
Palantiri: 
A distributed real-time database system for process control. 

BJ. Tummers, W.P.J. Heubers 
bas@nikhefk.nikhef.nl, witnh@nikhefk.nikhef.nl 

National Institute for Nuclear Physics and High-Energy Physics, section K 
P.O.Box 41882,1009 DB Amsterdam, The Netherlands 

Abstract I. INTRODUCTION 

The medium-energy accelerator MEA, located in 

Amsterdam, is controlled by a heterogeneous computer 

network. A large real-time database contains Ihc 

parameters involved in the control or the accelerator and 

the experiments. This database system was implemented 

about ten years ago and has since been extended several 

times. In response to increased needs die database system 

has been redesigned. 

The new database environment, as described in this 

paper, consists out of two new concepts: 

• A Palantir which is a per machine process that stores 

the locally declared data and forwards all non local requests 

for data access to the appropriate machine. It acts as a 

storage device for data and a looking glass upon the 

world. 

• Golems: working units that define the data within the 

Palantir, and that have knowledge of the hardware they 

control. 

Applications access the data of a Golem by name (which 

do resemble Unix path names). The palantir that runs on 

the same machine as [he application handles the 

distribution of access requests. 

This paper focuses on the Palantir concept as a distributed 

data storage and event handling device for process control. 

The National Institute for Nuclear- and High-Energy 

Physics (NIKHEF) operates for about ten years a linear 

medium-energy electron accelerator (800 McV). Currently 

Ihc accelerator is extended with a pulsc-stretchcr ring. At 

the same lime the experimental facilities arc renewed and 

according to the plans the first experiment with this new 

set up will start in me summer of 1992. 

All these facilities arc controlled by a number of 

computers running a home made real-time operating 

system in a point to point communication network and a 

number of Unix based machines (refill). To prevent 

possible conflicts all hardware control is performed under 

die supervision of a device, which historically is called a 

database, in which all values are stored before they are 

sent to the hardware. This database was designed ten years 

ago, uses one (real-time) machine as central storage 

device. Although this system is functioning well and has 

proved its reliability in the past years, it has some 

disadvantages: it offers two different way to access data 

(by name, and by number), changing its layout is 

cumbersome and maintaining it appeared to be quite 

difficult. 

Obviously, we wanted something new. This paper 

describes the aims, die concept and some details of the 

implementation of the new system. In die last section the 

current status of the project and plans for the future are 

discussed. 

336 

mailto:bas@nikhefk.nikhef.nl
mailto:witnh@nikhefk.nikhef.nl


II. AIMS FOR THE NEW DATABASE SYSTEM. 

Because we did built the current system ourselves, used it 

and maintained it for the past ten years, we had enough 

experience to define the aims for the new system. As the 

database system is meant for real-time, on-line process 

control it is clear that it should be fast enough to meet 

the needs for this kind of applications. Furthermore it 

must be possible to use the system in a heterogeneous 

environment, consisting of as well as real-time systems 

as Unix systems. 

For the database itself we agreed that the new database 

should: 

• Not duplicate data, i.e. data is only stored in one place 

to avoid inconsistencies. 

• Be distributed without applications being aware of the 

distributed nature of the database. 

• Be flexible and easily extendable. 

• Not be aware of its intended use; i.e. not have any 

knowledge of the hardware it is intended to control. 

• Offer as services at least: read, write, lock and 

subscribe. 

golem 

Figure I. The Palantir database concept. 

HI. WHAT DOES THE NEW DATABASE LOOK 

LIKE ? PALANT1RI AND GOLEMS. 

Palanllrl [QuenyaJ Those that watch from afar', the seven 

Seeing Stones brought by Elcndil and his sons from 

Nutnerior; made by Fcanor in Aman. 

J.R.R. Tolkien, The Sitmaritlion, George Allen &. Unwin. 

{977. P 346. 

Golem n. clay figure supemalurally brought to life (in 

Jewish legend); automaton, robot. 
The Concise Oxjord dictionary. 7th ed. 19S2, P 426. 

(These new names were invented co avoid confusion with the 

terms used in the existing system.) 

On each machine that requires access to the database runs 

one specific process; not a server, not a daemon, but a 

palantir. This is indeed what the name suggests (to those 

familiar with Tolkien): a crystal ball giving access to all 

other palanuri in the system. On lop of that, palantiri are 

able to store data that has been declared by their local 

agents/clients, which we call Golems. 

A Golem is a process that typically, but not necessarily 

controls some hardware. The Golem has knowledge of 

this hardware, and receives the values to steer the hardware 

from its local Palaniir. All relevant data that must be 

known to the outside world are sent to the Palanlir by the 

Golem. 

For the third type of process in our system we have not 

chosen a new name; processes that communicate with 

Palantiri, but do not own variables, are called 

Applications. 

A Golem has a name which is made known to the 

Palanlir, and owns a set of variables which are also made 

known to the Palantir. The Palaniir allocates memory for 

these variables and maintains their values. 

Variables have a name, a type and access rights attached 

to them, all of these are specified by the Golem. The 

variable name looks like a Unix path name. The first 

element is the name of the golem, all other elements are 

given by the golem. But there is a direct relation between 

the variable name and the structure of the data. The 



variable called should in the following C-structure, that 

has been declared by a Golem with the name AI3 

struct magnet 
{ long is; 

long should; 

) Q i ; 

may be accessed by the path IA l3iQllslioiild. The magnet 

structure can be read at once by accessing IAI3IQ1. 

Access rights arc different for the golem that owns the 
variables and for the rest of the world. The access may be 
any of read, write, lock and subscribe. Now, road and 
write will be clear; lock will at least give some idea, but 
what does subscribe mean? 

Any application or Golem that has an interest in the 

value of a variable (cither simple, or compound), can 

subscribe to this variable. This means that whenever the 

variable is written to a report is sent to each subscriber 

slating the name of the variable and the new value. This 

allows our magnet steering Golem to get a report of the 

new should value of its magnet without continuously 

polling the Palantir. Actually, it is possible to specify 

that reports arc to be sent only when a write action results 

in the data being changed. 

A lock is a flag that can be set on a variable, again 

simple or compound, reducing write access to that 

variable to the locking process. It may be used cither lo 

keep data unchanged over certain actions, or to keep all 

other processes from meddling with variables you arc 

assumed to have full control over. A lock exists until it 

is removed by die locking process. 

IV. A BIT MORE DOWN INSIDE A PALANTIR. 

A Palantir is a process that forever wails for a message to 

arrive. Each message is processed in order of reception, 

depending on the type of request and the name of the 

variable with which the request is concerned the Palantir 

decides to handle the request locally, or to forward the 

request to another Palamir. Requests that can be handled 

locally are fully serviced before looking for a next request. 

Forwarded requests are maintained in a number of queues 

for future reference when the response from the remote 

Palanur arrives. 

Alt this is quite straightforward, and Palantiri would be 

very simple indeed but for exception handling. Machines 

may become unreachable through network failure, or 

because the machine itself is down. There is no simple 

distinction between the two. Or a process having an 

outstanding lock may disappear, thereby creating a 

possible deadlock situation. 

Palantiri have an elaborate 'are you there' mechanism, 

both to all other Palantiri and to their local Applications 

and Golems. An application or Golem that does not exist 

anymore results in all its locks and subscriptions being 

removed. Note, that a Golem's variables will remain 

valid, though any action performed on diem will result in 

a warning message 'Golem dead' to die requester. The dead 

of a Golem is also reported to all processes having 

subscribed to any of the Golem's variables. When the 

Golem comes alive again (this is possible) the 

subscribers will be notified again. 

When a Golem, and its data, is no longer needed, the 

Golem may be removed. All processes having a 

subscription or lock on the Golem's data are notified of 

the removal of the data, and the subscription or lock 

ceases to exist. 

When a Palantir becomes unreachable, again all 

subscribers lo any variable on thai Palanur are notified. 

Locks on that Palantir slay in effect, but obviously, any 

action lo thai palantir must result in an error message. 

When the Palantir becomes reachable again, it is possible 

(well usually) lo differentiate between network failure and 

machine failure. When the unreachability was the result 

of network failure, it is assumed that locks and 

subscriptions are still valid. When the remote machine 

has been down, locks and subscriptions are reestablished 

as soon as die Golems they are concerned with come to 

life again. 

Other nice problems came into existence by requiring 

Palamiri to be transparent. In a homogeneous 

environment this is no problem, bul we do have 

338 



computers of different types, each having its own dam 

representation. Several solutions were considered, but in 

the end data is stored in the Palantir's local format, and is 

sent over the network in the requesters local formal. This 

has one large disadvantage: When a new type of machine 

enters our environment, we will have to recompile all 

Palantiri after adding the appropriate conversion routines. 

V. CURRENT STATUS AND PLANS FOR THE 
FUTURE. 

The implementation of Palaniiri on the Unix systems has 

been completed. They have been tested under various 

conditions and seem to be running fine. Documents are 

available with the functional specifications of the Palantir 

itself and the Palantir access library (rcf (2.31). 

In a makeshift setup though, performance tests have been 

done, and even in a situation with many variables (20000) 

spread over 200 Golems running on few machines (4) and 

a high load in subscription reports (> 100/sccond) the 

system kept running nicely. 

As a nice side effect, it seemed possible, even simple, to 

create a C shell environment in which the entire Palaniir 

database can be accessed very much like the Unix file 

system tree. Hence we now have commands like pis, ped, 

pget and (slighdy more difficult) ppuu 

The control system of the new experimental facilities will 

be based on me Palantir concept. 

The control system for the linear accelerator and the 

stretcher ring is based upon the 'old' database concept. 

Porting this system with all applications involved to the 

Palaniiri database is a large project. Because of 

operational and manpower aspects, it is impossible to do 

the port in a short period of lime. To be able to convert 

and test existing applications, golems have been made 

[hat map the existing control database onto the new 

Palaniir domain. Doing this, the two domains arc 

connected and it is possible to convert first all 

applications and then replace the 'old' database by the new 

one. 

VI. REFERENCES. 

[1J W.P.J. Hcubcrs and R.G.K. Hart, A Workstation-

based Operator Interface to Conuol MEA. Proceedings of 

the International Conference on Accelerator and Large 

Experimental Physics Control Systems, Vancouver 1989. 

|2] BJ.Tummcrs, Palantir Functional Specifications, 

internal NIKHEF document. 

(3) B J.Tummers, Palanlir Library Functional Specifica­

tions, internal NIKHEF document. 

339 


