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Abstract :
Within the framework of stochastic transport equations in phase space, we study
the dynamics of fluctuations on collective variables in homogeneous fermion sys-
tems. The transport coefficients are formally deduced in the relaxation time ap-
proximation and a general method to compute dynamically the dispersions of
collective observables is proposed as a set of coupled equations : respectively, the
BUU/Landau-Vlasov equation for the average phase space trajectories and the
equations for the averages and dispersions of the observables. Independently, we
derive the general covariance matrix of phase space fluctuations and then by pro-
jection, the dispersion on collective variables at equilibrium. Detailed numerical
applications of the formalism are given ; they show that dynamics of fluctuations
can be extracted from noisy numerical simulations and that the leading param-
eter for collective fluctuations is the excitation energy whatever is its degree of
thermalization.

1. Introduction

The time evolution of complex systems, as colliding heavy ions, is governed
by a competition between the mean field and many-body correlations. During
the last ten years, much progress has been done with semi-classical models like
Landau-Vlasov J) and Boltzmann - Uehling - Uhlenbeck (BUU) 2) (for a review
see for example ref. 3). Such models provide only the average trajectory followed
by the system in the phase space. These models have shown their good predic-
tive power for the collective observables and their ability to link the experimental
results in heavy ion reactions to fundamental properties of nuclear matter and
nuclear effective interactions4*. However, the situation is less satisfactory that it
seems ; the availability of 4ir detectors with high granularity has given access to an
event-by-event analysis of nuclear reactions and then to the dispersion of the collec-
tive variables around their average values ; when the beam energy increases there



are clear evidences -disappearance of the fusion/fission or fusion/evaporation pro-
cess, intermediate mass fragment emissions- that the nuclear system enters critical
regimes where applications based on average one-body theories are meaningless.

These features have recently pushed forward attempts to treat the dynamics
of fluctuations ; all different approaches are linked to the so-called Boltzmann-
Langevin approach which has been pioneered out by Bixon and Zwanzig 5' for
the hydrodynamical fluctuations of classical systems. The fluctuating part of the
system dynamics arises from the loss of information occurring when one restricts
its description to the one-body level. To a given one-body density distribution
corresponds an infinite set of N-body distributions which will evolve differently
under the high-order correlated contributions of the particle interactions.

As shown, by Bixon and Zwanzig s \ and then by Ayik and Grégoire 8 ) , the
equation of motion for the one-body density is a generalized Langevin equation,
the average of which is the Boltzmann (or its quantum extensions) equation. The
projected-out terms act as a random force whose time and space correlations can
be connected with the properties of the collision kernel.

In ref. 7), Randrup and Remaud have developed a transport theory for treat-
ing the stochastic one-body dynamics via a Fokker-Planck equation. This formal-
ism, conceptually close to Ayik and Grégoire's, has been shown to be amenable to
detailed numerical simulations8* in the case of two-dimension systems.

One of the main practical difficulty of these theories remains their applica-
tion to the dynamics of actual systems. The Landau-Vlasov and BUU models
applied to finite, quantum systems as nuclei give rise to specific methods based on
the discretization of the one-body phase space in randomly distributed cells : the
pseudo-particles. As can be shown with a high degree of accuracy 9 ) , the average
nuclear dynamics can be described through the quasi-classical dynamics of the
pseudo-particles, provided that proper smearings of the mean field and scalings of
nucleon-nucleon cross sections are performed. The pseudo-particle method intro-
duces a specific numerical and unphysical noise which depends on the number of
pseudo-particles treated in the simulation; thus, the fluctuations of the physical
system cannot be directly extracted from the simulation 7>s>.

This paper aims at showing that the dispersion on the collective variables
can be actually computed from the BUU or Landau-Vlasov simulations provided
that they yield the correct average transport coefficients in phase space such as
relaxation times and diffusion coefficients. Some recently published papers 8'10'
compute numerically the covariance matrix of the whole phase space, we notice
that this procedure used for two-dimension systems is difficult to extend to real-
istic situations. The previous publications also suffer for a lack of unambiguous



comparisons with analytical predictions which could probe their numerical valid-
ity. This paper has then two purposes : to derive an effective method to track
the dispersion of collective variables in numerical simulations and to check its va-
lidity by comparison with analytical values of thermal fluctuations at equilibrium.
The last objective is based on Van Kampen's approach, whose pioneering book
n ) provides the bases in the case of classical gases. We shall make an extension
to fermion systems and then shall devote some pages to a general survey of the
theory in order to provide the reader with a self-sustaining presentation.

Our study deals with the statistical fluctuations in Fermi systems and then is
strongly correlated with the well documented Landau theory of Fermi Liquids 12).
However, we consider systems with high excitation energies, where the elementary
excitations cannot be described as quasi-particle distributions close to the Fermi
energy, we then explicitly treat excitations in real particle ensembles and expect
to recover the results of the Landau theory13'14' at the limiting case of systems
close to equilibrium and at low temperature. At variance with Pethick and Raven-
hall 1 4 \ we do not consider systems unstable to density fluctuations and then we
always assume uniform spatial distributions. Our approach is closer to the one of
H.Hofmann et al. 13) who treat statistical fluctuations in Fermi systems built on
the Landau kinetic equation. We start from the Boltzmann equation and treat
explicitly the full collision term to be free from low temperature limitations and
equilibrium assumptions.

Our paper is organized as follows. Sect. 2 is a review of the stochastic phase
space dynamics according to the Boltzmann-Langevin approach and allows to
settle the notations which shall be further used in the paper ; sect. 3 presents the
method to derive the Brownian motion in the collective space induced by the phase
space fluctuations. This leads to a general equation for the collective observable
dispersions. However, the transport coefficients of this equation, although formally
derived, are difficult to be analytically expressed, and then, in the general case,
equilibrium dispersions are unknown. In sect. 4, we give the general covariance
matrix for phase space fluctuations in homogeneous systems and its projections on
collective space which are the equilibrium solutions of sect. 3. In sect. 5, we show
how to implement the formalism of sect. 3 in pseudo-particle models and to study
the fluctuations dynamics on specific collective variables. By comparison, with the
analytical results of sect. 4, we check the whole consistency of the approach and
the possibility to get observable dispersions out of numerical models.

2. Stochastic phase space evolution

In this section we shortly review the essential concepts and formulae underly-
ing the current theories of Brownian motion in phase space 9'7<J1) and outline the
frame within which collective observables develop in time. One considers a noise



source that kicks the one-body distribution /(r,p,f) and forces it to fluctuate
around an average BUU kinetic evolution /(r, p, <). The final result can be formal-
ized in terms of a stochastic kinetic equation similar to the Boltzmann-Langevin
one anticipated by Bixon and Zwanzig 5\ It has been constructed resorting to the
standard truncation of the hierarchy of reduced s-body distributions (1 < a < N)
or Green's functions 1S) up to the two-body level including three-body Pauli cor-
relations, and reads ,

p,t)i (2.1)

where F is the total force including the spatial gradient of the mean field and Kj
is the BUU collision kernel,

- /1/2/3/4)- (2.2) j

is the microscopic transition rate for the collision vertex (piPa) —* (P3P4)
and / = 1—/. One easily recognizes the usual gain and loss terms of the Boltzmann
equation, that we explicitely define for a further use :

*>(ri,Pi,t) = W+Zi - Wf1 = - J l / ' ; (2.2 bis)

^") is the momentum-dependent relaxation time which governs the
approach towards the instantaneous, momentum-dependent equilibrium 7^ ^
W+ * Tf.

The fluctuating collision term in (2.1) is related to the propagation of initial
two-body correlations, and can be expressed as,

«f/(ri,Pi,t) = Jd3r2d
3p2{V(l,2),UMt)fi

i
e)(h2,0)}, (2.3)

where V(1,2) is the effective interaction between particles 1 and 2, { } denotes
a Poisson bracket, Un(I) is the two-particle propagator in phase space and / j C )

(1,2,0) is the irreducible two-body distribution,



/< e )(l ,2,0 = /atra.pi.ra.pa,*) - / ( r , , P l , < ) / ( r 3 , p a , 0 (2.4)

at t = 0.

It is worthwhile noticing at this point that the procedure invoked to derive
(2.1) with the fluctuating contribution (2.3) is identical to the construction of
either the classical or the quintal Langevin equation n* . In accordance with the
usual treatments, one assumes a statistical ensemble of initial configurations that
we propagate in time. The ensemble of the fluctuating part of the collision term
vanishes, i.e., < SK/ >= 0, (hereafter, we use the symbol < > to denote ensemble
averages) and the average of (2.1) reduces to the BUU equation.

It is possible to compute the correlation of the noise,

<r*,(r,p,i ; r\p',0 =< 6K,(r,p,t)6Kf(r\p',t') >; (2.5)

which reads,

<£ ,(r,p,< ; r'.p'.f) = 6{i - t')6(v - r')2Df(p,p'). (2.6)

The diffusion matrix can be expressed from the microscopic transition rate6' of
(2.2) :

+ j J d3
Pid*ptWiV3A{hfvfJA

-JJ d3
Pid

3 P3Ww3(M2Jy h + fihfvh). (2.7)
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Furthermore,^ the regime where fluctuations are limited to small amplitude
excursions £ / = / — / , one can compute the evolution rule for the covariance of
the distribution function,

c)(t, p, *,r\p\<) =< 5/(r, p, i)Sf(r', p', t) >; (2.8)

which reads, in self-defined abridged notation,

j-ff}(ll'<) = -(v.VP + F.Vp + v'.Vr' + F'.Vp')fff(ll't)

+ J J Jd3p2d
3

Pid
3

P<

i + /1/2/4) + < (̂1 W1/2/3 + /1/2/3) j

/2/3/4) - 4(l'2)(/i/3/4 + /1/3/4)]

+ ( « m e tuitfc 1 <*=> 1')}

1 , * ) . (2.9)

This equation is similar (with a different definition of the D-coefficient) to
eq.(44) of ref.13 but does not rely on any close-to-equilibrium assumption. A
complementary viewpoint to deal with the dynamics of phase space fluctuations
has been put forward by Randrup and Remaud7) ; based on a Fokker-Planck
approach which is more amenable to numerical applications, it yields essentially the
same results. This equation is very complex and has only been solved numerically
in two-dimension infinite systems 7'8'10).

3. Brownian motion in collective space

In this section, we shall analyze the features of the stochastic motion that
the previously discussed phase space dynamics assigns to one-body macroscopic



observables. If Q(p) is an arbitrary one-body operator and q(t) its average with
respect to the stochastic one body distribution /(r, p, <), the BUU-Laogevin equa-
tion (2.1) induces a classic?»] Langevin equation with multiplicative noise,

VQ + KQ + SKQ(t). (3.1)

In eq. (3.1) we have a conservative velocity VQ related to the free-flow in
phase space, which vanishes for spatially homogeneous systems and a dissipâtive
velocity

KQ = ±J Jd3rd3pKf(Typ,t)Q(p)} (3.2)

that can be more symmetrically cast as

KQ = -^ J d*r f J f f dZpid3p2d*P3dSp4Wi234^rfif2fj4' (3-3)
î

where

AQ = C(Pi) + Q(P2) - Q(Ps) - Q(P*); (3.4)

The fluctuating velocity of the multiplicative type,

6KQ(t) = I J Jd3rd3
P6Kf(Typ,t)Q(p)t (3.5)

has a vanishing ensemble average and a correlation given by :

<r2KQ(M') =< 6KQ(t)6KQ(t') >= 2DQ(t)S(t - t'). (3.6)

The time-dependent diffusion parameter is

= JÏ J d3r J J d3
Pd3p'Q(p)Q(p')Df(p,p'). (3.7)



Introducing the phase space diffusion matrix (2.7) into (3.7) it is straightfor-
ward to see that :

Dq = W f d'r J f f J ( 3 - 8 )

Due to the definition of AQ(3.4), the diffusion exactly vanishes for the observ-
ables which are invariant during the collision process (e.g. particle number, linear
momentum, and energy). The simplest scheme making room to an analytical so-
lution for (3.1) can be set out of with particular assumptions. First, we consider
that the dissipative velocity (3.2) or (3.3) can be represented in a relaxation time
approximation,

(3.9)

with <7(0) the asymptotic equilibrium value of the ensemble averaged ç = < q > and
Tf an effective dissipative parameter which characterizes the global phase space
relaxation and then is independent on Q. The Landau theory predicts that this
parameter at the Fermi level is proportional to T~2 at the low temperature limit
(see for example, eq.77 of ref. 14). In fig.l, we compare the results of the Landau
theory with the exact integral of the microscopic transition rates, at the Fermi
level (see (2.2) and (2.2bis)) ; the curve for the Landau result has been normalized
at T=5 MeV to scale the scattering probabilities used in the two calculations.
One sees clearly the known J6) progressive departure from the T~2 law as the
temperature gets larger and comparable to the Fermi energy (about 25 MeV in
the particular case).

As it is well known, one can derive the evolution law for the fluctuation of q
in the statistical ensemble,

=< l*«(01a >î (3.10)

where Sq(t) = q(t) - q{t). It reads

JfQ = -^<4(<) + 2A3(O. (3.11)



where TQ is equal to the global relaxation time of (3.9). When DQ is constant and
takes its asymptotic equilibrium value Dq, we find for t » TQ, the standard
result of the Brownian motion theory :

(3.12)

The above equations are closely related with the standard theory of the Brow-
man motion ; they provide us with a practical method to compute the dispersion
on collective variables : the diffusion coefficient and characteristic time for each
collective variable can be extracted from (3.3), (3.8) and (3.9) since they closely
resemble the U-U collision term which is routinely computed in simulations with
test particle models (see sect. 5).

4. The equilibrium covariance of the one-body
stochastic distributions

In the preceding chapter we have shown that the procedure of contracting
the full phase space upon either one or a numerable set of collective one-body
observables naturally maps the stochastic noise as well as the respective diffusion
matrices. The covariance (rj of the distribution function (see 2.9) is a very complex
mathematical object. In the general case, it depends on at least seven variables
(time and two momentum vectors in homogeneous systems) and then is out of reach
of the most powerful computers. We have shown that out of the critical regimes, it
is not an essential ingredient to establish the collective diffusive-dissipative path.
However, it remains essential to study the equilibrium fluctuations.

It is easy to show that for any observables Q(p), one has :

4(<) = -^d3T J J d3
Pd3p'Q(p)Q(p')<r2

f(r,p,i,T,p',t). (4.1)

Then the equilibrium dispersion 0Q 0 ' for each observable can be computed
out of an integration if <r, is known. This can be done by resort to Van Kampen's
method11* that we shall extend to the case of fermion systems ; this method con-
sists of a projection of the covariance matrix on the eigenfunctions of the linearized
Boltzmann operator. Eq.(2.9) reads in a matrix representation :

±o*/ = A*>J + a*fA + 2Df, (4.2)



where the correlation function has to be understood as the matrix element of 0^
in the phase space representation. The operator A is the linearized Boltzmann
operator, plus the streaming term and Â its transposed expression. In a spatial
homogenous system, i.e F = 0 in (2.1), its elements are :

+2 J' d3
Pid

s
PA{hhh

- j ftofMhhf* +

-«(Pi - Pa) Jd3
Pid

3
Pid

3
Pi(f3f4f5 + /3/4/5)^1345}. (4.3) J

At equilibrium, the diagonal part of the covariance matrix is well-known since
it gives the standard expression for the fluctuations of the occupation probability ;
we then formally separate the diagonal and the off-diagonal parts of the covariance
matrix :

T}(0)|r2P2 >=< r1p1\<rf^\< n,pi\<T}(0)|r2,P2 >=< r1,p1\<rf^\r2,P2 > + < ri,P2^OkIr21P2 >,
(4.4)

with

= / ( 0 )(ri , Pi)/ ( 0 )(ri , Pi)^r1 - r2)*(Pl - p2). (4.5)

The index 0 refers to the equilibrium value ; for fermion systems /^0' is then
the Fermi-Dirac distribution. Inserting this expression in (4.2) in the stationnary
case (the l.h.s. term vanishes), one gets for the equilibrium off-diagonal part :

= 0, (4.6)
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where the inhomogenous term cancels out, in agreement with eq. 26 of ref. 10).
The product of matrix A with the diagonal part of ffVp exactly cancels the whole
diffusion matrix (2.8).

This homogeneous equation may have non trivially null solutions if a2 belongs
to the kernel of the operator A. This implies that a2 can be expanded on the
basis of the eigenstates of the collision operator which have vanishing eigenvalues,
those eigenstates being built from the well-known five invariants of the Boltzmann
collision operator, respectively the identity operator (which insures conservation
of the total particle number), the three components of the linear momentum and
the kinetic energy. The eigenstates of the linearized quantum Boltzmaan operator
with vanishing eigenvalues are then linear functions of this invariants.

Since the streaming term acts only on r dependent functions, they are also
eigenfunctions of the operator A. According to (4.6), the off-diagonal part of the
covariance matrix then reads :

ir2»Pa)= (4.7)
t.J=O

where

and (4.8)

The Ci functions are the Boltzmann invariants respectively l ,Pi,pv ,p t and p 3 for
i = 0,...,4. To compute the 0y coefficients we use the fact that the fluctuations
exactly vanish for the constants of motion of the system. These constraints yield
a linear system of equations, the matrix B of which reads :

/ Boo 0 0 0 ZmT
0 mT 0 0 0
0 0 mT 0 0
0 0 0 mT 0

\3mT 0 0 1Om2TEr/

(4.9)

The only non-analytical coefficient is J?OG> the integral of V1O over the whole
phase space; the other terms are expressible as functions of the temperature T
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and of the total kinetic energy ET- By inversion of the non-singular matrix B,
one gets the equilibrium covariance matrix :

- Pa)

+/(o)/<o) /(o)^o)(<?oo + ^ 4 ( P 1 2 + p a 2 )

where :

_ —B*t , Ù _ Bat
~ flB»4 ' °°* ~ B00B<\-Blt

! ' » = -BV, = - ^ T (4.11)

A lenghty but straightforward computation shows that the covariance matrix
(4.10) is the equilibrium solution of the general evolution equation (2.9) for the
homogeneous systems. One should notice that setting / = 1 , 1 — / , 1 + / respec-
tively, the covariance (4.10) is valid for classical, fermion and boson systems at
equilibrium, with an appropriate redefinition of the matrix B.

Equation (4.10) exhibits strong departure from the usual result of statisti-
cal physics which reduces to the diagonal part ; the off-diagonal terms of (4.10)
are also missing in H.Hofmann et al. 1 3 \ In the systems that we consider, the
number of particles is exactly conserved (as well as the linear momentum and the
energy), then any transient local fluctuation in the phase space density has to be
counterbalanced by another fluctuation of opposite sign elsewhere in the system ;
thus this microcanonical treatment induces strong correlations and is at the origin
of these off-diagonal terms of the covariance matrix. Indeed, (4.10) projected on
the number, linear momentum and energy operators exactly vanishes. These con-
servation laws for the covariance matrix imply that its zeroth and first moments
exactly vanish and then if one would perform an angular moment expansion as in
ref.13), one would also find that the diffusion coefficients DM (see their eq. 51),
linearly linked to the covariance matrix, exactly vanish for kJ=O,l.

According to (4.1), the equilibrium dispersion of any one-body observable for
thermalized homogenous systems is then amenable to direct computation. For in-
stance, let us consider the quadrupole moment of the velocity distribution, which is
the leading quantity to analyze the relaxation of systems toward their equilibrium

12



Q = 2Pl-Pl-Pl-, <4-12)

by direct use of (4.12), the dispersion simply reads :

(4.13)

where ET is the total kinetic energy, then the dispersion of the quadrupole
moment grows linearly with the temperature at low excitation energy. At very high
excitation energies, it grows proportionally to T3. Another quantity of interest in
the context of heavy ion reactions is the transverse momentum gained by particles,
which can be connected to the equation of state of nuclear matter. The transverse
momentum dispersion has a more complex expression, but it can be reduced for
the cases of low and high temperatures. In the general case, it reads :

a^l1 = 2mT + (:YfLf{eOolf + IGm2B44Il + 8771OnJ1J2), (4.15)

Ji and I2 being the Fermi integrals :

I1= f dcf{c) and J2 = / <*«/(«)• (4.15)
Jo Jo

Another simple expression is found for the dispersion of the observable F =
Px sign(Pt) which is connected to the flow :

<T2J;0) = mT. (4.16)

We can notice that all these expressions depend exclusively on the kinetic
energy or on the temperature which are strongly related at equilibrium . They
formally include the diagonal and off-diagonal contributions of the covarinace ma-
trix. The off-diagonal terms cancels out for the quadrupole moment (4.13) and
the flow observable (4.16) whereas they contribute for the transverse momentum
dispersion.

13



5. Simulation and results

The preceding chapters establish the general method that we propose to com-
pute dynamically the fluctuations of fermion systems. We present here a numerical
check of its validity, we restrict our analysis to infinite excited systems for which
we have analytical solutions to compare with. In this case, the problem reduces
to the solution of a coupled set of equations :

y~ (5.1)

q(t) = KQ = -
q(t) -

TQ
(5.2)

dt (5-3)

where one recognizes respectively the BUU/Landau-Vlasov equation for the aver-
age phase space trajectory (average of 2.1), the equations for the average value of
Q (average of 3.1) and of its dispersion (3.11). The link between them is given
by the microscopic structure of Kf (2.2), KQ (3.3) and DQ (3.8). A ten-year old
experience of several groups has shown how to compute Kj by the microscopic
account of the test-particle collisions3' ; it is straightforward to include simulations
the balance, for each microscopic allowed collisions, of the operators AQ (3.4) and
(AQ)2/2 which contribute to TQ and DQ. Due to the graining of the phase space,
these quantities are blurred by a numerical noise which can be smeared out by an
appropriate averaging over the time.

The initial distribution in momentum space is chosen to reproduce, as closely
as possible, the situation of two colliding nuclei. We take in the center of mass
frame, two shifted Fermi spheres, respectively centered at (0,0, -AJfe/2) and
(0,0, Afc/2) where the z axis corresponds to the beam direction. For the study
of the flow, we introduce an angle between the beam direction and the symmetry
axis of the two Fermi spheres. This is an artificial way to create a flow in infinite
nuclear matter where it does not appear naturally. While in real nuclear collisions
the flow is created from a vanishing initial flow state, here we follow the inverse
process ; this provides us with a cheap method to estimate the dispersion on this
variable.

We have performed several simulation with different values of the initial shift
AJb, corresponding to different excitation energies of the system. The mean dis-
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tri bu ti on function is displayed in fig.2, at different time steps, as a function of the
particle energy. As already found with such simulations *>, there is an obvious
relaxation towards equilibrium. We notice numerical fluctuations introduced by
the coarse graining of the system coordinates and the discrete character of the
collision simulation. However, as can be seen on bottom figures, the asymptotic
configurations are the theoretically expected Fermi-Dirac distributions.

Let us focus now on the relaxation in collective space. First we consider the
relaxation of the quadrupole moment operator (4.13). The exponential decay of
this observable is obvious as seen in fig.3a, which allows a rather precise estimate
of the relaxation time TQ. Even if the systems are highly excited, the relaxation
can be characterized by a fairly constant time parameter, we may use this feature
to compute TQ with a global exponential fit instead of extracting it from (5.2).
A similar behaviour is observed for the flow observable F in ftg.3b. Whereas the
transverse momentum on fig.3c shows the behaviour of collective variable which
does not vanish at equilibrium but for which a relaxation time can nevertheless be
deduced.

The relaxation times of the quadrupole moment and of the flow extracted
from the numerical simulations are plotted in fig.4 as functions of the final tem-
perature. Results at very low temperature are not shown since the simulations
become prohibitively long. ;

We can notice that even if the structures of these two operators are completely
different, their relaxation times are nearly the same, which a-posteriori justifies the
hypothesis (3.9) of the global relaxation approximation. The relaxation time for
the collective variables incorporates relaxation properties in the whole phase space
; however in fig.4 we show that the values extracted from the numerical simulations
fit nicely the relaxation time Tf analytically computed at the Fermi level (see (2.2)
and (2.2bis)).

We then compute as a function of time the diffusion coefficients for two collec-
tive variables (fig.5). As already noticed, some care should be taken in presence of
the numerical fluctuations. Due to the structure of the collision term, the numeri-
cal noise on the gain and loss coefficients tends to cancel out in the mean quantities
; for the diffusion process, we shall average the computation of the instantaneous
diffusion coefficient on several time steps provided that this averaging time is kept
much smaller that the global relaxation time. Here, this condition is met since the
averaging time has been taken equal to 2.5 10 ~33 sec, it could have been taken
larger for the less excited systems.

Even if some fluctuations remain, one clearly sees that taking apart the first
time steps of very excited systems (Ak = 0.5 and 1.3); the computed diffusion
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coefficient is remarkably constant in time. We show in fig-6, the temperature de-
pendence of the asymptotic diffusion coefficients for the quadrupole and transverse
momentum observables. So we confirm for the whole phase space diffusion matrix,
the conclusion of ref.7) concerning its diagonal part : even if the system is very
far from its equilibrium, the fluctuations of the system keep close track of their
instantaneous equilibrium value. The fact that the collective relaxation time and
the diffusion coefficient are almost independent on the level of equilibration of the
system is important, since it states that the leading parameter for fluctuations
dynamics is the excitation energy regardless this energy is thermally equilibrated
or not.

The validity of the relaxation time approximation being verified, we can calcu-
late the expected equilibrium dispersions according to the fluctuation dissipation
theorem (see sect. 4) using the values of TQ and DQ extracted from simulations. In
fig.7, we present a comparison between the analytical results of (4.12) and (4.16)
and the results of the simulations. The equilibrium dispersions are reproduced
with a margin of error less than 15%, which could be reduced by an increase of the
number of test-particles associated with each nucléon. This agreement indicates
that the test-particle simulations can be used to compute dispersions of collective
variables with a negligible increase of computing and then opens a new field of
applications of transport models for heavy ion collisions

6. Conclusion

We have presented a formal and numerical scheme to approach the dynamics
of fluctuations for collective variables as arising from the stochastic character of
the phase space evolution8'. We have voluntarily limited ourselves to the linear
regime where the concept of constant relaxation time for the whole system is mean-
ingful. At variance with other works, we consider that the above fluctuations may
serve at best as seeds for the density fluctuations expected in critical systems. We
then do not intend to apply this formalism to non-linear processes as multifrag-
mentation and droplet or bubble formations. However, we have to notice that the
limitation to the linear regime are less severe than it seems ; since, in the actual
(fermion) systems that we have studied, the linear regime applies successfully for
the fluctuations even at high excitation energies.

We have presented a consistent brownian motion approach to the dynamics of
collective variables in the linear regime, which allows a direct link of the transport
coefficients in collective space to the microscopic two-body correlations induced
by the residual interaction on the phase space distributions. We have used this
microscopic link in the simulations.

The solution of the Brownian equation is generally not &vail&ble, even in the
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thermal equilibrium case. We then have presented the independent derivation of
the equilibrium fluctuations, from the general invariant properties of the collision
kerne] of the Boltzmann equation. This method initiated by Van Kaxnpen for
classical system, provides a simple (and novel) expression for the covariance ma-
trix of phase space fluctuations which can be easily projected on each collective
variable, we have used the resulting analytical dispersions to check the validity of
the numerical simulations.

Finally, we have demonstrated that the method is efficient by simulations
based on pseudo-particle models which are numerical implementations of the Brow-
nian approach. These simulations show first that the inherent numerical fluctu-
ations of the calculations do not prevent the extraction of transport coefficients.
They show too that the numerical simulations provide the correct approach of the
fluctuations towards their equilibrium.

The fact that pseudo-particle models -here used in infinite matter- have been
successfully applied to finite systems, paves the way to actual dynamical studies of
fluctuations in systems like interacting heavy ions. As a supplementary conclusion
which may help this application to real systems whose equilibrium is difficult to
ascertain, we notice that the excitation energy (thermally equilibrated or not) is
the leading parameter for the fluctuations.
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Figures Captions

Figure 1 : Relaxation time of a Fermi system ; the dotted line indicates the
low temperature expansion used in the Landau theory, the black circles show the
results arising from the exact computation of the collision integral.

Figure 2 : Phase space distribution functions as functions of the particle energy
in units of Fermi energy. Situations at different time steps in 10~23 sec units are
shown ; for an inital shift of 1.2kp of the two Fermi spheres, on the left hand and
of 0.3&F on the right. The two bottom figures show in full lines the analytical
Fermi distributions for systems with the same total excitation energies.

Figure 3.a : Quadrupole moment relaxation (4.12) for r different values of the
initial shift AA; of the two initial fermi spheres.

Figure 3.b .- Same as fig. 3.a for the flow observable.

Figure 3.c : Same as fig. 3.a for the transverse momentum.

Figure 4 : Relaxation times of the quadrupole moment (stars) and the flow observ-
able (triangles) as functions of the final temperature of the system. The theoretical
phase space relaxation time (dots) is shown again for comparison.

Figure 5.a : Quadrupole moment diffusion coefficient plotted versus time for dif-
ferent initial conditions.

Figure 5.b : Flow observable diffusion coefficient plotted versus time for different
initial conditions.

Figure 6.a : Mean equilibrium quadrupole diffusion coefficient as a function of the
final temperature.

Figure 6.b : Mean equilibrium flow observable diffusion coefficient as a function
of the final temperature.

Figure 7.a: Comparison between the dispersions on the quadrupole moment ex-
tracted from the simulation and the exact analytical ones ; the results are plotted
for different final temperature.

Figure 7.b : Comparison between the dispersions on the flow observable extracted
from the simulation and the exact analytical ones.
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