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1 Introduction

One of the basic problems of nonrelativistic quantum mechanics is to find the energy
spectrum and eigenfunctions of a microsystem described by the Schrédinger equation with
an appropriate potential. Exact solutions of this equation have been found ([1]-[4]) for a
quite limited class of potentials like the harmonic oscillator, the Coulomb potential and
some others. However, most quantum systems are described by potcntials for which the
Schrédinger equation cannot be solved analytically. Thus, the solution of the Schrodinger
cquation with a sufficiently arbitrary potential represents the main mathematical task.
For this aim, many approximate analytical and numerical methods were worked out.
The great progress in the development of computer technique and effective algorithms of
numerical solutions of differential equations pertmitone to obtain numerical solutions for
the energy spectrum and wave functions with a quite high accuracy although practical
calculations are usually very laborious and require powerful computers.

Approximate analytical methods imply a perturbative procedure when the Hamilto-
nian is divided into two parts H = Hy + H;, the solution of the zeroth approximation
HoW'® = EOVPO) js supposed to be obtained and perturkation corrections to the zeroth
approximation £ and ¥ can be calculated. The physical and mathematical top point
is that the Hamiltonian Hy in an appropriate representation of the Schrodinger equation
should be chosen in such a way astocaich the main dynamic properties of a quantum system
and to give a possibility to calculate analytically all physical characteristics of the system
under consideration. The interaction Hamiltonian H; should give smal! corrections to the
zeroth approximation and these corrections can be calculated.

Here we mention the standard perturbation Reley-Schrédinger theory ([1]-[4]), the
quasiclassical or WKB method ([1)-[4]), 1/N -expansion([5}, (6 ). We will not go into
details of these methods and refer readers to the numerous literature ( see, for example,
(1]-(6])-

In this paper the oscillator representation method ({7],{8]) will be applied to Quantum
Mechanics problems. The most remarkable difference between Quantum Field Theory
and Quantum Mechanics is that quantized fields in QFT are set of oscillators and any
interactions of fields do not change the oscillator nature of these quantized fields. At
the same time, in Quantum Mechanics most of the potentials and therefore their corre-
sponding wave functions are quite far from the oscillator behaviour. The application of
the oscillator repesentation method implies that a wave function, being a bound ground
state of 2 quantum system with an attractive potential, is expanded over the oscillator
basis in the representation in which canonical variables (coordinate and momenta) are
expressed through the creation and annihilation operators a* and a. However in most
cases the asymptotic behaviour of a true wave function (for example, the Couloumb wave
functions) for large distances does not coincide with the Gaussian asymptotic behaviour
of oscillator wave functions. This means that the expansion of these wave functions over
the oscillator basis, although being mathematically correct, leads to series converging not
sufficiently fast for practical purposes.

Therefore, before applying the oscillator representation method we have to modify the
variables in the starting Schrodinger equation to get 2 modified equation having solutions
with the Gaussian asymptotic behaviour. In the Coulomb systems such a modification



is performed by going over to the four-dimensional space where the wave function of the
Coulomb system becomes an oscillator one. In an early paper [9], Schrédinger has noted
the existence of such a transformation which transforms the three-dimensional Coulomb
system into an oscillator one in the four-dimensional space. Kustaanheimo and Stiefel
{10] gave the explicit form of this transformation and used it to solve the classical Kepler
problem.

It should be taken into account that these transformations are not the canonical ones.
It means that a quantum system after a la Kustaanheimo-Stiefel transformation becomes
another quantum system with another set of quantum numbers and corresponding wave
functions. However this new set contains a subset of wave functions which are wave
functions of the initial system at the same time, and we should be able to pick out
necessary quantum numbers and wave functions. Therefore, these transformations should
be considered as a successful mathematical technical method.

So we get a modified Schrddinger equation the eigenfunctions of which have the os-
cillator Gaussian asymptotical behaviour. The next step is to write the Hamiltonian in
terms of normal products over the creation and annihilation operators ¢* and a. Now one
faces the question what is the optimal way to determine the frequency of this oscillator.
In the language of the Hamilton formalism the problem of calculation of the ground-state
energy can be formulated in the following manner. Let the Hamiltonian of a system be
given. Let us pick out the pure oscillator part with some unknown frequency w and write
this Hamiltonian in the form Hy = wa*a. The rest of the Hamiltonian should be repre-
sented in terms of normal products over the operators a* and a. The requirement that
this interaction Hamiltonian does not contain quadratic in the canonical variables terms
leads to the equation which determines the oscillator frequency w. This requirement is
called the oscillator representation condition (ORC). As a result, the total Hamiltonian is
written in the representation where the main quantum contributions to the ground state
or vacuum of the system are taken into account.

The conception of normal products introduced into nonrelativistic quantum mechanics
is actually not new (see,for example, [11}); however, the question is on what principles the
realization of this idea should be based. All approaches which have used the formalism
of creation and annihilation operators imply that the ground state wave function belongs
to the oscillator basis although the true wave function can have completely different
asymptotic behaviour. Besides, the "free” Hamiltonians Hp, for which the exact oscillator
solutions exist, are usually chosen in the form which destroys completely the canonical
quantum structure of the Hamiltonian (see, for example,[5])-[11] ).

The paper is organized in the following way: In section 2, basic formulas of the
oscillator representation method are given. In section 3, we consider the one- and three-
dimensional anharmonic potentials and power-low as well as logarithmic potentials. The
energy levels for the ground and orbitial as well as radial excited states are calculated.
The results of our calculations in the zeroth approximation agree with the exact values
very well. In section 4, the relativized Schrodinger equation is considered.



2 The Oscillator Representation

The method is based on the ideas and methods of quantum theory of scalar fields and
consists in the following. In nonrelativistic quantum mechanics any ground state of a
bound system can be approximated by a wave function of an oscillator. The question
arises how to choose this oscillator in the optimal form. For this aim we take advantage
of the ideas of quantum field theory developed in the papers ({7],[8] .

Our starting point is the radial Schrédinger equation in 3 dimensions:

P rdy2  l(1+1) _
[-5(5) 7+ 5 + VO bulr) = Eartbulr) - (2.)
We shall consider the potentials of the Coulomb or Yukawa type, i.e. the potentials
decreasing for large distances

V(r)—0 for r — oo, (2.2)
and the anharmonic potentials of the confinement type for which
V(ir)—=r®, (¢>0) for r—oo. (2.3)

These potentials can have a repulsive region at short distances.

Our aim is to calculate the energy spectrum E,; and to find the wave functions ,(r)
by using the oscillator representation method. This means that the wave functions ¥(r)
should be expanded over the oscillator basis. This expansion can be done,but it will
not be effective for the simple reason that the asymptotic behaviours of the true and
oscillator wave functions disagree for large r — 0o and short r — 0 distances. Thus we
cannot  apply the oscillator representation method directly, but we have to transform the
Schrédinger equation (2.1) in such a way that the true wave function should become the
necessary asymptotic behaviour for large and small distances. For this aim, we will use
the well-known technique of changing the independent coordinate ( see, for example, {12j,
{13]) which was applied to show the equivalence between solutions for different power-
low potentials in the spaces of different dimensions. For example, there exists equivalence
between the Coulomb potential in 3 dimensions and the oscillator potential in 4 dimensions
(see [10], [13] ).

Our idea consists in the following. We want to change the variable » = r(s) and
identify the transformed equation with a Schrédinger equation in the space with another
dimension. The transition in the radial Schrédinger equation to the highest dimensions
from the general point of view has been considered earlier ( see, for example, {14] ).
Thus, the calculation of the function ¥ (r) would be equivalent to the calculation of the
ground state wave function of a modified Hamiltonian in another dimension. Moreover,
the wave functions in this auxiliary space should have the oscillator Gaussian asymptotic
behaviour. The radial excitation wave functions ¥,,(r) = |r,} will be equivalent to the
highest oscillator states.

The Schrédinger equation (2.1) can be written in the form:

/ Pri(r)| - -;-A + V() - E]¥@) =0.



If ¥(r) = Yu(r)Yu(b, 4), then this equation for the wave function of the l-th orbital
excitation looks as

Jorlom) 32"+ S5 (701 ) (i) -

The wave function ¥,(r) depends on one radial variable r only. After the substitutions
r=s and ripn(r) = s*®(s), (2.4)

where p and a are parameters, this equation becomes after some transformations

/dssD-leb(s)[ - %((;;)2 + Ds_l : ;;) + Wi(s?, E)] ¥(s)=0, (2.5)
[

with

1\(1 p,D)

Wi(s?, E) = W(s%1,p,D; E) = +202%°2(V(s*) - E) ,

D=2 -2p+2, [\'(l,p,D):Z(( —2)2—4p2(21+l)2).

One can see that in the case when the function ®(s) = ®(s) depends on s*, only this
equation can be identified with the equation in the space RP with

D=2a-2p+2

on a wave function ®(s) depending on the radius s only. The equation (2.5) can be
rewritten

/ ds0(s)| ~ 28 + Wils%, B) - e(E)|9(s) =0,

where the function
e(E) =¢(l,p, D E)

should be considered as an eigenvalue of the Schrodinger equation in D-dimensions
1
[- 58 + Wi(s", E)]qs(s) = e(E)®(s). (2.6)

The desired energy FE is defined by the equation
e(Ey=¢e(l,p,D;E) = 0. (2.7)

Formulation of the problem. We would like to stress that the energy FE enters into
the Schrédinger equation (2.7) as a parameter. Thus, our problem is formulated in the
following way. We have the Hamiltonian H in D dimensions

1 2
H(E) = —38p + Wi(s", B) = &+ wi(s", B), (28)



and we have to solve the Schrddinger equation
» :
H(E)® = [2 + Wi(s. E)] @ = ()0 (2.9)

for radial excitations only. The desired energy spectrum E,, of the initial problem in (2.1)
is contained in the radial excitation spectrum £ of the Hamiltonian (2.8):

H(E)P(s) = P EYOll(s) . (n=0.1,2...), (2.10)
and it is defined by the equation
s Ey=0. (2.11)

We shall solve equation (2.10) by the oscillator representation method. The Hamilto-
nian (2.8) can be represented in the form (for details see [§])

H = Ho(E)+ H)(E)+co(E)= Ho+ Hj + ¢ (2.12)
with
e = wlata).

Hn,

dk D-; 2 gy =~k (A ik
/(—2;—) ¥y (k2 E)e-¥iu ):c;q

X d DJ2—1 e
co( Esw. D) Bi+j u w(2.E),
[1]

1 D2
where : * : is the symbol of the normal ordering and ¢; = ¢ — 1 — 5 = 122,
The condition of the oscillator representation can he written as
7]
;EME:N.D):O. (2.13)

This equation dctermines the parameter
w=w{k.D).

as a function of the energy E, D and other parameters defining the potentail V(») in
(2.1).

The ground state energy (£, D) of the Hamiltonian  in (2.12) will be calculated by
perturbation method over the interaction llamiltonian 1 and in the N-th approximation
order has the form:

ey (B D) = ol E. D) + e E. DY + ... + en(E.D) .

According to (2.11), the ground state encrgy E of the initial problem in the N-th
perturbation order of the oscillator representation method is defined by the equations

(2.13) and
ENNE, D) =co(F. D)+ c2( E.INV+ .+ sn(E.D) =0 . (2.14)



This equation determines the energy £(ny( 2} in the N-th perturbation order as a function
of D and other parameters defining the potential. The parameter D can be defined by
the condition

Eny = min Ewn(D) . (2.15)

The ground state energy in the zeroth and second approximations. Really,
we shall use the oscillator representation method in the zeroth and second approximations
only. Here we give formulas simplifying these calculations for the ground state energy.
The function e( E;w, D) in {2.12) depends on two parameters D) and w. We shall consider
problems for solution of which a greater number of auxiliary parameters can be introduced.
Let us denote these parameters by {a;} and the auxiliary ground state energy

e Biw o) = eo( Ejw, a;) + £2( Bjw, ay)
According to (2.12) the function &o( £;w, a;) has the form
co( Esw, a;) = Alw, a;) ~ EB(w,a;), (2.16)

where A(w,a;)} and B{w, ar;) are known functions.
In the zeroth approximation, the equation defining the oscillator representation (2.13)

and the equation (2.14)
eol Bojw, aj) = A(w, ;) — EoB{w,a;) =0

give

3 (Aw,q;}\ _
o (B(u,aj)) =0

The equations

2 V=0 (Awa)
B Eolw, aj) = e, (B(w,a,—)) =0 for all &

define the parameters {a;} as functions of £,
a; = a;(E). (2.17)

As a result, in the zeroth approximation the energy E, is determined by the minimum

. Alw,a;)  Alwo,0?)
= = 2.18
Bo= min Bwa;)  Blowa?) (218)

where the parameters wp and a}’ define the minimum.
In the second approximation, we have to solve equation (2.13) and

e)(Ew, ;) = ol Esw, ;) + e2( B w, ;) = 0. (2.19)



We expect that the second correction is small so that in the second approximation the
energy Es) = Ep + E; and
EU(E(-_;);WO,QJ') = A(wo,ﬂj) - E(g)B(wo,a,-) = —EgB(C(j) + O(Ezz)
where wg = w(Ep). Thus the second correction is
e2(Eg; wo, ;)
E, =223 4 O(E).
iy T (E2)
Finally we get
E‘g) = B+ E; = (2.20)

. Alw,a;) | €2(Eo;wo, a;(Eo)) E?
{'ﬂ.’,‘} B(w, a;) B(uwo, a;( Ep)) +E°0< 0 )

E,

A(“"’Oa ﬂ?) + EZ(ED; Wo, ﬂ? Eg 2
+ B0 |22
Blwo,af) “\|E

Using this formula, calculations become simpler in comparison with (2.15) and (2.17).
The accuracy of the oscillator representation can be evaluated as

€2
€o

& ~

The radial excitations. The radial excitations in the oscillator representation are
defined in the form
T'(d/2 + n,)

T (2.21)

|nr) = Cnr(aj‘-a;- "'lo) > C:,z = 22ﬂ'nr!

We shall apply the oscillator representation to the Hamiltonian in the form (2.12), and
then we get the Schrodinger equation (2.10) . The desired energies £, (n = 0,1,...) of
the initial equation (2.1) for the ground and radial excited states are defined by equation
(2.11), and therefore, we should find the functions el"l( E) for the ground and radial excited
states. For the state |[n} (n = 0,1, ...) the matrix element

(n|Hyln) = AMYw, a;) — EoBM(w,a) #£0 .
The energy £ in the lowest approximation looks like

U(E) = (nlH|n) = eo( E) + 2nw + (n| Hiln)
AP, 05) = EBM(w,ay) , (2:22)

where
AP w,a5) = A(w, a5) + 2nw + AN w,a5) ,
BM(w,0;) = B(w,0;) + BM(w, ;) .



Two equations

] 9
3o Alw.0) ~ Ez-B(w,a,) =0, (2.23)
A (w,a;) - EBM(w,a;) =0,

determine the functions w(a;) and E(a;). The energy of the n-th excited state in the
first approximation of the oscillator representation is dctermined as

EM = mig AP aj) ;)

{ey} Bl"](w(aJ) a,)
In the second approximation the energy is defined as
el E) = eo( E) + 2nw(E) + (nlHyln) (2.24)

—(nl(H:1 — (nlHyln)) - 7{-0-_2‘,7(5—) - (Hy = (nlHyln))Im) .

The wave function in the second approximation is

! Hy — (n|Hfn)) Hn) .

I\l _ gy — .
e =11 Hy — 2nw(FE) (

The parameter D and the oscillator basis. Here we want to make a remark
concerning the connection of the space RP, for which D can be a noninteger, and the
algebra of the creation and annihilation operators implying the number D sobean integer.

The parameters p and D are arbitrary and can be chosen in an appropriate way. They
can be considered as additional variational parameters which can be found, for example,
by the minimizaiion of the energy in the zeroth approximation:

ol E) = {r%n) €(l,p, D; E).
On the other hand, the parameter p can be connected with the behaviour of the wave

function ¥.(r), at large distances to get the Gaussian asymptotics. For example, for
potentials (2.3) we can choose the parameter p = 1/(1 + o) so that one can get

W(r) ~ exp{—r'*") ~ exp(—r1?) ~ exp(—s?) ~ B(s).

The parameter a or D can be connected with the behaviour of the wave function at
short distancies. If the potential V(r) has no repulsive character for - — 0,then we choose
K(l,p, D) = 0 and from (2.6) we get

D=2+2p(20+1).

If the potential V(r) has a repulsive character for r — 0,then D is a parameter which
should be chosen to dump the repulsive behaviour of the potential at short distances. For
example, it can be found by the minimization of the background energy in the zeroth



approximation. [t implies that D can be any positive number. [n other words. the
dimension £ of the space RP can be cousidered as an additional parameter which can be
chosen to improve the zeroth approximation.

One can see that the radial quantum vumber 1 does not enter into the Schrodinger
equation {2.9) in the explicit form. The orbital quantum number { enters into (2.9),but
it is absorbed by the "dimension” parameter D). From the point of view of the space R?

the functions
Bu(s) = ¥ 0n(s?) or  tu(r) = $,(412)

for any n and for a fixed { are eigenfunctions of the basic series of radial excitations in

the space RP with the radial quantum number n and the zeroth orbital momenta.
Thus, the solution of the equation in 3-dimensions for the !-th orbital excitation is

equivalent to the solution of the Schrédinger equation in the space R? for states with

zeroth angular momenta.
As a result, the initial Schrédinger equation is represented in the form (2.9) in which
the wave function of the ground state ©(s) has

o the Gaussian asymptoties for large distances @(s) ~ exp(—s?).
e maximum at the point = = 0.

The oscillator representation method consists in that we look for the solution of the
Schrodinger equation (2.9} iu the form

Puls) = exp(=55) D e PPs0e)

m

where {P,Q,D)(t)} is the class of orthogonal polynomials which are orthogonal on the interval
0 <t < co with the weight function

po(l) = (3 exp(—1).

x
D
/(/z 12t Py PPy =
0
These orthogonal polynomials can he constructed by using the formalism of creation

and annihilation operators a; and a} in the space RP (sce [8]). We have

[0} ~ exp ( - u'—;'s")

All radial excitations can be written in the form

¢, ~ (a+a+)"|0) ~ P:D)(wsz)r_%’z ~ P'sl))(u'.,.l//-)(‘xp(_:‘_;,.l/n), (2.25)



Dy, - . . . .
where P )(t) is a polynomial of the n-th order. The parameter D in this representation
can be considered as any positive number. These polynomials satisfy the orthogonal
condition:

=

(¥, ¥m) ~ (0)(aa)"(a* a*)"]0) ~ / ds sP~ exp(~s?) PIP)(s?) PIP)(5?)
[¢]

~ /dt P12 exp(—t) PPY Y PPY(t) ~ 6,
(1)

This condition can be imposed on any positive D. Thus the aigebra of creation and
annihilation operators is nothing else than the mathematical method to perform any
calculations connected with orthanormal polynomials.

3 Anharmonic Potentials

Anharmonic oscillator models have played an important role in the evolution of many
branches of quantum physics. In spite of seeming simplicity it is not easy problem io
find spectrum and eigenfunctions of an anharmonic interaction. There is a voluminous
literature where different analytical and numerical methods are worked out 1o solve this
problem (see, for example,[15]-[21}). On the other hand, the anharmonic potential is a
good touchstone to test any new method.

Bender and Wu [16] have made a valuable contribution to investigation of the an-
harmonic oscillator, which is of particular interest to field theoreticians because it can
be regarded as a field theory in one dimension. The main hope is that the unusual and
unexpected properties of this nonlinear model may give some indication of the analytical
structure of more realistic field theory. Nevertheless the developed technique turned out
to be quite complicated even for this simple case.

The standard way of attacking this problem is to invoke perturbation theory. Per-
turbation series for any physical characteristics are asymptotical ones, i.e., they have the
zeroth radius of covergence. Summation methods should be applied to calculate high
order corrections. As a result, we have quite a cumbersome process. A thorough discussion
of these difficulties has been done by Stevenson [17).

The quasiclassical approximation was applied to the three-dimensional anharmeonic
oscillator [18]. The problem of calculation of the energy levels is reduced to the solution
of a very cumbersome transcendental equation invoking the complete elliptic integrals.
However, its accuracy drastically worsens for the low lying energy levels and moderate
anharmonicity.

Another known approach for treating systems with strong interaction is a modified
perturbation theory [19]. The accuracy of the modified perturbation theory with the prin-
ciple of minimal sensitivity has been carefully analyzed [20] for the anharmonic oscillator.

The 1/N expansion for the anharmonic oscillator was used in Refs.{21]. In [6] the 1/N
expansion was applied to calculate the spectrum of the anharmonic oscillator.
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In this section we would like to contribute to these numerous investigaiions. We shall
demonstrate the oscillator representation method to calculate the bound state energies of
anharmonic oscillators.

3.1 Anharmonic potentials in R!
Here we demonstrate the oscillator representation method on calculation of the bound
state energy of one-dimension anharmonic oscillator. The Hamiltonian is

H———+ 2 q %+ Agt. (3.1)

In the case of symmetrical potentials V(g?) the ground state wave function depends on

¢* only, i.e.,
V=), ¥(0)=0,

so that we can write
/ dg W) - 5 -’F + V() ~ mE| W(g?) = 0

or

[ an w5+ Vi) - v =, (3:2)

V(qz) = —,)--—q2 +mig*.

Thus we can consider the wave equation op the positive semiaxis 0 < ¢ < oo.

We are going to apply the oscillator representation to this Hamiltonian so that we
should coordinate the Gaussian asymptotic behaviour of functions in OR with the true
one. For large ¢ this asymptotic is defined by the anharmonic term Ag* and the wave

function is proportional to
¥(g?) ~ exp(~q°) for g — oo.
However, it is clear that for small A the true wave function is close more to the Gaussian
wave function than to the anharmonic one. Thus, we can expect that the behaviour like
¥(¢*) ~ exp(~¢)  for q— oo,

where 2 < a < 3 is a parameter, can be an acceptable approximation. Let us introduce
the new variable I
2

g=s"=s* = p=—
44

After some transformations the integral in (3.2) can be written as

oo 1| & —2pd
fodsa‘-2W(s)[—§[ES—2+L§_”d]+W( E)]W(s):ﬁ,

11



where
2,,2
W(s?, E) = 407 -’% ()M 4 mA(s?)5 — mE(sz)z""] ) (3.3)

Now we can identify the operator
J +l—2pd _ & +d—lil_
ds? s ds  ds? s ds

and the measure

-4y, d=2-2p

dss'~? = dss?™} — (ds)?

with "the Laplacian” A4 and "the measure” (ds)? in an auxiliary space R if these oper-
ators act on a function depending on the radius only. The relation (2.7) can be used and
equation (3.3) looks as

/(ds)d\P(s)[ - éAd W (R E)]\b(s) =0. (3.4)

The wave function ¥(s} in (3.4) cau be considered as a wave function of the ground state
satisfying the Schrédinger equation

{——Ad+W CENU(s) = HU(s) = e(E)¥(s) ,

= —9— + W(s% EY, (3.5)
and the desired energy E is determined by the equation
«E)=0. (3.6)

Now we can apply the oscillator representation method to the Hamiltonian (3.5). Accord-
ing to formula (2.6) the Schrodinger equation and the Hamiltonian (3.5) in the oscillator
representation look as

(Ho+ H) + o)V = e(£)Y
= —P;-F"V(SZ,E): Ho+ Hi+eo, (3.7)
where Hg and H; are given by (2.11),and €, (2.16) is
() = mlnko(L w,p) ,

with
dw * duni-le~ ¢
co(Esw,p) = ik A ——_F(-)— (;,E)
= A(w,p) - EB(w,p) ,

1~ 4p?

Alwp) = —Lw %[m" T(3p) 4 25 r(5p)]
4p*mw  F(p)

B(w, p) T Tu-p°

12



where r = w?. The functions w(F£) and p(E) are defined by the equations
a . a ..
%cu(ll.u.ﬂ]—o. (_—);;:(](L.w.ﬂ)—o

Let us calculate the sccond correction to the ground state energy. The first correction
cquals zero:

&1 = (0]1;]0) = 0.

The sccond correction is deflined by the standard formula

<2 =—(0]”1 H1|0/

d
1 dky dky ) = 5= 9 k}+ A2 (kyk2)
-1 (?;') /(%) Feon (L.
1
S(z) =/—{msh(! y—1 - 7: ] —Z CPTETT

0

Sptmie o [ R, ! I'(n+1-— o
SQ(E;W,II) = —ﬁ g ("—') - I,((“—+2—:2Lp)) N (Jb)
where
R = mt T+l —1p)T(1 +3p) A
" ba? I'(1 - p) 513
T +1-6o)P(1 +57)  E I(n+l—’p)l‘(l+ﬂ)
ra—tp) T(l - 2p)

The ground state energy I in the zeroth perturbation order is defined by the cquation
{2.19)

Alw, p) _ A(wo, o) .
o= in Born) = Blwopo)’ (3.9)

where wy and pgp define the mininmm. The energy in the second perturbation order equals

I‘:(-z) = E() + Ez‘ (3[0)
where

£ = I'(2—p) . znl/2 Pl+3p) 1 A T1+50) 1

o (z‘p) [bmpl‘(l +p) 6 P(l+p) « 5 Id+p) 22|°

2
e2{ Eo; wo, po) D R, Fn+1-~p)

E = —— = —_—

T P(p) & Z (n!) F(n +2-2p)"

In Table 1 the numerical results for the background energy are given for the case m =1
and mv =1 in the zeroth and sccond approximations.

13



Table 1. Results of calculation of the ground state energy of
one-dimensional anharmonic oscillator for the case
m = % and m = 1 as a function of the parameterA.
EW and E® arethe energy of the zeroth and second
approximations. E°7 is the exact value in Ref.[22

£
A P EOT [ E@ [ B~
02 ) 2.02311.01511.015
.1 2.07 { 1.065 | 1.065
2 2121 1.119 ( 1.118 | 1.118
.5 2.18 | 1.243 § 1.242
1. 2.2311.394 1 1.393
1.5 | 2.25 | 1.511 | 1.510
2. 2271 1.610 | 1.609 | 1.608
3. 2.31 1 2.022 | 2.020
10. 2.32 12454 | 2.452
20. 2.34 1 3.016 | 3.0114 { 3.010
100. 1| 2.36 { 5.009 | 5.008

The accuracy of the zeroth approximation can be defined as
IE(D) — 2 | ’
6= e 100%. ,
and from Table 1 one can see that it is less than 1 per cent, i.e., the perturbation series

converges fairly fast.
If v = 0 and m = 1. then the ground state energy equals

E = cA%.

The constant ¢ in the zeroth perturbation order is defined hy equations (3.9) and equals

200 1/3
o = min ——— .[r(sﬂ)r(z "’} = 66933... .

{o} AT(1 + p) 4p
The second approximation is done by (3.10). The result is
2y =¢Ca+ = 66846..., ¢ = —.00087... .

The exact numerical value is ¢ = .667986... (sce [15]).

3.2 Anharmonic potentials in R?
In this section we consider the threc-dimensional anharmonic potertial. The Schrédinger

equation looks as

2
[ 1 (d )2r . 1+1) PRI Ar"]lb(r) = Ev(r) . (3.11)

2mr \dr 2mr? 2
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According to (3.32) we do the transformation r = s% and get the representation
H(EY®(s) = e(E)®(s) ,
H(E) = 33 + W(s%, ),
- 2
W(s2, E) = 4p’m [m—;’-(s’)"-' 4 A(s?)ee! — E(s’)"’“] , (3.12)

where 5 € R? with
d =22 +1)+2.

Now we can apply the oscillator representation method. The Hamiltonian is
2
H=2 4 W(s E) = Ho+ Hi + co, (3.13)

where Hy and Hj are given by (2.11) and ¢ according to (2.16) equals

sl E) = mingg( E;w, p)
{w.0}

with

- dw = duud~te™  ru
Eo(b,w,p) = T + A —W”‘ (:;,E)
2

= A{llw.p)- EB(l,w,p},

_ e+ +1 AP
All,w,p} = 2 - W F(p(21+1)+]) .
’ A
[2;:—2 "T(p(2l+5) + = - T(p(2 + 7))] ,
B(l.w, p) dpPme  T(p(2 +3))

r Fel+)+1)°
where r = w?.
The ground state energy Ey in the zeroth perturbation order is

. AL w,p) T +1)+2) =
= . 14
O Blap) o | T (21 +3)) 8mp? t (3.14)

my? T(p(2l+5)) A F(p(?.l+7))]

Ey =

2z T(p(21+3)) ' 22 T(p(21+3))

The ground state energy of the anharmonic oscillator has been extensively studied
numerically and the exact result[6] for Epg in the case A =1, m =1/2 and v = 2 equals

Eg = 4.64881... .
Formula (3.14) gives for this case
Eoo = 4.6511... .

One can see that the oscillator representation method in the zeroth approximation gives
& quite acceptable accuracy.
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3.3 The power-low potentials

In this section the oscillator representation method will be applied Lo calculation of the
ground, orbital and radial excitation energy spectrum of three-dimensional power-low

potentails:
Vir)=
The Schrédinger equation looks as
dy?2  l{I+1
—2—m—;($) r+ ( )+/\ ]d(") Ey{r) .

The transformation r = 5% leads to the representation
H(E)®(s) = e(E)P(s) ,
H(E) = 39 + W(s", B)
W(Sz,E) = 4p2m [A(sl)p(2+u)—l - E(s2)2p~l] ,

where s € R? with
d=2p(2l + 1)+ 2.

The Hamiltonian in the oscillator representation looks as
H=L +W(S E) = Ho + H; + 0,

where Hy and H; are given by (2.]2) and gy according to (2.16) equals

eo(E) = mm go( E3w,p) ,

with

dw % duui-te~t u
eolEiw,p) = T+ B e —w (2 E)
0 5

= A(Ia“J»p) - EB(I.w.p) ’
p(Bl+1)+1 + 4p*mdw T(p(20 +3 + +))

A(l,w,p)

4p*mw  T(p(21 +3))

B(l,w,p) ®  T(pl+1)+1)°

where y = w” .
The ground state energy Ey in the zeroth perturbation order is

Al w,p)

o) B(1,w,p)

- [F(p(2l+1)+2). v A F(p(21+3+u))]
{v.0}

Ey =

T(p(2[+3)) 8mp? "y [(p(2[+3))

2 YT TR D)

(3.13)

(3.16)

(3.17)

(3.18)

(3.19)

" 2
) 24 [r(p(2t+l)+2)] .[g-r(p(21+3+u))} :

{p) I(p(2! + 3)) 8vmp?

16



Now let us obtain the formula for radial excitations. According to (3.24). we have in
the first approximation

S =y Do+ (i)

where

dk
(n|111]n) =/(;) Wialk? )L\P(—"—)("l L

Let us define the polynomials

27 .
L.l
— M _E : . m —
(’-n(l'd) = (“‘ f“) "l=2‘1:.("-‘1)l . t= iz

w!(4) (] '2”"2"]‘(% + 1+ p)
l'(% + n)l’(% + ) " (n—m + p)lom —2p)i(ph)? °

em(n.d) =

where
p=max(0.n — n).

The coefficients for n = | and n = 2 are

cp(ld) = =
Hd + 8) 16 2
2,d) = ———. 3(2od) = ——. W(2.d) = ———.
b =0y A= ggy = g
Three first polynomials are
cof) =0.

2 2
(‘|(” = ﬁ{ .

l) = [(.I +3)2+ 134 ét"] .

}
d(d +2)

If the potential has the form

“"(sz) = E mk(sz)""‘

k

then one can get
(n|lh|n)=/(%) H,,(I.z)t\p(——)(nl "" tny =
= Zil Celd. o) .

rd+o,) & oy +1)
(T‘d, )= = " d) —m
w(d o) Mg+ ; L P

17



Table 2.Results of calculation of the ground state energy
power-low potentials for the n = (=0 and 2m =1 of
various v. Egp is the zeroth approximation of the oscillator
representation. The results of the numerical, Ref.[23], and
1/N- expansion methods, Ref.[6], are also shown

v N Num. Loo
-1.5 -.29888 -.29609 -.29703
-1.25  -.22035 -.22029 -.22027
-1.0 -.25 -.25 -25
150 132795 1.32795  1.3279
5 1.83341 1.83339 1.8335
.75 210815 2.10814 2.1082
1.5 270806 2.70809 2.7081
2, 3.0 3.0 3.0
3.0 345111 3.45056 3.4511
4.0 3.830i139 3.79967 3.8024
50 4.09146 4.08916 4.0962
6.0 4.33801 4.33860 1.3524
7.0 4.54690 4.55866 4.5815
8.0 4.71772 4.75587 4.7901
10.  4.92220 5.09786 5.1607

The next step is Lo solve equations (2.23). The result is

E.; = Anin
P

with

F(v)=4n[p(2 ~v) — 1]+ [p(20 + 1)+ 1][p(2 + v) + Culd, p(2 + v) — 1)] ,
J=pv+[p(2+ )~ 1Ca{d,2p ~ 1) = (2p = 1)Ca(d, p(2 + v) — 1},

where d = 2p(2] + 1) + 2. The numerical results are shown in Tables 2 and 3.

T(p(2l +1) +1)

Mp2l +3+v) ) F(v) ) [ F(0)
@ +3)  F(0)

3.4 The Logarithmic potential

Now we consider the logarithmic potential

V(r)= Aln(r) .

18
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Table 3. Results of calculation of the energy spectrum for a wide
class of potentials in the zeroth approximation. The numerical
ones are taken from Refs.[6], [23] (in parentheses)

V(r)
—%’; —%‘; 235y Inr
2m=1 2m=1 2m =1 m=1
n=0 [=0 -268 -1.2186 9.353 1.045

(-2.686) (-1.218) (9.35243) (1.0443)
I=1 -2345 -0.5004  13.445 1.641

(-2.345) (-0.500) (1.643)
1=2 2156 -0.2947 16993  2.014
(-2.156) (-0.295) (2.015)
I=3 -2.029 -0.2019  20.204 2.984
(-2.029) (-0.202) (2.286)

n=1 I=0 -2253 -0.462  16.355 1.848
(-2.253) (-0.462) (16.3518) (1.8474)
(=1 -2101 -0.281 19.540 2.151

(-2.101) (-0.281) (2.151)
[=2 -199 -0.195 22521 2.388
(-1.990) (-0.195) (2.388)

=3 -1905 -0.146 25.330 2.580

n=2 [=0 -2.044 -0.265  22.084 2.290
(-2.044) (-0.265) (22.08224) (2.290)
{=1 -1.951 -0.187  24.833 2.491

(-1.951) (-0.187) (2.491)
=2 .1.875 -0.142 27478 2.663
(-1.875) (-0.142) (2.663)

=3 -1812 -0.113 30.021 2.811

This is one of the potentials which has been used in heavy quarkonium spectroscopy [23].
The standard calculations according to formulas (3.12), give the following result for the
energy E. in the lowest approximation:

By = /\n:in {aiz—ln [(g +4n)o + g(l +C,.(d,a))] + ¢(; +0)
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d d d
+1m L T (Famot sl GidaD it gy
20 Yo+ 1PmA T($4+0) 14 Caldo)—ofCuld.o)
d : d
5-p(21+1)+1, o=2p—1, w(:):-[z;lnl‘(;r).

The functions C,(d, o) are defined in the previous section.
The numerical results are shown in Table 3. One can see that the first approximation
of the OR method coincides with the exact values in four signs.

4 The relativized Schrédinger equation

The standard Schridinger equation describes the behaviour of nonrelativistic particles.
Nonrelativistic potential models turued out to give the successful description not only
of heavy quarkonia but also of ordinary hadrons. One can say that these models work
much better than we would naively expect. Nevertheless, the quark-quark systems are
relativistic ones so that calculations of relativistic corrections arc one of the important
problems of quark bound states. The relativistic character of quark-quark interaction was
studied in papers ({25]-[28]). The main point is that the completc quantum field theory
of bound states is not yet formulated, so that we have different more or less motivated
approaches like Bethe-Salpeter and Breit-Fermi equations and the so-called relativized
Schrodinger equation,wich will be cousidered in this section.

There exists a voluminous literature where the bound states of quark-quark systems
are studied in the framework of nonrelativistic and relativized Schrodinger equation (see,
for example, (26]). Here we dare not  discuss physical aspects of quarkonia. Qur aim
is to attract attention to the OR method and show its application to spectroscopy of the
relativized Schrodinger equation.

The relativized Schrédinger equation is based on the simplest idea (see, for example,[28])
to take into account the kinematic relativistic corrections using the relativistic kinetic en-
ergy instead of the nonrelativistic one ’

2
r)i)— — /p?+m?.
2m

Thus, we get the following relativized Schrédinger equation in the space R

[\/pz +m?+ V(rz)] ¥ =F¥. (4.1)

The usual solution of this equation is done by numerical calculations on computers and
by variational methods (see([25}-{27])).

We shall solve this equation by the OR method. Let the orbital moment be /; then the
wave function is

\I’(T, 01 ¢) = Y;m(as ¢)\pnl(r) - (42)



The radial Schrodinger eqnation hecomes

I+

»e

l R
[ LT S+ V)| Wy = EaqWa . (4.3)
r dr

Introducing the function

Valr) = r'd(r).
d-3

Li=——=L d=3+2.

one can get

l:\/—“d]z(i“)zrdz;l + —————L'I(L’L+ b + m? + \'(1'2)J V=L,V .

r 5

This equation coincides with the radia) Schrédinger cquation in the space R?:

[\/—Ad +m? + l"(rz)] O(r) = Ed(r) . (4.4)

Now we can apply the oscillator representation to the Hamiltonian

I =p 4+ m2+ V()

in the space R%. Let us rewritc this Hamiltonian in the form:
1 5 2 , — P 2 7,
H=ﬁWMhH\mTF—ﬁ-+HM—¥r. (4.5)

where u and ¥ are parameters, and introduce the oscillator canonical variables:

_ QJ. a,+u; ]
n= s Q=05 (4.6)
+
a, — a
pi=Viar;, p=21— (j=1..4d).

The vacuum is defined in the standard way:
(OID) =1, (leD) =0,
i b))
Ofrir;0) = 5.7 - Olp.pi10) = biy5 .
Let us substitute the representation {(4.6) in (1.5}, go over to the normal product of the

operators a; and a} in the Hamiltonian and require that the interaction Hamiltonian
should not contain terms with : p? : and : 22 1. After some transformations one can get

H=1y+ I+ 1.



with

U
Hy = u)afaj. W= -
"

H,

il

do\? _p 2 Z. . 2 2 2,5, .
/(ﬁ) c [\/p:wm exp(=2pp ~ p) = 1 + (1 = 2g*) :

e 2
+V(5) sexp(=2Qp - Q°) = 1 + Q%1 = 2p) :

d 9 % o 4 : tur -
_,/ (—l) [I‘(HZ)EXP(_HT) tep T i 4V (uz)exp(—%) teyT ] ., (4D

7T

where
K = /(dp)”'\/p2 + m%c™ ;
Vi) = [upvistye,

’

REY)
no|

eg=¢€e—-1—-z:~

min [ (%)"e-»=[\/m+ V(”ﬂ

Eo = Y
rx,l df2~1,-u
= min/ﬁ"—d—{— \/m7+m‘2+l/'(£) .
9 I v
0

The parameters g and ¥ are determined by condition of the oscillator representation, i.e.,
the interaction Hamiltonian H; should not contain the quadratic terms with : p? : : 2.

These equations are

./duu"'/ze"“i Vud + m? — V(E) =0,

du ?
0 .

2 T d ,u

- df2 -t Z V(=

w l‘(;i oy /duu s (ﬂ) . (4.8)
0

These formulas permit  calculating the spectrum of the relativized Hamiltonian.

4.1 Examples

Here we would like to consider the Cornel potential{29] for the quark mass m = 0 because
in this case all calculations can be performed analytically. The Cornel potential gives



the simplest interpalatioa from the Coulamb behaviour at shart distances to the lineary

growing confined potential at large distances. The Cornel potential is
(4.9)

H:\/p_z—-:--}-hr.

This potential was used to give semirelativistic description of quark-quark bound states
Phenomenologically, the first term in the potential is connected with one-gluon exchange
and describes short distances. The second term ensures the confinement of quarks.

Equations (4.8) for J and w can be solved easily

h
= .

Ll gyl 1+1
(4.10)

R T(+2)
YEVITRTAT52)

if h = 0, i.e., for the pure Coulomb potential the relativized Schrédinger equation

One can see that
has no solutions describing any bound states

2. for & > 1 there exists "the downfall on the centre”, i.e., there are no stable states
in this system.

The Hamiltonian in OR looks as
H—wa a;+ Hr+ 40,

fuP |

where
R T2+ [ (du) u? i
i = “Vi1-k xe e P )| c e

H1 -+ ""luz) 9 ] )
Ir{{+2)
Al — ) ——ors
Bo ==y
The second correction can be calculated. We give this formula for the case x = 0. It is

_ rg+2
Bo+ By = Eo(1 ~ ) = 2hg (1 = &)

5 = T(+2)P(2n +1/2) 2*-'T%(2n - 1/2)
= x?z F(2n +1+1/2) Tdn+2)

(4.11)

E

The numerical values of &; are

60 = 006, 61 = .004, 6‘ < .003 for | 2 2.

For asymptotically large [ we obtain
(4.12)

E‘.—.E.,,zZ\/Iﬁ.



For the same linear potential in the case of nonrelativistic kinetic energy in the Hamiltonian
one can get

E=Eg= %(hl)m. (4.13)

The phenomena of "the downfall on the centre” for £ > 1 leads to the sensitivity of
the eigenvalues of the Hamiltonian 1o the mass m in the kinetic term. In particular, if x
is close to 1,the nonrelativistic limit comes for a quite large m. Let us demonstrate this
statement. We have two Hamiltonians:

He= P +m—m=%4hr,

2
H=£——£+h1‘.
2m r

Qur aim is to find values of u as functions of & for which the ground state energies of these
two Hamiltonians practically coincide. It is convenient 1o do the following substitutions:

r m
i =, H— H{Vk.
N AN/ —H

We shall consider the Hamiltonians

Hrcl= VP2+I‘2—F‘§+T7

r—

Table4. Results of calculations of the ground state energy
for the relativized and nonrelativized Hamiltonian
as a function of the parameters « and g

=0 =01 =05 =09
g rel nonrel | rel nonrel| rel nonrel rel  nonrel
01 | 2.247 8.614 | 2.131 8.591 | 1.586 8.500 | 0.704  8.409
1 2.162 3.998 {2.046 3.949 | 1.500 3.749 | 0.616  3.543
5 1.878 2.338 ] 1.757 2.254 | 1.186 1.896 | 0.256 1.503
1. 1.654 1.856 {1.523 1.749 | 0.902 1.279 | -0.134 0.730
2. 1.396 1.473 | 1.246 1.337 | 0.517 0.702 { -0.802 -0.114
5. 1.068 1.085 { 0.877 0.896 ; -0.168 -0.120 | -2.526 -1.706
10. )f 0.857 0.861 j0.616 0.614 |-0.934 -0.968 | -5.226 -3.885
10. -4.607 -4.925 {-21.127 -16.158
106. :52.850 -40.483

According to the above-stated, one can get for the ground state energy for both cases

oG
E;3’=mini{‘/ dt\/t_e"'[\/p2+tr'z—p]—n:+]— ,
x \/; o 4

_ . [ F@2+4p) , _ T2p) 1 TI'4p)
Eoo = r{;’.’:“{]‘(3/))8/)2;1 TR F'3p) = P(3p)} )



The numerical results are shown inTable4. One can sce that for & = 1/2 the nonrela-
tivistic approach comes approximately for p? = m?/h 2= 100 + 500 only.
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TIpuHHMaETCS MOANKCKA Hi NpenpuHTh, coofmenns O6beauneunoro
MHCTUTYTA SACPHBIX HCCaenoBaHui n «Kpatksie coobutenns OUSIHU».

YcTaHosaeHa CAEAYIOWAS CTOMMOCTb NOANMKCKH HA 12 MEcaues HA M3JAHAS
OUNAH, BkA10UAA NEPECBUIKY, NO OTAE/AbHLIM TEMATHYECKHM KATETOPHAM:

Hupekc TemaTuka Ilena noanucku
Ha roA
1. DkcnepuMenTaIbHAS (PHINKA BHICOKUX IREPrii 915 p.
2. Teopernueckas (pu3uKi BLICOKHX IHEPrHil 2470 p.
3. DkcnepuMeHTanbHAR HelHTPoHHAR (DH3KKA 365 p.
4. TeopeTnueckas (PH3NKA HUIKUX IHEPrHi 73S p.
5. Maremaruka 460 p.
6. SlnepHast CREKTPOCKOMUS H PAAUOXHMHUS 275 p.
7. Ou3nKa TAKENbIX HOHOB 185 p.
8. Kprorenuka 185 p.
9. Yckopurtenu 460 p.
10. Asromarusauus oGpaboTKH SKCUEPHMEHTANLHBX AaHHBIX 560 p.
11. Beiyucantenbras MaTeMaTHKA B TEXHUKA 560 p.
12. Xumusg 90 p.
13. TexHHKa (PH3HUECKOTO IKCTIEPHMENTA 720 p.
14. HccepoBatus TBEPABIX T H XHAKOCTEH SACPHHIMH METOQUMH 460 p.
15. OxcnepyMeHTAIbHAS PH3UK:A SAEPHLIX Peakuuit
NMPH HH3KUX SHEPTUSIX 460 p.
16. loaumeTpus 1 HHU3UKA 30IUTH ‘90 p.
17. Teopus KOHREHCHPOBIHHOTO COCTOSHNS 365 p.

18. HUcnoab3oBaHKe pe3y/bTATOB
H MeTOROB (DYHAAMEHTWIbHBIX PH3HUECKHUX HCCNENOBAHMI

B CMEXHBIX 001aCTSIX HAYKHM H TEXHHKH 90 p.
19. Buotuanka 185 p.
«Kpatkue coobumenns OUSIW» (6 Bunyckos) 560 p.
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Dunelixan M., Edpumos I'.B. E4-94-75
AMrapMOHHUECKHMI NOTEHUMAN B OCH/LIS TOPHOM NPEACTARIEHHH

JHepreTHUecKHil CHEKTP HIHPOKONO KJacca NOTEHUHANOB, NONYCKAIOUMX
CBA3aHHHE COCTOSHHH, BHUHCJIEH METOIOM OCUH/UISTOPHOO TIPEACTABACHHS B
PaMKax HEPEeJISTHBHCTCKOTO H PESTHBHAOBaHMOrO ypasuenuit [lpeamnrepa.
OcuMansTopHOE NpPEACTABACHHE SBJSETCH PEryASPHHIM METONOM OMNHCAHHS
H pacueTa ypoBHeH SHEPrUM KakK OCHOBHOIO COCTOSHHS, TaK H PagHANhHBIX
H opOHTanbHNX BO3BYXAEHHH 118 WMPOKOrO Kiacca noTeHunanos. B cayuae
AHTAPMOHHYECKOTO NOTEHUMANA PE3YAbTATH MYJEBOrO NMpubaHXEeHHS HaXo-
ASTCH B OYEHb XOPOMIEM COTIACHH C TOMHHMHM BBHIYMCACHHSIMH. Panni
MOTHUGHUHPOBAHHONH TECOPHH BO3MYIIECHHH SBAKIOTCH ORICTPO CXOASIMMMCH,
TaK uTO BHICUIME NEPTYPOATHBHBIC NONPABKH K HYJEBOMY NPHOAHXEHHIO OKa-
3BIBAIOTCH MAJKL.

Pafora smnonHena 8 Jlabopatopun TeoperHueckoit pusnxu um. H.H.Boro-
nobosa OUAN.

Tlpenpunt O6beAMHEHHONO HHCTUTYTA SAEPHBLIX uccnenroBanuit. [lyGua, 1994

Dineykhan M., Efimov G.V. E4-94-75
Anharmonic Potential in the Oscillator Representation

In the nonrelativistic and relativized Schrodinger equation the Wick-
ordering method called the Oscillator Representation is proposed to calculate
the energy spectrum for a wide class of potentials allowing the existence of a
bound state. The oscillator representation method gives a unique regular way
to describe and calculate the energy levels of ground as well as orbital and radial
excitation states for a wide class of potentials. The results of the zeroth
approximation oscillator representation are in good agreement with the exact
values for thc anharmonic potentials. The oscillator representation method was
applied to the relativized Schrodinger equation 1oo. The perturbation series
converges fairly fast, i.c., the highest perturbation corrections over the
interaction Hamiltonian arc small enough.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research. Dubna, 1994
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