Palantiri:
A distributed real-time database system for process control.

B.J. Tummers, W.P.J. Heubers
bas@nikhefk.nikhef.nl, wimh@nikhefk.nikhef.nl
National Institute for Nuclear Physics and High-Energy Physics, section K
P.O.Bex 41882, 1009 DB Amsterdam, The Netherlands

Absiract

The medium-energy accelerator MEA, located in
Amsterdam, is controlled by a helerogencous computer
network. A large real-time dawabasc contains the
parameters involved in the control of the accelerator and
the experiments. This database system was implemented
about ten years ago and has since been extended scveral
I nceds the datab

times. In responsc o i SysICm
has been redesigned.

The ncw database environment,
paper, consists out of ilwo new concepls:

* A Palaniir which is a per machine process that stores
the locally declared dati and forwards all non local requests
for data access to the appropriaic machine. It acls as a
storage device for data and a looking glass upon the

as described in this

world.

» Golems: working units that definc the data within the
Palantir, and that have knawledge of the hardware they
control.

Applications access the data of a Golem by name (which
do resemble Unix path names). The palantir that runs on
the same machine as the application handles the
distribution of access requests.

This paper focuses on the Palantir concept as a distributed
data storage and event handling device for process controf,

336

1. INTRODUCTION

The National Institute for Nuclear- and High-Energy
Physics (NIKHEF) operates for about ten years a linear
dium-encryy electron accel (800 McV). Cumrently
the accclerator is extended with a pulse-suretcher ring. At
the same time the experimental facilities are renewed and
according to the plans the fisst experiment with this new
sct up will start in the summer of 1992,
All these facilities are conwrolled by a number of
computers running a home made real-ime operaling
system in a point 1o point communication neiwork and a
number of Unix bascd machines (ref[1]). To prevent
possible conllicts all hardware control is performed under
the supervision of a device, which historically is called a
database, in which all values are stored before they arc
scnt to the hardwarc. This database was designed ten years
ago, uses one (real-time) machine as central storage
device. Althopgh this system is funclioning well and has
proved its reliability in the past years, it has somc
disadvaniages: it offcrs two different way to access data
(by name, and by number), changing its layoul is
cumbersome and maintaining it appeared 10 be quite
difficult.

Obviously, we wanted something new. This paper
describes the aims, the concepl and some details of the
implementation of the new system. In the last section the
current status ol the project and plans for the future are
discussed.


mailto:bas@nikhefk.nikhef.nl
mailto:witnh@nikhefk.nikhef.nl

1. AIMS FOR THE NEW DATABASE SYSTEM.

Because we did built the current system ourselves, used it
and maintained it for the past ten ycars, we had enough
experience (o define the aims for the ncw system. As the
database system is meant for real-time, on-line process
control it is clear that it should be fast enough 10 meet
the nceds for this kind of applications. Furthermore it
must be possible to usc the sysicm in a heterogeneous
environment, consisting of as well as rcal-time sysiems
as Unix systems,

For the databasc itsclf we agrecd that the new database
should:

« Not duplicate data, i.c. data is only stored in onc place
to avoid inconsistencies.

* Be distributed without applications being aware of the
distributed nature of the database.

» Be flexible and casily extendable.

* Not be aware of uts intended use; i.c. not have any
knowledge of the hardware it is intcnded to control.

» Offer as scrvices at least: read, wrile, lock and
subscribe.

golem

Figure 1. The Palantir databasc concepl.

1. WHAT DOES THE NEW DATABASE LOOK
LIKE ? PALANTIRI AND GOLEMS.

337

Palantiri [Quenya) ‘Those that watch from afar', the seven
Secing Stones brought by Elendil and his sons from
Nimerior; made by Féanor in Aman.

JR.R. Totkien, The Silmarillion, George Allen & Unwin,
1977, P 346.

Golem n. clay figure supernairally brought 10 life (in
Jewish legend); automaton, robot.
The Concise Oxford dictianary, 7th ed. 19582, P 426.

(These new names were invented to avoid confusion with the

terms used in the existing system.)

On each maching that requires access to the database runs
one specific process; not a server, rot a daemon, but 2
palantir. This is indeed what the name suggests (lo those
familiar with Toikien): a crystal ball giving access to all
other palantiri in the system. On top of that, palantiri are
able 10 store daia that has been declared by their local
agents/clicals, which we call Golems.

A Golem is a process that typicaily, but not necessarily
contsols some hardware. The Golem has knowledge of
this hardware, and receives the values to steer the hardware
from its local Palantir. All relevant data that must be
known 10 the outside world are sent to the Palantir by the
Golem.

For the third 1ype of process in our system we have not
chosen a new namc; processes that communicate with
Palantiri, but do not own variables, are called
Applications.

A Golcm has a name which is made known to the
Palaniir, and owns a set of variables which are also made
known o the Palantir. The Palantir allocates memory for
these variables and maintains their values.

Variables have a name, a type and access rights attached
to them, all of these are specified by the Golem, The
variable name looks like a Unix path name. The first
element is the name of the golem, all other elements are
given by the golem. But chere is a direct relation between
the variable name and the structure of the data. The



variable caltled should in the foltowing C-structure, thal
has been declared by a Golem with the name A73

struct magnet

{ long is;
long should;

1Qt;

may be accessed by the path /14 13/Q 1 ishould. The magnet
structure can be read at once by accessing JAI3/Q1.

Access rights are different for the golem that owns the
variables and for the rest of the world. The access may be
any of read, write, lock and subscribe. Now, rcad and
wrile will be clear; lock will al least give some idea, but
what docs subscribe mean?

Any application or Golem that has an interest in the
value of a variable (cither simple, or compound), can
subscribe 1o this variable, This mcans that whenever the
variable is writicn to a report is sent to each subscriber
stating the name of the variable and the new value. This
allows our magnet steering Golem to get a report of the
new should value of its magnet without continuously
polling the Palantir. Actually, it is passible to specify
thal reporis are Lo be sent only when a write action results
in the data being changed.

A lock is a flag that can be sct on a variable, again
simple or compound, reducing writc access to that
variable to the focking process. {t may be used cither 10
keep data unchanged over certilin actions, or to keep all
other processes from meddling with variables you are
assumed to have full control over. A lock cxists until it
is removed by the locking process.

IV, A BIT MORE DOWN INSIDE A PALANTIR.

A Palantir is a process that forever waits for a message to
arrive. Each message is processed in oxfder of reception,
depending on the type of request and the name of the
variable with which the request is concerned the Palantir
decides to handic the request locally, or to forward the
request to another Palantir. Requests that can be handled

338

locally are fully serviced before looking for a next request.
Forwarded req are d in a number of queues
for future reference when the response from the remote
Palanuir arrives.

All this is quite straighiforward, and Palantiri would be
very simple indeed but for exception handling. Machines
may become unreachable through network failure, or
because the machine itself is dowa. There is no simple
distinclion between the two. Or a process having an
outstanding fock may disappear, thereby cresting a
possible deadlock situation.

Palantiri have an claboralc ‘are you there’ mechanism,
both to all other Patantiri and to their local Applications
and Golems. An application or Golem that does not exist
anymore results in all its locks and subscriptions being
removed. Note, that a Golem's variables will remain
valid, though any action performed on them will result in
a waming message ‘Golem dead' o the requester. The dead
of a Golem is also reponed to all processes having
subscribed to any of the Golem's variables. When the
Golem comes alive again (this is possible) the
subscribers will be notified again.

When a Golem, and its dara, is no longer necded, the
Golem may be removed. Afl processes having a
subscription or lock on the Golem's data are notified of
the removal of the data, and the subscription or lock
ceases Lo exist.

When a Pajantir becomes unreachable, again all
subscribers 10 any variable on that Palantir are notified.
Locks on that Palantir siay in effect, but obviously, any
action to that palantir must result in an error message.
When the Palantir becomes reachable again, it is possible
(well usually) 10 differentiate between neiwork failure and
machinc failure, When the unreachability was the result
of network failure, it is assumed that locks and
subscriptions are still valid. When the remote machine
has been down, locks and subscriptions are reestablished
as soon as the Golems they are concerned with come to

life again.

Other nice problems came into cxistence by requiring
Palaniiri to be transparent. In a homogeneous
cnvironment this is no problem, but we do have



computers of different Lypes, cach having its own data
representation. Several solutions were considered, but in
the end data is stored in the Palantir's local format, and is
sent over the network in the requesters local format. This
has one large disadvantage: When a new type of machine
enters our cnvironment, we will have (o recompile all
Palantiri afier adding the appropriale conversion routines.

V. CURRENT STATUS AND PLANS FOR THE
FUTURE.

The implementation of Palantiri on the Unix systems has
been completed. They have been tesied under various
conditions and scein to be running fine. Documents are
available with the functional specifications of the Palantir
itself and the Palantir access librury (ref {2,3]).

In a makeshift scwp though, performance tests have been
done, and even in a situation with many variables (20000)
spread over 200 Golems running on few machines (4) and
a high load in subscription reporis (>100/sccond) the
system kept running nicely.

As a nice side effect, it scemed possible, cven simple, 10
creatc a C shell environment in which the cntire Palantir
database can be accessed very much like the Unix file
system tree, Hence we now have commands like pis, pcd,
pget and (slightly more difficult) ppues.

The control system of the new experimental [acilitics will
be based on the Palantir concept.

The control system for the lincar accelerator and the
streicher ring is based upon the ‘old' database concept.
Porting this system with all applications involved o the
Palantiri databasc is a large project. Because of
operational and manpower aspects, it is impossible t©0 do
the port in a short period of time. To be able 10 convert
and test cxisting applications, golems have been made
that map the cxisting control database onto the new
Palantir domain. Doing this, the two domains arc
connccted and it is possible to convert first all

339

lications and then replace the ‘ofd’ database by the new

one.

V1. REFERENCES.

[1) W.P.J. Heubers and R.G.K. Hart, A Workstation-
based Operator Interface to Control MEA. Proceedings of
the International Conference on Accelerator and Large
Experimental Physics Conwrol Systems, Vancouver 1989.

2] B.J.Tummers, Palantir Functional Specifications,
internal NIKHEF document

{3} B.J.Tummers, Palantir Library Functional Specifica-
tions, internal NIKHEF document.



