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A method for three-dimensional flow velocity calculation has been developed
to evaluate unconfined aquifer sensitivity to areal agricultural contamination
of groundwater. The methodology by Polubarinova-Kochina (1962) is applied for
an unconfined homogeneous compressible or incompressible anisotropic aquifer.
It is based on a three-dimensional groundwater flow model with a boundary
condition on a moving surface. Analytical solutions are obtained for a
hydraulic head under the influence of areal sources of circular and rectangu-
lar shape using integral transforms. Two-dimensional Hantush (1967) formulas
result from the vertical averaging of the three-dimensional solutions, and the
asymptotic behavior of solutions is analyzed. Analytical expressions for flow
velocity components are obtained from the gradient of the hydraulic head
field. Areal and temporal variability of specific yield in groundwater
recharge areas is also taken into account. As a consequence of linearization
of the boundary condition, the operation of any irrigation system with respect
to groundwater is represented by superposition of the operating wells and
circular and rectangular source influences. Combining the obtained solutions
with Dagan (1967a, 1967b) or Neuman (1972, 1974) well functions one can
develop computer codes for the analytical computation of the three-dimensional
groundwater hydraulic head and velocity component distributions. Methods for
practical implementation are discussed.

INTRODUCTION

The interaction between water supply wells, irrigation systems and groundwater
flows in aquifers create a complex velocity flow field. Until recently, most
methods for groundwater flow simulation have focused on efficient and accurate
computation of groundwater heads for one- and two-dimensional problems
(National Research Council, 1990). For contaminant transport below the water
table, a three-dimensional approach is necessary to delineate major contami-
nant pathways. The role of groundwater flow modeling is to provide an
estimate of the flow velocities. Head predictions are of little direct
interest. Velocity estimates, however, are usually based on hydraulic head
differences and therefore are much more sensitive to numerical modeling errors
than are estimates of the hydraulic head alone. Satisfactory predictions of
transport often require that the velocity field be calculated on a fine
spatial grid. Therefore analytical solutions have some advantages over
numerical procedures in spatial case (Dillon,1989).

Flow velocity field of an aquifer under the influence of irrigation can be
represented as a result of interaction of vertical line sinks-wells and
horizontal areal sources-recharge spots on the groundwater table. It is a
three-dimensional flow rather than a two-dimensional one, and transient rather
than steady state. To achieve a reasonable description of irrigation
influence on the aquifer, a general source-sink distribution is decomposed
into three types: wells, circular and rectangular sources (Hantush, 1967).
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For two-dimensional solutions it wo<."\d be sufficient to apply a superposition
principle for a Theis (1935) well function with Hantush (1967) formulas of
drawdown for rectangular and circular recharging areas. Unfortunately such
an approach provides only an averaged evaluation of contaminant transport,
neglecting vertical components that are responsible for the downward movement
of contaminants.

The unconfined aquifer of a finite thickness is the most widespread environ-
ment for an agricultural contaminant. For the three-dimensional case,
distributions of hydraulic head for a single well were given by Oagan (1964,
1967a) and by Neuman (1972, 1974) for an incompressible and compressible
aquifer, respectively. For the distributed sources, the only available
solutions were for a circular source in an incompressible aquifer (Dagan,
1967b).

The groundwater flow field structure under the replenishment area gives a clue
to understanding the groundwater quality formation and its changes. Similar
processes are relevant to a problem of artificial groundwater recharge (Morel-
Seytoux et al., 1990). The difference is that long term and intensive
artificial recharge causes relatively high saturation in the unsaturated zone
between the soil surface and a water table. This is not the case for
irrigated sites where the best management practices tend to eliminate
irrigation water losses below the root zone. Some water losses are inevitable
and they induce groundwater recharge under a decrease of available pore
space.

A statement of problem is given for a saturated zone only. According to
Kroszinsky and Dagan (1975) the unsaturated zone may have some quantitative
influence upon drawdown only in case of a very shallow rigid aquifer, or in
the case of soils with fine structure and relatively short times of system
operation.

In the subsequent development an attempt is made to develop an analytical,
three-dimensional solution for the hydraulic head and velocity distribution
in an unconfined compressible or incompressible homogeneous anisotropic
aquifer under the influence of irrigation.

PROBLEM STATEMENT

Consider an unconfined aquifer of infinite lateral extent and finite thickness
that rests on an impermeable horizontal layer such as that shown schematically
in Fig. 1 in the vicinity of a single groundwater well, or in Fig. 2 in the
vicinity of a single groundwater mound. On the plane view in Fig. 3 the main
types of sources and sinks are combined. The aquifer material is uniform and
anisotropic, with the principal permeabilities being oriented parallel to the
coordinate axes. The i-th well discharging at the rate Qj_(t) is open to
inflow from depth d^ to depth lt beneath the initially static water table. The
net specific recharge I^(t) at the water table is induced by irrigation on the
J-th site within area of the distributed source Gj.

It is assumed that water storage or release from an aquifer is controlled by
compressibility parameters of the aquifer material and water and as well as
the specific yield at the free surface.
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Fig.1 . Schematic diagram of well in an unconfined aquifer

Fig.2. Schematic diagram of a groundwater recharge in an
unconfined aquifer
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F i g . 3 . Schematic plan view for d i s t r i b u t i o n of wells (coordinate
index w), rectangular (r) and c i r c u l a r (c) sources.
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In the analytical approach it is convenient to treat the well as a line sink
with uniform sink density Qi/(li-dl); i.e. we neglect the well storage and the
presence of a seepage surface (Neuman, 1974).

For the groundwater mound the changes of specific yield over the recharged
surface are not taken into account as a first approximation.

The governing equations for the hydraulic head drawdown s are

W (1)

s(x,y,z,0)-0

l(x,y,z,Q)-b

s{x,y,z, t) -0, x,y±<>»

,y, 0, t) _0
ddz

Z{x,y,t)-b-s{x,y,z,t), at z-Z(x,y,t)

L ^ ^ ^ at z-Z (x.y. t)

where Kh and Kv are the horizontal and vertical permeabilities respectively,
Sa the specific (elastic) storage, Sy the specific yield, b the initial
saturated thickness of an aquifer, ( the elevation of the water table above
bottom of an aquifer; nx, n,, nz are the components of an unit normal vector
to the water table; the terms W and I in equations (1) and (7) are:

<8>

Hx,y.z,t)-Yilj(t)yU.y.Gj)

Here 5(x) is the Dirac delta function (Lavrentjev and Shabat, 1973), Ww the
total number of wells, N1 the total number of areal sources, and

S(z a b)- t1' ze (a'e) v ( ^ C )9(z,a,JD)- | o, z f (a,e)' YU,y,^)

where a and e are arbitrary constants (0<a<e), and Gi is the j'-th distributed



632

area source.

Stemming from this general statement, particular problems were studied for a
single well (1-0, Nw-1) in an incompressible aquifer (S,-0) by Dagan (1964,
1967a) and in a compressible aquifer (S.>0) by Neuman (1972, 1974). For a
singular circular source (W-0, Nz-1) in incompressible aquifer the solution
was given by Dagan (1967b).

In all these cases the equations were linearized using a perturbation
technique similar to that presented by Dagan (1964), provided the aquifer is
thick enough and the drawdown is much smaller than the average saturated
thickness of the aquifer. Using this technique a first-order approximation is
obtained by shifting the boundary condition from the free surface to the
horizontal plane z-b in equation (6), and then neglecting the second-order
terms in equations (6) and (7). This eliminates ( from equations (l)-(7) and
we obtain

, 3s „ &s 1 ds W „ Kv Kb ,,,.
Sdx2 dy2 dz2 «« dt Kh Kh SB

s(x,y,z,O) -0

s(x,y,z, t)-0, x,y-±<»

dsjx.y, 0, t) _0 (14)

dz

ds(x,y,b,t) 1 ds(x,y,b, t) I _^v
dz ay at " ~ Kv'

 y" Sy

Since the problem (11)-(15) with the conditions (8)-(10) is linear one can use
the principle of superposition to obtain a general solution incorporating any
number of wells and distributed sources. The main results given below have
been obtained for a single circular source in an compressible aquifer and a
rectangular source in both compressible and incompressible aquifers. The
problem was solved for W—0, Ni—1, and Gj a circular or rectangular domain. The
new solutions provide complete basis for analytical determination of three-
dimensional groundwater flow velocities in unconfined aquifers of finite
thickness. The solutions for the transient well production and the groundwater
recharge rate are calculated by the standard methods for the lineir initial
value problems (Streltsova, 1988).

CIRCULAR SOURCES

The flow underneath a circular uniformly recharging area can be approximated
by the system



633

s(r,z,O)-Q

s(r,z, t)-0,

8s(0,z, t) _Q
8r

Bs{z,0,t) _n
3

(20)

,£, t) .
T

,i?, c) _ J r, H fJ0, z<R,
~Tz !Ty dt

The system arises from the initial boundary value problem (11)-(15) given in
cylindrical coordinates r, z.

Applying Laplace and Hankel transforms to (16)-(21) and inverting the results
by the method similar to Neuman (1972), one obtains a first order approxima-
tion to the original problem. The mathematical calculations are outlined in
the Appendix A. The solution is expressed in terms of 5 dimensionless
parameters T, 0, zd, a and 0R BLS

, Jc-
 2I°R°i (22)f;

a,o(x,zd,y)-Qo(x,y) ^ f

(y2/Yo+D

<25>
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Qn(x,y) lexp[r(y^)] ( 2 6 )

(3/%[l>{2f/]
where yn(o,y) are implicit functions defined as roots of the equations

oY0sinhY0-(y
2-Yo)coshy0-0, yo<y,

<yynsinYn-(y
2+Yn)cosYn-0, (n-±)n<yD<rm, ml (28)

The other parameters are given by

where Jo and Jx are the Bessel functions of zero and first order. The drawdown
is negative in the case of the groundwater recharge.

The averaged drawdown in an observation well that is perforated between the
elevations zx and zz (Fig. 2) is the average of (22) over the vertical distance
and is given by the formula

<s>ligj {i, t) - (z2-z1) -
1 js(r. z, t) dz (30)

As an consequence of the structure of (22) one can obtain the averaged value
by redefinition of the expressions

l •

<s>tiitj~ljjo (yp 2) Jx <yp*2) £ uD(y) dy
0 D-0

ua(y) -0a(T,y) ̂ A d ) - B l n ( Y A , d ) (33)

where all parameters were defined in (27)-(29). If there is no gravity
drainage (,Sy-0, «y- •») the vertically averaged equations (16)-(21) between
elevations zx—0 and z2—b can be transformed into Hantush's (1967) problem for
the averaged overall saturated thickness drawdown

<S>(r, t)-<S>ob(r, t) (34)

Indeed, after the integration of (16) and application of (20) and (21), one
obtains
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i* * <ri<£>)-T-i<£>., r>0, t>o (35)
r dr dr 3t

<s>(r,O)-O, d<s>(O,t) ,Q> <fl>(»#t).o (36)
OX"

The same statement results from the averaged solution (31). To prove this, one
obtains from (28) and (33), for Zj-0, z2-b, and Sy-0

fa-nit. limo__ un(y)-0, nil (37)

Also, from (27) and (32)

y 2 ( 3 8 )

i m _ u0 (y) Xc- ^ x l-e*P(-*y*) (39)

2

After substitution of (37)-(39) to (31) and redefinition of the variables one
obtains

^ ^ (40>

Here the drawdown depends on the horizontal permeability only.

The asymptotic drawdown for large values of time is given by the formula (see
Appendix B)

(42>

C43)

It is Dagan' s formula (1967b) for an incompressible aquifer after the
generalization for the anisotrapy. After sufficiently large times the
significance of compressibility of an aquifer becomes negligible. The growth
of a mound tends asymptotically to a logarithmic function of time.

The asymptotic drawdown for small values of time is given by infinite series
(see Appendix C)
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aU.z, t)-is£%(ie-r)tf(zd, t), t-o (44)

2 l^R
/ Z'R. <45)

From this formula it is apparent that drawdown does not depend on the
horizontal permeability or the radial distance within the recharge area. The
drawdown growth .occurs on the free surface faster than on the bottom of an
unconfined aquifer.

Upon truncation of the infinite series one obtains a uniform linear growth of
the mound elevation and the hydraulic head within recharged area of aquifer

Six.z, t)—4^Tl lR-r)f t-«s

RECTANGULAR SOURCES

The flow underneath a rectangular recharging area with length 2X and width 2Y
can be approximated by the initial boundary value problem (11)-(15) with the
distributed source

I(x,y,t)-I0 $U,-X,X) ${y,-Y, Y) , W-0 (48)

All the involved functions were described in (8)-(10).

Applying the Laplace transform on time and the double Fourier cosine
transforms on the horizontal cartesian coordinates one obtains formulas
similar to those given above for circular sources. Omitting the tedious
calculations, we have

-COS(U,BJ')COS'"' " "* ~"~ ' " " ** ~"~'" " '*
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The notation for the functions ^(r,zd,u) was defined by (23)-(26).

The drawdown in the observation well perforated between elevations zx and z2

(Fig. 2) is the average of drawdown in (49) over a vertical distance. This is
similar to (30) and (31)

where functions UnCu; were defined by equations (32)-(33).

By averaging across the saturated thickness drawdown (49), one can derive
Hantush's (1967) solution for a rectangular recharging area under the absence
of gravity drainage. To demonstrate such a relationship it is necessary to
evaluate the average drawdown (52) under the conditions

Zj-0, z2-b, Sg-'O (53)

After the reduction of 1^(11), nzO, to the same expressions (37)-(39), and
applying double Fourier cosine transforms on the horizontal space variables
and Laplace transform on time, one can establish the identity of both
formulas.

The asymptotic behavior for large values of time for (49) can be obtained from
the Laplace transform in the asymptotic limit p-0, p being the Laplace
transform parameter. We obtain

s{x,y, z. t) —Ic jfmut, u2,x,y) * (x.zd, u)
 duidu*- (54)

' 00

These quantities do not depend on S,; i.e., after sufficiently large times the
significance of a compressibility becomes negligible. The same result stems
from (11)-(15) for S,-0. The growth of a hydraulic head tends asymptotically
to a logarithmic function of time. The formula (54) is an exact solution for
an incompressible aquifer of a finite thickness.

For small values of time or for large values of Laplace parameter p, the
hydraulic head distribution is given by the formula

i^f t-0 (56)

where the functions r\ and E were defined in (45)-(46). After truncating the
infinite series for t-*0 one obtains
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s(x,y.z,t)~—&-T\(x-x)r\(Y-y), t-0 (57)

DRAWDOWN FOR VARIABLE SPECIFIC YIELD

Percolation of irrigation water through the unsaturated zone underneath area
Gi reduces the specific yield by the value of moisture content Syl, i.e.,

Sy(x,y, z, t)-SytO{x,y,z,t)-Syly(x,y,G1) (58)

Sy „ is the specific yield considered earlier for an undisturbed, unsaturated
zone. In this case a change of head and velocity distribution occurs in an
unconfined aquifer, and

s(x,y,z, t)-so(x,y,z, t)+s^(x,y,z, t) (59)

where s0 is the solution for the undisturbed, unsaturated zone, and sT is the
solution correction for the specific yield variation. The analysis of specific
yield changes must be performed by soil physics methods (Marsily, 1988) and
is beyond the scope of the paper.

The recharge of an unconfined aquifer under irrigation is supposed to be
minimal for widespread agricultural practices based on the irrigation
scheduling. For this case the increase of saturation in an unsaturated zone
is a small value,

Sy.i"Sy.o (60)

As a consequence, the corrections in the hydraulic head and velocity
distributions are small values also as well, i.e.,

Hence a perturbation technique is applicable. The solutions given above
without the correction for the saturation variability are valid as a first
approximation

Syl-0, St-Q (62)

For intensive aquifer recharge the changes in saturation are comparable with
the specific yield and condition (61) is not valid. Furthermore, the
assumption of small water table slopes and the consequent transition from
nonlinear conditions (6)-(7) to linear condition (15) is not valid. Such a
situation occurs for artificial groundwater recharge and an analytical
approach for the three-dimensional processes is not straightforward (Morel-
Seytoux et al., 1990).

To obtain necessary corrections sl for variable saturation one must substitute
(58)-(59) to the linearized condition (15) and retain first-order terms in all
expansions. Since s0 satisfies an initial boundary value problem (11)-(15) the
correction sx must satisfy the same aquations, where equation (15) is modified
by
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(63)

The right-hand term is negative in a recharge area since the time derivative
for drawdown is negative.

The calculation of the first-order terms shows that the influence of specific
yield variability may be treated like an increase of recharge rate per unit
area. The correction to the recharge rate is equivalent to the amount of
water which is stored in the unsaturated zone within distance of the water
table transition per unit time.

To obtain the correction s1 one can apply the technique given above for (11)-
(15) using (63) instead of (15). The procedure does not require any modifica-
tion and is based on the same sequence of the integral transforms. The main
point in the calculations is to invert the Laplace transforms. From Appendix
A it is apparent that the transform for s1 has the same singularities as for
sOi although the structure of the final expression will be more complicated.
To evaluate the increase of complexity for the problem with saturation
correction one can compare even more simple solutions of the analogous two-
dimensional problem given by Carslaw and Jaeger, p. 347 (1959) with and
without cylindrical nonhomogeneity in the heat conduction.

For simplicity one can sacrifice the universality of a final expression to the
practical convenience to calculate correction s: and to study it for small
time values. According to (47) and (57) the time derivative in right-hand
expression in (63) does not depend on time for its small values; hence

After substitution of (64) into (63) one obtains

Upon comparison of this equation with (15) the following rule is apparent.
Because of the variable specific yield, one can obtain corrected formulas for
the drawdown or velocity components by multiplication the initial formulas by
factor kt

s{x,y,z, t)-so(x,y,z, t) kt, kf-l+-£+ <66>

It is important to note that such factor is applicable for the recharge
processes only. Therefore the hydraulic processes are noninvariant under a
transition from discharge to recharge processes in an unconfined aquifer. This
feature is unique for an unconfined aquifer due an influence of the downward
irreversible infiltration processes in the unsaturated zone.
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DERIVATION OF GROUNDWATER VELOCITY FORMULAS

The velocity vector is obtained from the drawdown formulas by multiplication
of the permeability tensor X by a gradient for the above integrals:

V - K vs (67)

The gradients, of course, depend upon the coordinate system. To derive
explicit expressions for the velocity components one has to redefine some
factors in the integrands for those integrals.

For the circular sources the replacements in formulas (22)-(29) are

s(r,z,t)-Vr(r,z,t): «70 (yp "*) —
 T } g ( 6 8 )

(69)

For rectangular sources the replacements in (49)-(51) and (23)-(29) are

i -i. .1

s{x,y,z, t)-Vx{x,y,z, t) : cos (UjPx
2 ) — J^sinCUiP,2 ) JTd

2 - ^ ( 7 0 )

s(x,y# z, t) -V (x,y, 2, t) : cos (u2Py
2) - - ^ s i n d ; ^ / ) Kd

2 -2.

si...) -VgU) : cosh(y0zd) ->KjiixJa.{i9zd) -£, cos{yazd) — A^ g

(72)

The convergence of the improper integrals representing the horizontal
groundwater velocity components in an aquifer is slower than the drawdown
since the integrand vanishes slower for large horizontal distances from a
source.

Transformations similar to (68)-(72) are used to obtain the velocities in an
unconfined compressible aquifer in a vicinity of the penetrating or nonpene-
trating well from Neuman's solution (1974).

The formulas for velocities in an unconfined, incompressible aquifer involve
the same transformations.

METHODS OF NUMERICAL EVALUATION FOR INTEGRALS

The first numerical calculations for these types of an integrals were
performed by Dagan (1967a, 1967b) and slightly modified by Neuman (1972).
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Based on Che straightforward application of Simpson's rule, they inserted up
to 30 nodes between adjacent roots of Bessel functions to match the oscillat-
ing behavior of integrands. Such approach is sufficient for a individual well
or a recharge source behavior evaluation. For a group of wells and distributed
sources the approach becomes impractical because of time consumption
restrictions. Especially severe limitations arise for the velocity component
calculations which converge slower than hydraulic head due to the larger
exponent of the singularity in the infinity for horizontal coordinates for
all integrals.

The simplest way to reduce multiple repeated calculations is by introduction
of a table for each kind of a source or sink. The tables have to be prepared
and stored in computer memory before starting the calculation for the every
special case study. With the appropriate parameters for an aquifer the tables
have to be developed for a set of discrete coordinates and times only. The
application of a nonlinear interpolation scheme may provide sufficient
accuracy under the relatively sparse tables (Hamming, 1963).

Additional computer time reduction may be achieved by taking into account the
special nature of the integrands under a table construction. The Filon method
permits the reduction of the number of integration nodes at least by an order
of magnitude in any spatial dimension for the oscillating integrands (Tranter,
1966). However, its application is not straightforward for two oscillating
functions and multidimensional integrands.

An additional resource in computer time reduction exists for the solutions for
a compressible aquifer. Since the exact formula of Laplace inversion leads to
infinite series and the evaluation of implicit functions, one can eliminate
the resulting consequences by applying numerical inversion of Laplace
transforms (Talbot, 1979).

CONCLUSIONS

To obtain a self-consistent, three-dimensional groundwater flow velocity model
for an unconfined aquifer of a finite thickness the analytical method of
integral transforms was applied. The results are new solutions for the
drawdown and velocity components for distributed sources with circular and
rectangular shapes, taking into account the compressibility properties of the
aquifer. The calculations of the velocity for an arbitrary combination of
wells and areal sources can be performed using the superposition principle.
For the incompressible aquifer, the solutions given above for a circular or
rectangular source can be combined with Neuman's well function (1974) . For the
incompressible aquifer the appropriate solutions should be combined with
Oagan's solutions (1967a, 1967b). No additional aquifer parameters are
required for this complex model. The parameters are obtainable from the same
pumping tests as in these references.

For sufficiently large times the compressibility effect becomes negligible.
Therefore the choice of an appropriate model for aquifer properties should be
consistent with the time scale of the simulated processes.

One new feature of the calculation is the consideration of the variable
saturation between the areal infiltration source and groundwater table.
Formulas for drawdown and groundwater recharge corrections were given in order
to evaluate the irreversibility of groundwater movement under transition from
a pumping to a recharge, caused by partial saturation in che zone above water
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table. For small variability of the specific yield, essentially the same
structure of the formulas is retained essentially.

The computational problems arising from the complex expressions were discussed
with regard to computer time consumption. The main sources for the reduction
of computer time are: special integration procedures with the treatment of the
oscillating integrands, numerical inversion of Laplace transforms, application
of the pre-calculation for sparce tables, and nonlinear interpolation.

The new results are intended mainly for the simulation of the agricultural
contamination by the fertilizers and pesticides. They are also applicable for
the nuclear areal contamination of groundwater, similar to that in Chernobyl
and in other cases of intensive areal groundwater recharge and the interaction
with well fields.

APPENDIX A

To obtain Green's function for the problem under investigation, the integral
transforms were applied (Lavrentjev and tihabat, 1973). The main stages of
derivation given below are similar to Neuman (1972, 1974). Applying the
Laplace transform on time to the function s(r,z,t) gives

m

W{r,z,p)-L[s{T,z,t)]'fe-Pts(.i.z,t)dt <Al)
0

Consequently, the Hankel transform on r of the function S(t,z,t) gives

m

3{a,z,p) -H[sT(r,z,p)] -JxJ0(xa)F(x,z.p) dx <A2)
o

For the initial boundary value problem (l)-(7) one obtains a boundary value
problem for ordinary differential equation

tfgQ (A3)
dz2

dz dz a
y

a ) , iu,p)j1{Ra) (A5)
ct s

(rpj]-a2 iTlim / rp l Ji(r)-J^r) <A6)

The relationships based on Bessel function properties

H[±4- (r-pj]-
I OT OX

were used for this procedure. The solution of the boundary value
problem is
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6 4 3

IoR J (Ra)cosh(ng)
j[Ra) d ( A 7 )-Z-cosh(r\b)

Using inverse Hankel transform on the dependent variable

¥{x, z,p) -H-1 [Sla, z.p) 3 -fffia. z.p) aJ0 (ra) da <A 8>
0

one obtains after the introduction of the new variables

an expression for Laplace transform of required function:

^ ) , It-
 J ° * q (A10)

y

(r,z,t)-~K f s(r,z,

To obtain the drawdown formula one can apply the inversion thec"em for the
Laplace transformation,

y*l-

f
Y -

J i -

where the integration is along a line in complex plane and y is so large that
all singularities of integrand s lie to the left of the line (y-i«>, y+i»). X
is written in place of p in (All) to emphasize the fact that in (All) we are
considering the behavior of integrand regarded as a function of a complex
variable. Applying the initial condition (17) one can modify this formula to

sd.z.t)-—K f s(z,z,k) (ei£-l)ctt. <A12>
2112 J.

T-i-

The expression for an immediate inversion is

— i-i — — 1
s(rf z, t) --Ix$Ja (yp 2 ) Ji <yp*2) dy j ^j-dk <A13)

0 T-i-

( A i 4 )
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(A15)

where g(X) is a single-valued function of X with infinite many of simple poles
along the negative real axis. For convenience, of the removable singularity
at X-0 formula (A12) was selected rather than standard Me11in' s formula (All).
The singularities of g are the roots of equation

*(E)-0 (A16)

which was studied by Neuman (1972). This equation has the one real root, and
an Infinite number of the purely imaginary roots that can be determined
numerically from the equations

(A17)

OY0sinhY0+(Yo-y2)coshy0-0, yo<y (A18)

aynsinhya+(yl+y2)cosyB'0t in-^) n<yn<im, (A19)

The roots in the complex plane are shown in a Fig. 4. After completing the

y

-> X

Fig. 4. Contour of integration used with Laplace inversion formula.

contour (y-i~,Y+i°°) by a large circle F of radius R passing through the points
A and A' , and avoiding any pole of the integrand, the value of integral (A13)
is not changed for any R-"°. According to the residue theorem one has



WJ

645

A'

" (A20)

where Res [g (X) ,1^] is the residue of g at the pole i,,. The right-hand
integral vanishes for £ — . The residues of the poles given by (A17)-(A19) can
be obtained from the formula (Lavrentjev and Shabat, 1973)

Res[g(X), 1J §f .

After the substitution of (A21) and (A20) into (A13) one immediately arrives
at (22)-(29).

APPENDIX B

To obtain the asymptotic formulas for a hydraulic head for large times one has
to invert the Laplace transform taken for asymptotic values p-0. Since

p-0

one finds from (All)

cosh
W ? (B2)

The order term 0(...) i s understood to mean that

F{x)-O[G(x)} - lim^.1 *\x\ \-A, A-const
G\X)

Noting the Laplace transform

L[i-e-mtl- a
p(p+a)

one immediately comes to (42).

APPENDIX C

To obtain the asymptotic drawdown behavior for small times one has to invert
the Laplace transform (A10) for large asymptotic values of p. We have

From this expansion the Laplace transform can be decomposed into the
multiplication of two factors. One of them depends only on p

p) (C2)
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P 2
R

(C3)

0,X<0

cosh (ẑ
(C4)

The integration in (C3) is accomplished via formula (6.512.3) in Gradshteyn
and Ryzhik (1980). The Laplace transform inversion of (C4) uses formula (6)
on p.313 from Carslav and Jaeger (1959). Then

,,t)-e?[i-±f i

After term-by-term integration, we obtain equation (46).
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