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Asymmetric nuclear mat ter and neutron star properties 

L. Engvik, M. Hjor th-Jensen and E. Osnes 

ihpnrtmtnl of Physics. Vnivi rsitij of Oslo. X-Q.1I6 Oslo. Xuncaij 

G. B a o and E. Øs tgaa rd 

I>< fmrtmt nt of Physics, A\'H, I'nivtvsity of Trondlu im. X-70~),r> Drai/voll, Xonray 

A b s t r a c t 

We calculate properties of neutron stars such as mass and radius using a 

relativistic Dirac-Brueckner-Hartree-Fock approach. Modern meson-exchange 

potential models are used to evaluate the G-matrix for asymmetric nuclear ' 

mat ter . For pure neutron mat te r we find the max imum mass to be M,UiXX = 

2.4 A/ for a radius R ^ 12 km, whereas with a proton fraction of 30%, we find 

^Au.n ^ 2.lAf. for a radius R *s 10.5 km, close to the experimental values. 

The implications are discussed. 
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The properties of neutron stars depend on the equation of state (EOS) at densities up 

to an order of magnitude higher than those observed in ordinary nuclei. Data on the EOS 

can be obtained from many sources, such as studies of the monopole resonance in finite 

nuclei, high-energy nuclear collisions, supernovae and neutron stars. Supernova simulations 

seem to require an EOS which is too soft to support some observed masses of neutron stars, 

whereas analyses of high-energy nuclear collisions indicate a rather stiff EOS, predicting 

neutron star masses which are too large. Thus, no definite statements can be made about 

the EOS at high densities, except that it should probably be moderately stiff in order to 

support maximum neutron star masses in a range from approximately IAMQ to 1.9MQ [l]. 

However, although quantitative calculations of the EOS for dense nuclear matter are still 

beset with many problems, there have recently been important changes in the qualitative 

picture. Several mechanisms have been studied, mechanisms which result in an EOS which 

is soft enough to support neutron stars with maximum masses in the range of the observed 

data. Among such processes we find exotic states of nuclear matter, such as kaon [2,3j 

or pion condensation [4]. Another scenario which gives neutron star masses within the 

experimental values, has been presented by Pethick and co-workers [5,6]. These authors 

study properties of various phase transitions from spherical nuclei to uniform nuclear matter, 

and the coexistence of quark matter and nuclear matter over a finite fraction of the neutron 

star volume. 

The scope of this work is to derive the EOS for asymmetric nuclear matter, using rel

ativists many-body theories within the framework of the Dirac-UnuTkner-Hartree-I'ock 

approach 7,H and Treating the Pauli operator which rulers our formalism (see below) cor

rectly '['n ,mr knowledge, this has not been done before. Asymmetric nuclear matter is 

mi[ i>rlanl in e.g. studios <>f neutron star cooling, as demonstrated recently hy Kattuner ' / 

ri/ 't who showed that ordinary nuclear matter with a small asymmetry parameter can ei ml 

by the so called direct t'HCA process even more rapidly than matter in an exotic state In 

addition ;il lucji densities, degrees of freedom represented by isobar- and hvperoro may also 

result m a rapid c..hng of neutron stars lit 



Before we present our results, we briefly sketch below our calculational procedure, for 

further details see Ref. [11]. Important ingredients in our calculations are the nucleon-

nucleon (NN) interaction which we take from meson-exchange models, and the renormalized 

NN potential in a medium like nuclear matter. The latter is accounted for by the reaction 

matrix G 

G(w) = V + VQ L—QG(u,), (1) 

where w is the energy of the interacting nucleons, V is the free NN potential, Ho is the 

unperturbed energy of the intermediate scattering states, and Q is the Pauli operator which 

prevents scattering into occupied states. The G-matrix is used in our many-body scheme 

described below in order to obtain the energy per particle in asymmetric nuclear matter. 

To calculate the NN potential, we use the Bonn A potential defined in table A.2 of Ref. 

fl2j. This potential was shown by Brockmann and Machleidt [8], to reproduce the nuclear 

matter binding energy and saturation density within the framework of the Dirac-Brueckner-

Hartree-Fock approach. 

In urder to test whether our EOS is appropriate for neutron stars, we evaluate the total 

mass and radius of such stars. Although there are recent relativi^tic calculations which 

address asymmetric nuclear matter, see e.g. the recent work of Huber et al. [13], one of 

the differences between this work and Ref. [13] is an exact treatment of the Pauli operator 

Q fur asymmetric nuclear matter. The conventional approach has been to extrapolate the 

results for symmetric nuclear matter and pure neutron matter !l4j. Here we employ an exact 

expression for Q in nuclear matter as described in e.g. Ref. [15; and calculate the energy per 

particle for asymmetric nuclear matter using an extended Bnieckner-Hartree-Fnck (BHK) 

method, see Hef. 16 for a discussion of the non-relativistic B1IF theory, namely the Dirac-

Hnir.kru-r Martree Fork (DBHF) method. The DBHK method is a variational procedure, 

where lli*- single-parlicle {sp) energies are obtained through an iterative self-consistency 
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scheme. To describe the sp properties we depart from the Dirac equation for a free nucleon1, 

(i ,8 - m)ip{x) = 0, (2) 

where m is the free nucleon mass and t/'(x) is the nucleon field operator, which is conven

tionally expanded in terms of plane wave states and the Dirac spinors u(p,s), and v(p, s), 

where p — (p°,p) is a four momentum and s is the spin projection. The relativistic energy 

is E(p) = v/™2 ^ IP' 3 - ^ ° a c c o u n t ^ o r medium modifications to the free Dirac equation, we 

introduce the notion of the self-energy E(p), which for nucleons can be written as 

S(p) = S i ( p ) - 7 l , S 0 ( p ) + 7pS V ' (p) . (3) 

The momentum dependence of S° and E$ is rather weak [8,17]- Moreover, E l ^.<, 1, and 

it is customary to rewrite the self-energy as 

Us + i'v. (•») 

where r>- is an attractive scalar field and l'v ^ ihe time-like component of a repulsive vector 

lield. The finite self-energy modifies the free Dirac spinors as 

"(»,.•>) \j E{P)_±> 
2 lii (5) 

wln-re we let i he terms wi th tilde represent the medium modified ipianti l ies. Here we h;ive 
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Éa = £(p„) = <Jm* + pl (7) 

and the sp potential is given by 

ro2 

u° = E TIT W G(« = ia + ih) |oA)A S , (8) 
h<kF &h&a 

where G is the relativistic G-matrix [8]. We can also express the sp potential in terms of 

the constants U5 and Uy, 

ifi 
utt = -^Us + Uy. (9) 

The sp energies e can then be written as 

£a = Ea + Uvi (10) 

where we have used the continuous choice for the single-particle energies [16]. 

Eqs. (8)-( 10) are s-olved self-consistently starting with adequate values for the scalar and 

vector components Us and Uy. This iterative scheme is continued until these parameters 

show little variation. The calculations are carried out in the nuclear matter rest frame, 

avoiding thereby a cumbersome transformation between the two-nucleon center-of-mass sys

tem and the nuclear matter rest frame. The additional factors rhjE in the above equations 

arise due to the normalization of the neutron matter spinors ui, i.e. w^w - 1 [8]. With 

the obtained sp energies, we can calculate the relativistic energy per particle, see e.g. Refs. 

IH.!!'. All relevant equations with a given proton-neutron fraction are given in Ref. [15(. 

With these preliminaries, we present our results for the energy per particle with various 

proton fractions m Fit; 1 For relatively small prut mi fractions, the energy per particle 

exhibits much the same curvature as the curve for pun* neutron matter at high densities, 

although the energy per particle is less repulsive at high densities At lower densities, the 

situation is rather different. This is due to the contributions from various isospm T () 

partial waves, especially the contribution from the 3.V|-"1^i '"hannel, where the tensor force 

component of the nmleon-nuoleon potential provides additional binding From Fig I we 

h..l- that with ;i proton fraction of l.V^. the energy per particle start- t<- ber..me attractive 



at low densit ies (in t he region 0.07 f m - 3 to 0.3 f i n - 3 ) . For larger p ro ton fractions, addi t ional 

a t t r ac t i on to t he energy per par t ic le is in t roduced . T h e next s t ep in our calculat ions is t hus 

to evaluate t he EOS and tne to ta l mass and radius of a neu t ron s t a r from the above energies 

per part icle with t he pro ton fractions shown in Fig. 1, in order to see how different p ro ton 

fractions influence t he mass and radius of neu t ron s tars . Here we a s sume t h a t t he neu t ron 

s tars we s tudy exhibit an isotropic mass d is t r ibut ion . Hence , from the general theory of 

relativity, t he s t r u c t u r e of a neu t ron s tar is de t e rmined th rough the To lman-Oppenhe imer -

Volkov equa t ion , i.e. 

dP _ _ {pjr) + P{r)} \M(r)-4irr3P(r)\ 
tir ' r- - 2rM{r) ' [ ] 

where P[r) is the pressure and A/( r ) is t he gravi t ional mass inside a radius r. To obta in 

observables like the mass and radius of a neu t ron s tar , we combine Eq. (11) with t he equat ion 

of s t a t e ( E O S ) , which is defined as P(n) - n2 (de/dn), where t S/A is t he energy per 

par t ic le and n is the part ic le density. Our EOS is valid in a l imited densi ty range from 0.1 

fm '' to O.H ffn "' It is therefore coupled to o the r equa t ions of s t a t e at higher and lower 

densi t ies as outl ined in Kef. ,11; . Total masses and radii a re calculated and pa ramet r i zed 

as functions of the central density nr These results are presented in Figs. - and !i. for the 

total mass and radius , respectively. 

The neu t ron s tar equa t ion of s t a t e should probably be only modera te ly stiff to support 

m a x i m u m neut ron s tar masses of only l . iU/ . , 1 Knmi Figs 1? and 'A we >ee that our 

re la t ivMic KOS for pure neu t ron m a t t e r seems to In- loo stiff, since it gives a predicted 

m a x i m u m mass of . \ / „ m , '2 \\J., with a corresponding radius of H VI km l l o u v w r . the 

K o s f>r neut ron -.tar m a t t e r could be softened considerably due to pion or kanii condensat ion 

Kr. . H I T of tln* lower s y m m e t r y energy "f nuclear m a t t e r , and m a x i m u m m;»sse> ;ire ilu-n 

redm i d correspondingly from the ca-.es with no condensates V\'<- -i-*- from Ki^s '2 and .'( 

that for «mr KOS the calculated max imum mass <an be r.-.lu.ed to \ / ) l i l l t 'JU.U. with a 

i,.rr<^p. .ruhni; nidiu*. --f li in km I'loti- may l><- lik» l\ I" condfn»»- in neut ron - tar in.iitcr 

br. in--' in-ill roiis .»t rh.' top .-f the Kerini -••.» •••uld .(••. »\ to pr-<i"ii* phi*. -I.-, tn -n- I .ni-l 
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kaon condensation is also believed to be a possible mechanism which could be energetically 

favorable in the interior of neutron stars [3,18,19 r Both pion and kaon condensation would 

then increase the proton abundance in the matter, possibly up to more than 40% protons, 

i.e. close to symmetric nuclear matter, and produce a softer EOS and smaller maximum 

mass. Our results show this, if we assume that e.g. kaon condensation is a likely mechanism, 

an increased proton fraction results in smaller masses. Our EOS, even with a proton fraction 

close to symmetric nuclear matter, results in maximum masses which are slightly above the 

experimental values 1 . However, our calculation of the EOS is to h'rsl order in the reaction 

matrix G. and we would therefore expect that higher-order many-body contributions to 

soften the EOS further. Thi> was indeed shown in a preliminary study for symmetric nuclear 

matter by Jiang f t at. *Jl) . Although onlv a set of higher-order contributions was considered, 

the above author* obtain a softening of the relativistic EOS. These effects will be studied 

by iK- in future wurks 
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FIGURES 

Energy per nucleon for neutron matter 

Density n [fm | 
FKI. 1 The energy p p r particle for asymmetric nuckar mat te r as function of thp particle 

density for different proton fra „.uns. 
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Maximum mass for neutron stars 
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Kid. 2. \t M for various proton fractions as function of the central density n, . 
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Radius for neutron stars 
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FIG. '.i. The total radius R for different proton fractions as function of the central density n... 


