightly from material to material. For
best life predictions, the constanis can be determined by a least-
squares fit of the theory to multiaxial stress-rupture daia for a
range of stress states. A minimum of two test poinis are
required to fit the constants @ and b in Eq. 1, with the
recommended tests being one torsion and one equal biaxial
tension test, or a minimum of onre test is requircd to fit the
constant & in Eq. 6 with the recommended test being a pure
torsion test. Stress parameters incorporated in the new theory
have been shown by Cane and others to correlate with the
mechanistic creep-rupture processes of cavity formation, growth,
linkage, and failure [}, 16-20).

Five materials (two ferritic steels and three nickel-base alloys)
have been studied to date and have been found to have
somewhat universal values of @ and b for creep-rupture life
predictions. Results for Types 304 and 316 stainless steel,
Inconel 600, modifiec 9 Cr-1 Mo steel, and 2 1/4 Cr-1 Mo steel
have indicated that parameter a tends to have a value in the
range of 0.85-1.10 with 1.0 being a good universal value to use
in the abscace of data to define a "best fit" value. A value of
a = 1.0 also assures one that the shape of the "prismatic” 3-D
isochronous failure surface in g, , a,, o, space will be circular
in planes of constant 7, similar to contours for the von Mises
strength theory. Par .ncier b tends to have a value in the 0.15-
0.30 range for the previously noted materiais. The value of &
Jdetermines the appropriate magnitude of the hydrostatic-stress
cffect in the sircngth theory, thus determines differences in
equivalent stress and life under temsile (J,>0) versus
compressive (J,<0) stress states. The author has found that life
predictions made using the new strength theory are significantly
better than predictions made using the previously noted classical
theories both when the optimum constants a and b are used
and also when the universal values of 4=1.00 and b=0 24 are
used.

In general, time to creep-rupture, §, , is approximately linear
in log (time) versus log (stress) space and was, therefore,
represented for the purpases of this paper by the equation

log(e)=Ay+A log(a, ) M

where o, denotes the "uniaxially equivalent” stress. Consisterit
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FIG. 1 GEOMETRIC REPRESENTATION OF NEW
STRENGTH MODEL STRESS PARAMETERS

with the usual design approach, constants A, and A, are
defined by & least-squares fit of Eg. 7 1o bascline uniaxial creep-
rupture data. It is then assumed that a complex multiaxial
stress state can be reduced mathematically, through the
"strength theory" (Eq. 1 or Eq. 6) to a uniaxially equivalent
value ¢, such that the uniaxal corrclation (Eq. 7) in
conjunction with the equivaleat stress from Eq. 1 (or Eg. €) can
be used to predict the failure ume for a component under a
complex multiaxial stress state. For the assessments presented
in this paper, it is assumed that the time required to initiate a
crack is approximately equal to the rupture time for the biaxial
tubular test specimens.

MATERIAL AND SPECIMEN

Assessments of the strength theories reported in this paper are
based on test results for annsaled Incoael 600 as reported by
Kennedy, Harms, and Douglas [6). The nominal composition
of the Inconel 600 matenal utilized in their tasts was 80 Ni-15
Cr-5 Fe. Their tubular specimens were nominally 21.4-mm
inside diameter, 1.52-inm wal! thickness. and 63.5-mm gage
length.

EXPERIMENTAL DATA

Tests reported by Kennedy et al. were conducted in argon at
816°C under constant-load conditions. Uniaxial tests were
conducted using the same tubular specimen design as used for
their biaxial tests. Four tests were conducted under a pure axial
joad tc produce uniaxial tension in the tube. Three tests were
conducted under a combination of axial compression and
internal pressure which produced a “pure® hoop stress with zero
axia! stress. These scven tests provided the data for
development of a baseline “uniadal® stress ruprure correlation
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(1-¢. the small radial stress o the “pure® hoop Stress Iesis was
wnored).  The bual teste of Kennedy et al. were performed
under combmations of anal load (tension and compression) and
internal pressure, Thewr stress rupiure results, from some 45
tests, are summanzed in Table 1. 3ince the scven “univaal®
tests were conducted using 8 tubular speamen raiher than a
coaventional umaxiai sohd bar specimen, these seven data points
were wcluded 1n the bianal data set used for strength theory
assessiments.

Te use the indiidual dbiaxial test data in Table 1 to objectively
assess stress state effects, the effects of matenal and testing
vanability shouid be munimized. As was dong in the author's
pnor publications {1,2), an "averaged biaxal data set” was
created from the data in Table 1. This was accomyplished by
lincarly averaging, in log (stress) versus log (rupture time) space,
each sutsct of the bravial test data having the same stress state
(i.c., the same axia! stress ratio, R=agle,). This reduced the
45 data i Table 1 to the 20 data points summarized in Table
2 with only one representative point for each independent stress
state.

A least-squares fit of the lincar stress-rupture equation (Eq.
73 to the seven umaxial data 1 Table 1 resulted in the baseling
uniaxial stress-rupture correltion given by:

log(t,)=9.1830-4.3034 log(o) @

Since ihe "pure"” hoop stress rupture data tended to form &
stress rupture line falling below (ie., shorter lives) the axal
tension data, a lot<centered fiting technique was used 1o
determine the slope of the uniaxial line in Eq. 8. Using this
technique, the average value of log(f,) and log(s) for each
subset (i.e. each lot of data) was subtracted from the individual
data values for the lot. A least-squares f of the resulting
combined data sets determined the “lot-centered slope®
representing all the fitted data. The intercept constant, 9.1830,
was then determined by forcing the stress rupture lin¢ with the
lot-centered slope to pass through the centroid of the total
uniaxial data set (1.e., through the average log(r,) and average
log(o) point for the tota uniadal data set). The resulting data
correlation is given in Eq. 8 and is plotted in Fig, 2.

RAESULTS

As in the author's two prior publications 1,2}, results of the
assessment of the new versus the classical strength theories are
summarized in four comparative forms: (1) standard 2-)3 biaxial
isochronous stress- rupture contours; (2) polar plots of deviations
in the ratio of predicted-to-observed life as a function of stress
state showing which stress states result in the best and worst life
predictions; (3) the usual loganthmic stress versus rupture time
correlations; and (4) a statistical assessment of the new and
classical theories partitioning the totai error between predicted
and observed life into a strength theory error, which
is dependent on stress state, and a random error, which is
attributed to matenal and testing variability.

TABLE 1 SUMMARY OF BIAXIAL STRESS-RUPTURE
DATA FOR ANNEALED INCONEL 600 TESTED AT
816°C

Test A e ?9 a, aa o, 1, Specimen
No. o, Loading
{MPa) {MPa) (MPa) (h}  Mode**

{

41.370 0.000 0.000 1069.0 AT
41.370 0.000 0.000 330.2 AT
27.580 0.000 0.000 21400 AT
20.685 0.000 0.000 #4¢3.6 AT
41.370 6.805 0490 2400 ATA&P
0.2% 27.580 6.805 0490 18400 AT&P
6.50 41.370 20683 -1.470 2810 AT&P
0.50 34475  17.238 ~1.227 6350 AT&P
0.5¢ 27.580 13.7%0 00790 9820 ATA&P
10 050 27.580 1870 0070 18400 ATEP
11 050 20.885 10.943 0.738 30000 AT&P
12 087 41370 L7580 -1.085 3170 AT&P
18 075 27.580 20.685 1476 7170 AT&P
14 1.00 41.370 41,870 2044 912 ATA&P
15 1.00 27,5860 27.580 1085 0400 ATS&P
16 100 20,685 20,685 -1.470 27858 AT&P
17 1.0 200085 20.685 -1.476 31240 AT&P
12 120 34475 41,370 2044 1340 ATS&P
19 1.3 206885 27.5% -1.065 0018 AT&P
20 1.%20 27.580 41.370 2044 1280 AT&P
21 180 17.288  27.580 1085 6080 AT&P
2 w1 24133 41,370 2044 1258 AT&P
23 1.8 22,408 41,970 2044 1082 ATS&P
24 2.00 208685 41.370 -2.044 790 AT&F
25 200 20.885  41.370 2944 850 AT&P
20 200 13.700  27.580 -1.985 6200 AT&P
27 200 10.343  20.685 -1.476 1872.0 AT&P
20 400 10.348 41370 2844 1800 AT&P
20 400 10.343 41370 2044 100.7 AT&P
4.00 8895 27580 1065 3088 AT&P
4.00 6.895 27.580 1965 4870 AT&P
4.00 %171 20,088 <1478 18119 AT&P
© 0000 41.370 2944 980 ATAP
© 0000  27.580 1065 5400 ATAP
" 0.00¢ 20635 1478 16960 AT&P
0258 55100 1370 09790 1689 ACA&P
41.370 41370 2044 478 ACAP
-1.00  -27.580 27.580 1085 2350 AC&P
-1.00 20885 20.83% -1.478 12000 AC&P
200 -20.685 41.370 -2.044 69.2 ACAP
-2.00 -20.885 41.370 2044 1540 ACAP
-2.00 -13.700 27.580 <1965 308.0 AC&P
-2.00 -10.343 20.885 -1.478 1221.0 ACAP
400 -8885 27580 -1.985 4703 AC&P
-4.00 -8.895 27.5%0 <1965 8884 ACLP

88885

OB NOORELN —
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* Source: Kannedy, Harms, and Douglass, Ref. 8
** AT = axdal tenslor

AC = axia] compression

P = in‘ernal preasure
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TABLE 2 AVERAGED BIAXIAL STRESS-RUPTURE DATA
FOR ANNEALED INCONEL 600 TESTED AT 816°C

Data R 9% o o o, . Speciman
Subsat % Loading

No. (MP8)  (MPw) (MFa)  (h) Mode**

1 000 31434 0000 0000 8557 AT
2 047 41870 06895 0490 2490 ATAP
s 025 27580 0885 0490 18400 AT&P
4 050 203520 14784 1048 9837 AT&P
5 0.87 41370 27550 -1.065 370 AT&P
8 0.75 27530 20685 1476 TI7.0 ATAFP
4 1.00 20432 26432 1885 B47.2 ATAP
L] 120 34475 41870 2044 1340 ATAP
] 133 20685 27530 -1.065 06013 AT&P
10 1.50 27580 41370 -2.044 1230 AT&P
11 1.80 17.230 27580 -1.265 0880 ATA&P
12 171 24133 41370 2044 1253 AT&P
19 185 22400 41370 2044 1082 AT&P
13 200 157180 31431 2242 2890 ATAP
15 4.00 7.85% 30620 2,184 4038 AT2P
16 - 0000 28683 2048 4494 ATSP
17 025 S50 18760 0670 1880 ACA&P
18 <100 26854 20684 2048 2435 ACA&P
19 200  -1STV /7 2'434 2240 2518 ACAP
20 ~4.00 - 0.895 27 =50 <1085 5600 ACA&P

* Source: Kannedy, Harma, and Douylas, Re!. 8
** AT = axial tension

AC = axial compression

P = Intsma! pressure

A nonlincar least-squares fit (based on Eg. 7) of the new
theory (Eq. 1) to the averaged Inconel data set in Table 2
resulted in "optimum” values a=0.9984 and b=0.2481. These
constants were used for asscssments 1+ noted above. For
assessment 4 two other scts of constants were also evaluated
The second set of constants consisted of the assigned value of
@=1.00 and the value of b=0.2480 obtained from a nonlinear
feast-squarcs fit of Eq. 7 to the averaged biaxial data set in
Table 2. The third set consisted of the assigned values of
a=1.00 and b=0.24, which the author has used as universal
constants in the two prior papers [1,2], since they were not
fitted 10 the maienal data sets. The accuracy of the new theory
is not highly scnsitive to small changes in these values.
Constants of @=1.0859 and £=028°3 werc previously
determined for anncaled Type 304 stainless steel [1] and values
of @=0.8631 and b =0.2058 previously determined for anncaled
Type 316 staintess steel [2]. The universal values of @=1.0 and
b=0.24, although not optimum values, stl resull in significantly
better life predictions for Types 304 and 316 stainless steel and
Inconei 600 than the classical theorics; However, life predictions
were not quite as accurate as oblained using the alloy-speaific

B0 T T T T T T N CONEL 808
| UNIAXAL DATA, 818G |
* TUBE, AXIAL TENSION
18f  ~o B TUBE, HOOP TENSION |1
- —— LEAST SQUARES FIT LNE
A ~ _ |- — PLUsMINUS 2 STD ERROR
E 18} .\‘ = 7
=3 -
g - ~— - -4
@ 14} I
§ I *
12 LOG(T) = 9.1830 - 4.3034 LOG( o) -~ 1
STD ERROR = 0.4242 ~
! i
1 o — J 1 | e 4 1 . . 5
18 2.2 28 3 34 28
LOG [RUPTURE TIME ()

FIG. 2 BASELINE UNIAXIAL STRESS VERSUS RUPTURE
TIME DATA

values. Since the values of constants @ and b for Inconel were
almost denucal for the three cases where (1) optimum values
of both @ and b were obtained from a least-squares fit, (2) the
value of a=1.00 was assigned and b obtained from a least-
squares fit, and (3) universal values of 3=1.00 and b=0.24 were
assigned (no fit), only the optimum values of a=0.9984 and
b=0.2481 were used for the assessments summarized in this

paper.
Isochronous Stress-Rupture Contouy

Biaxial isochronous stress-rapture contours for both the new
and the classical strength theories are shown in Fig. 3. Each
averaged data point from Table 2 was shifted along a stress
rupture line of slope 4;=-4.3034 (i.e, slope of the uniaxial
stress rupture line, from Eq. 8) to a common rupture time, and
the resulting isochronous biaxial stress point plotted in Fig. 3.
One can sce that the new theory fits the Incone! data
significantly better than the classical theories in the second and
fourth quadrants for the tension-compression stress states. This
was also true for the 304 and 316 stainless sieel results reparted
previously. In the first quadrant, neither the classical strength
theories or the new theory represent the data very accurately.
The data trend in the first quadrant for biaxial stress ratios in
the range 2s0g/0,<~ does not follow the usual data trend
{1.2]. Itis possible that instability may have influenced the data,
however no attempt was made by the author to investigate the
instability problem. Internal pressure also results in tube
diameter growth during a test which continuously alters the
biaxial stress ratio during the test. This was not taken into
account in the correlations developed in this paper. The data
trend in quadrant 1 of Fig. 3, if real, wouid indicate significant
anisotropy in Inconel 600 since the contour is not symmetrical
about a 45° line. The agreement demonstrated by Types 304
and 316 stainless steel in quadrants 1, 2, and 4, as reported in
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CONTOUR FOR INCONEL 600

the awhor's two previous publications {1,2), was sigmficantly
better than s demonstrated n Fig. 3 for the Inconel data.
The 3-D wochronous rupture surlace for Inconel ¢OD has a
geometric "bottle shape™ simular to that reported previously for
Type 304 stanless steel and reproduced in Fig. 4 (1} ‘The
bottle shape ndicates larger stresses undet compressive stress
states than under ensile stress states for the same rupture time.

Polar Plots

Polar plots provide an cxcellent means for displaying
deviations between predicted and observed life as a function of
the biaxial stress state.  Plots of this type, based upon the
averaged data set in Table 2, are given in Figs. 5-8 for the new
and classical sirength theories.  ‘The ratio of predicted-10-
observed rupture ume is plotied radially in logarithmic scale
with the plot axes and angle mapping the principal stress axes
in the tubular specimen wall. For each biaxial test, the tangent
of angle, 8, in the polar plot 1s equal to the biaxial stress ratio
in the speafic test. For a perfect sirength theory the data
would fall on a circle of radius 10° (ie., predicied life equals
observed life). A circle (labeled as SM-20), denoting a safety
margin of 20 un hfe (appraxmate safety marg in Appendix T
of ASME Code Case N-$7 (3]}, is placed on cach plot for
reference. Simularly, a circle (labeled OCM-5) is shown on each
plot and denotes an arbitranly selected margin of 5 on life as a
reference for overly conscrvative design.

A companson of the four polar plots shows that the new
theory (Fig. S) did an excellent overall joo of modeling stress-
state effects in Inconel 600 both in terms of a lack of excessive
conservatism and aunimum erosion of @ safety margin of 20 on
hfe (1e.. the ponts all fall close to the 10° circte). In
companson, bath the Tresca and the von Mises theories (Figs.
6 and 7 respectively) gave highly conservative Ufe predictians for
biaxtal tensioncompression (T-C) stress states (i-e., in sccond
quadrant) and were aiso slightly less accuraie 1han the new
theory for tension-tension (1-T) stress states {i.e., in first

ag = UNIAXIAL TENSILE VALUE

FIG. 4 THREE-DIMENSIONAL !SOCHRONOUS STRESS-
RUPTURE SURFACE FOR TYPE 304 STAINLESS STEEL

quadrant). The Rankine theory provided significant life
overpredictions under some T-C stress staies while providing a
significant life under prediction for at feast one T-C stress state.
‘The trends demonstrated in the first quadrant (for T-T stress
stales) were somewhat simifar for all the strength theories with
the new theory being slightly better at reducing the data scaiter.
Overall, these general trends which were observed in Inconel
arc very similar to the trends previously observed and reported
by the author for Type 304 and 316 stainless steel.

Str upture

Stress versus rupture time correlations for the new and the
three classical strength theorics are given in Figs. 9-12. These
plots compare predicted specimen lives to observed lives for all
the biaxial data summarized in Table 1. Since these correlations
are based on individual test results rather than on the averaged
data sct (Table 2), they encompass the total scatter due to
inaccuracy of the strength theory in precisely predicting stress-
state effects as well as the scatter introduced by material and
testing  variability. ~ The bascline uniaxal stress-rupture
correlation (Eq. 8) is shown on cach plot as a solid line and
represents the predicted life line. The individual daia are
ploticd in each figure. Each plot contains one dashed and two
dotted lines. The dashed line is a least-squares fit of the biaxial
data in Table 1, based on the specific strength theory noted in
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FIG. S CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED LIFE WITH STRESS STATE BASED ON THE
NEW THEORY
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FIG. 6 CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED LIFE WiTH STRESS STATE BASED ON THE
TRESCA THEORY
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FIG. 7 CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED LIFE WITH STRESS STATE BASED ON THE
VON MISES THEORY

FIG. 8 CORRELATION OF THE RATIO OF PREDICTED TO
OBSERVED UFE WITH STRESS STATE BASED ON THE
RANKINE THEORY
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FIG. 10 TRESCA STRESS INTENSITY VERSUS BIAXIAL
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the plot, assuming the biaxial ine has the same slope A, as the
uniaxial (sohd) baschne. The two dotted lines represent :2
staustical standard crrors (denoted as =2 §)) relative 1o the
dashed (biaxial) line. The dashed and dotted lines thus
represent, respectively, the observed mcan biaxial behavior and
the scatter bounds within which about 95% of the biaxial data
should fall. The scatler bounds, although symmetric relative to
the biaxial (dashed) line are asymmetric relative 10 the predicted
(umaxial, soiid) line. Each of the scatier bounds can thus be
represented as a factor on life refative to the predicted life line
(i.e., @ factor above or below the predictzd fife). These factors
arc noted on cach plot 10 facilitate a companson of the strength

25 1 1 1 1 i
: INCONEL, 818*
[ §TD ERROR = 0 2930
!

20 }— -
{

15 |- .

10 _ 8 BIAGALDATA ]
| UNIAXIAL CORAELATION
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[ | — — — BIAAL LSQFIT 1.00 (UNIAXIAL)
3 +2 STD ERAQRS ABOUT
i BIAXIAL UNE 1.07 (BIAXIAL}
s L | I i i
1.0 15 20 25 3.0 3.5 40

LOQ [RUPTUR )|

FIG. 11 VON MISES EQUIVALENT STRESS VERSUS
BIAXIAL RUPTURE TIMES

2s T T T ! T
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97D ERAOR = 0.2578

20 |— —
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o
i
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- 22 STD ERRORY ABOUT 1
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FIG. 12 MAXIMUM PRINCIPAL STRESS VERSUS BIAXIAL
RUPTURE TIMES

theories. The total “range of scatier” is obtained by dividing the
upper bound life by the lower bound life (i.e., by multiplying the
two factors on the dotted lines given in each plot).

For these analyses the S, for each strength theory was
computed us. 3 the standard statistical equation

5, 55QDev ®
v
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where

N
SSQDev=Y" (Dev)? (10
=1

Dev,=[10g(te) ey ~108(12) ], (1)

and degrees of freedom, v, is given by

v=N-k (12)

N is the total aumber of data, and £ is the number of material
parameters (consianis) obtained from the least-squares fit.
Since the slope of the biaxial line is assumed to be the same as
the uniaxial line, only the biaxial line intercept constant was
fitted along with the constants in the strength theory. For the
classical theorics no constants were fitted, thus only the biaxial
line intercept constant was fitted to the data, giving v = N-1.
For the new theory, if both parameters a and b were fitted
along with the biaxal line intercept, then v = N-3, whereas if
parameter g was fixed as 1.0 and only b fitted, then v = N-2.

From the stress versus rupture time correlations given in Figs.
9-12, it is apparent that the new strength theory is more
accurate than the three classical theories in predicting life and,
therefore, in reducing data scatter. The data scatter range for
the new theory is 6.26 as compared to ranges for the classicat
theories of 14.85 (Tresca), 15.20 (von Mises), and 30.83
(Rankine). For these data, the new theory, thus, reduced the
scatter by a factor of about 2.4 on life relative to the von Mises
and Tresca theories, which are the two most widely used
strength theories used in high-temperature structural design
codes.

Partitioning of Ervor
Tt is of interest to partition the total error between predicted

and observed life into two components, one due to error in the
strength theory and the second due to random scatter which is
attributed to material and testing variability. A statistical made!
[linear in log (stress) vs log (rupture time) space] was used for
this purpose. The model will be briefly described after which
th : results will be presented.

The total biaxial data set (Table 1) consisting of N data points
is partitioned into m subsets with the data in each subset having
the same stress state. Each subset, j , has 5 data points. The
centroid (average log) of the n; data *  ibset J is denoted as
(X;.¥). It is assumed that the biaxial data in each subset falls
along a unique stress-rupture line having the same slope, 4, as
the uniaxial data correlation, Eq. 8. Given these assumptions,
which can be shown to be valid for the present

xw LOC{ 0,)

YA e Ay ‘ll"'“l/”lV

Y, +2,
y=LOG(1,)

FIG. 13 STATISTICAL MODEL PARAMETERS

data, the model can be expressed by the following equation and
is depicted graphicatly in Fig. 13:

YyeAgrA T ca e, (13)

The first two terms (A,+4; x;) in Eq. 13 are ibe uniaxially
predicted part of y;. Parameter q; represents the errof due to
inaccuracy of the strength theory for subset j. The last term
represents the random error which is ascribed 10 material and
testing variability. The standard error, S, determined from the
random error values, €, was calculated in the usual manner
according to the equatior

(19)

where N-k denotes the number of degrees of freedom. To be
statistically correct, two or more data points are needed at each
stress state in order to estimate the average behavior and
partition the total error into theory and random components.
There are only nine data subsets of this type in Table 1. These
nine subsets were used in calculating S, This provided N=34
points. The value of k& was determined by the total number of
constants fitted in Eq. 13. The centroid (X;,¥,) of each of the
nine data subsets was fitted. There were no fitted constants in
the classical strength theories, however, two constants (a and b)
were previously fitted for the new strength model. Since these

R. L. Huddleston




TABLE 3 SUMMARY OF STATISTICAL RESUITS
PARTITIONING RUPTURE-TIME ERRQR AT EACH STRESS
STATE INTO STRENGTH THEQORY AND RANDOM SCATTER
(MATERIAL AND TESTING) ERROR COMPONENTS

STATISTICAL ANALYSIS RESULTS FOR
Re IBIAXIALI STRENGTH THEORY SHOWN *
% N:GLE NEW  |VONMSES | TRESCA | RANKINE

»

% 10716 10" 18] 10° 167 10° 10 T
000 | 00 {158 250 [158 290 (156 280 {188 260
017 | 97 [t29 240 |11 207 [158 260 148 278
025 | 140 |160 267 |10 241 |208 3e4 [191 358
050 | 268 (117 219 (086 04s [1.57 2@ {135 28
067 | 338 108 | 3BN138 258 {230 428 |10 351
075 | 3689 |08y 0487|061 03 [0 050 |0.74 040
100 | 450 [144 260 090 0S3 {0 053 {073 0.3
120 | 502 {115 24 (o079 043 {107 19Q [080 043
133 | 53t {079 042 {056 030 |084 045 |06 034
150 | 583 lops 048 oM 03 1@ 1% [078 04t
1.680 $8.0 075 040 {053 o029 [OW 050 [0 o037
17| 7 loyr 041 (053 030 [1.00 168 (075 040
165 010 [oea 03 048 025 Joss 048 |06 034
200 | 64 los [0z o [ozi Jon G Joss oz
40| 700 |0e2  0X 053 028 [088 043 [0.00 035
» | 900 [os o |06 035 |0 s 055 030 ]
025 1040 [055 051 |0.00 }1733710.05 118541048 845

- - - aw -.ﬂ
2.00] 1350 [104 194 |319 3&7|5m 1100 oao'
200] 1534 [0 045 |11 2% (263 4m9 [048 025
400 1860 (080 043 [198 218 [154 288 (050 0%

* Numbers > 1.0 indicats life underprediction {conssrvative)
< 1.00 Indicates life overprediction (non-conservative)
Sy= statistical standard error computed from the random errors, @,
for the total blaxdal data set in Tabie 1

= 0.1340 (10 =1.88)

10% - [ average obeerved blaxial llfe at the designated stress state
[pndk:'bd Ite based on the unindal correlation, Eq. 8, and

equivaleni stress, ¢ , for the designated strength theoty

average cbssrvad blaxial Iife at the designated stress
P state + 2 standard arore
LU [produmd iHfe based on the uniadal correlation, €4, 8, and
squivalent stress, <, for the designated strength theory

two constants are associated with stress state {i.e., with o)) and
not with matenal and testing variability (i.e. not with ¢,) they
were not included in Eq. 14. The value of k used was,
therefore, 9 for all the strength theories. For those siress states
in Table 1 having only onc data point, this point was taken as
the centroid (X;,Y)) for that siress state {i.c., stress state effect).
No attempt was made to statistically qrantify the uncentainty
associated with the a; values since these values do not satisfy
the conditions for a Gaussian distribution.

Results of the statistical analysis are summarized in Table 3.
Although the error components were determined in linear log

10

(stress) vs log (rupturc nme) space, the antlogs of the resulting
e and §, values are summarized in Table 3 and represent
factors on life.  Analysis resulls indicate that the random errcr
(ie, 225, which was attributed to material and testing
vanablilty) introduced a factor of ~ 1.86 (as a multiplier or as
a divider) on life. Factors on life due to strength-theory error
(antilog of a)) are stress-state dependent as was obvious from
Figs. 58. The further the faclors summarized iz Table 3
deviate from 1.0, the greater the strength-theory error.  For
stress states in the tensioncompression quadrant th.ese factors
were significantly greater than the factors associated with
material and testing variability. Considering the results in Table
3 as a whole (i.e., divide the muast conservative factor by the
most nonconservative factor for each theory), then the new
strength theory provided the least range of error (13.1) followed
by the Rankine (40.3), Tresca (44.3), and von Mises {53.9)
theorics in that order.

CONCLUSIONS

The new multiaxial stress-rupture strength theory resuited in
significantly improved life predictions for specimens of anncaled
Inconel 600 tested at 816°C in argon under different biaxial
stress states. 'The improvement for Inconel was not as great
and as dramatic as rcported carlier for Types 304 and 316
stainless steel, however the improvement was sifl quite
significant.  The scatter in stress vs tupture time data was
reduced by a factor of about 2.4 (on |ife) relative 1o scatier for
the theories of Mises and Tresca and by a factor of about §
relative to the Rankine theory. As was found in the earlier
papers on 304 and 316 stainless steel, theory errors, a;, for the
new theory tended to be about the same magnitude for the
various biaxial stress states evaluated whereas errors for the
classical theories tended to be significantly larger in the T-C
quadrant of stress space than in the T-T quadrant.
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-
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process disclosed, or represents that its use would not infringe privately owned righis. Refer-
enve heren to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendatton, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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