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ABSTRACT

The non-isothermal Cahn-Hilliard equations in tin- /(.-dimensional case (n = 2,3) are
considered, The interaction length is proportional to a small parameter, and the relaxation
time is proportional to a constant, The asymptotic solutions describing two metastable
processes are constructed and justified. The soliton type solution describes the first stage
of separation in alloy, when a set of "superheated liquid" appears inside the "solid" part.
The Van der Waals type solution describes the: free interface dynamics for large time. The
smoothness of temperature is established for large time and the Mullins- Sekerka problem
describing the free interface is derived.
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1. Introduction

The aim of this paper is to consider two metasiable processes of solidification. The
simplest processes of phase separation and solidification in a binary alloy are described
by the non isothermal Calm-Milliard equations (2, 7-9]:

(1)

Here x £ fi, II C IV is a bounded domain with smooth (C°°) boundary d£l, n = 2,3;
A is the Laplace operator; 0 is the temperature; k > 0 is the thermal conductivity
coefficient; j(.v.t) is a smooth function; t > 0 is the latent heat of melting; £ > 0 is
the surface tension; T > 0 is the time of relaxation; a > 0 is the interaction length; ip
is the normalized concentration. The value ^ = 0 corresponds to the uniform mixture,
whereas the values ^ = ±1 correspond to the pure phases, i.e. to the species which are
distinguished from the alloy.

The system (1) is interesting from the physical viewpoint in the case

« i, a •€. 1.

Let us introduce a small parameter c > 0 and let

— = const. r = const, • 0 .

(2)

(2')

Kor simplicity, we also assume that k is a constant and 1 = 2. Then, preserving the
notation and performing simple transformations, we can rewrite system (1) in the form
of the Vakii-Milliard system with 0 small parameter

(3)

- - K ~ •— — L i c L.

fh y-
wliorc ^ > 0, H\ air constants, ,r £ Q, e —

'1 he initial da t a

where l)°, ̂  are certain smoo th (for c > 0) functions, and t h e b o u n d a r y condi t ions

dO_

8N ON
= 0 (5)

complete the problem. Here N is the external normal to 5fi, E = [0, T] x dSl, T > 0.
The detailed mathematical analysis of the solution, for arbitrary initial data 6°, y>°

is impossible at present. Sc we shall consider only two specific for the metastable stage
processes, choosing the special initial data respectively. It is well known that there exist
so-called stable, unstable and melastable stages of processes in alloys [31]. Under the



assumptions (2') they correspond to the cases: 0 > 1 or tp < - 1 , and - l / \ / 3 < <p <
l / \ / 3 , and - 1 < if < - l / v / 3 or l / \ / 3 < <p < 1 respectively. Here and below j(x) —
to — l i m / ( i , £ ) denotes the weak limit in the V sense. The numbers ±1 correspond to the

zero points of the equilibrium chemical potential F'(ip) — if3 — p. The numbers ± l / \ / 3
correspond to local maxima/minima of F'.

The physical setting of our problem is the following: to simplify problem we assume
that the initial concentration fa{x} e (l/\/3,1} for all x 6 fi. The set of such points with
concentration will be called "solid". Since the interval (l/\/3,1) belongs to the domain
of attraction to the point tp^ — 1, the concentration ought to increase and to tend to tp* .
But it is impossible to obtain the situation when <-p(x,t) - î +q at each point of fi. since
the global mass m{tp),

m{<p) =

conserves in time and m(<p°) < \il\. Thus one must assume the appearance of subdomains
Uf such that ip € ( 1 /v^ , 1] as x € S2+ and <p £ [ - 1 , - 1 / V 3 ) as ;r € fj,". After that the
next stage of the solidification starts, when the subdomains ilf transform. The soliton
type asymptotic solution, constructed in the present paper, describes the first stage when
the "liquid" part tl," appears inside the "solid" part, but the volume of ff[ is still small
enough.

The Van der Waals type asymptotic solution describes the motion of S?f when |fl*j >
const uniformly in i. Our construction allows us as well to establish that the temperature
remains a smooth function (in the leading term with respect to e) during these processes.
Therefore, the solidification process, described by Calm -Milliard equations (H), differs, in
principle, from the dynamics of "solid"/Liiquid', described by both the phase field model
and the Cahn-Hilliard model (1) for small time of relaxation. Actually, according to the
phase field model and (1) for T ~ s, the temperature has a weak discontinuity on the free
interface, whereas, according to the model (3). the temperature is almost the same on
the "solid" and "liquid" domains (for both \ilT\ -C 1 and |fir | ~ const). So we can say
that the appearing set f!,~ is the domain of "superheated liquid"'. We shall consider only
the case </J° 6 ( l / \ / 3 ,1 ] . Nevertheless, it is clear that our construction also allows us to
describe the analogous processes in the case ip° £ [—I, —1/\/3).

The Oahn-Hilliard equation (the second equation in (1) with $ = const) was proposed
by J. W. Cahn and J. E. Milliard [7-9] as a simple model for the process of phase separation
of a binary alloy at a fixed temperature. The surveys of physical aspects of this model
are given also by V. P. Skripov k A. V. Skripov [41], J. D. Gunton k M. Droz [18],
Y. S. Lipatov k V. V. Shilov [22], A. Novick-Cohen k L. A. Segel [31], T. Nose [32]. This
equation arises as well in the study of mathematical biology and ecology, see U. S. Cohen
k J. 0 . Murray [13] and M. Hazewinkel & J. Kaashoek k B. Leynse [19]. The numerical
results for the Cahn-Hilliard equation were got by C. M. Elliott k D. A. French [17]
and T. M. Rogers k K. R. Elder k R. C. Desai [40]- The equilibrium theory for the
Cahn-Hilliard equation was investigated by ,J. Carr k M. E. Gurtin k. M. Slemrod [10] in
the one-dimensional case such that E7 ~ a <£ 1. The existence of extremely slow evolving
solutions of this equation in the same case was established by .J. Carr & R. L. Pego [11]
and N. Alikakos &i P. W. Bates k, G. Fusco [1] (see also references cited therein). The
initial value problem for the Cahn-Hilliard equation is investigated in detail in the case
when r , £, a are constants, n < 3 and 0 — const. For the description of the results the
reader is referred to C. M. Elliott k S. Zheng [16], S. Zheng [46], P. W. Bates k P. C. Fife

[3], It. Temain [45], where the existence and uniqueness theorems, as well as the existence
of an attractor are proved.

Nevertheless, it is clear that these results do not describe the limit problem of (1)
as c,f -> 0. So, there we have the problem about the correspondence between the
initial problem (1) with a,£ <£ 1 ant! the limit problem as a,£ —>• 0. A similar relation
between the phase field system with a small parameter £ <£ 1 and the limit (as e tends
to zero) modified Stefan problem was established by E. Radkevich [39], V. Danilov fc
G. Omel'yanov k E. Radkevich [H, 15, 33, 31], P. Plotnikov k V. Starovoitov [38],
M. Soner [42], sec also the paper by B. Stoth [43] and the papers [35, 36] about analogous
problems, Moreover, it is impossible to reduce the problem with a small parameter e -+ 0
to the already studied problem with £ = const. Actually, by changing the scale (' = t/s2,
Tf ~ J ' / t , system (1) can be transformed as follows

(6)

df

Here F'(s'.t',s) = F(e-.r.E'H,t), / ' = £if(E.r,e2t).
Now we note that the conditions

Hi?11'; /.2(IT)|| < con.sl, ||v30'; i\n')\\ < const,

which are natural for e = const, imply the senseless assumption

|H|cxe" as £ - + 0 ,

jj<p°'(x',e))2dx' = —Jj<p°(s,e))2<iz = const

and \p° varies from - 1 to 1. Here and below | | / ; A'[| denotes the norm of / in the space
A'.

Thus we have to admit that

which corresponds to |fl[ tx const. Here c = const.
Further, the solvability of (6) for (' < 7',', where T\ is a constant, means only the

solvability of the initial problem with the small parameter for times t < £2T, —> 0 as
£ -y 0. Let the estimate

x ^ ' ; I ? ( Q > ) x ^ ' ; L \ Q ' ) \ \ < -HL

hold for (' < 7','. Here Q' = [0,7//] >c H'. Then, using the construction common for
parabolic equations, we see that the energy equality

K d



implies the following estimate

for all (' < T[. Here Ao > 0 is the minimal eigenvalue of the Laplace operator — A,
(/, g) denotes the scalar product of vectors / , g in /?"; b = const.

Therefore,

on SI;

Hence,

The last inequality yields the useless estimate for the solution with respect to initial
variables

" ' " ) < — as e -> 0.

So, problems with a small parameter have to be examined from the viewpoint of both
constructing an asymptotic solution and proving the existence and uniqueness theorems.

The multidimensional Cahn Hilliard equation with a small parameter was considered
by B. Stot.h [44] in the spherical symmetry case, and by R. L. Pego [37].

The non-isothermal multidimensional equations for the process of phase separation
were obtained by 11. Alt h I. Pawlow [2], where the existence of a. weak solution satisfying
a generalization of (1) is established in the case r, f, o = const. The Van der Waals type
asymptotic solntion of the multidimensional Cahn -Hilliard system (1) was constructed
and established by G. Omel'yanov & V. Danilov & E. Radkevich [35, 36] in the fast
relaxation case

a — e, la — const, rfa — const, - 0.

In this paper the asymptotic solutions of problem (3)-(5) are constructed and justified
under the assumption that the classical smooth solution of (3)-(5) exists. The asymp-
totic solutions are constructed on the basis of a modified two-scale method (V. Maslov &.
V. Tsupin [23], V. Maslov k G. Omel'yanov [24, 25], V. Maslov k V. Danilov & K. Volosov
[28]) for obtaining solutions with localized "fast" variation. A similar method was used
by E. Radkevich [39] and V. Danilov k G. OmcPyanov & E. Radkevich [14, 15, 33 36] for
obtaining the asymptotic solutions of both the phase field system and the Cahn-Hilliard
system in the fast relaxation case.

It is very important to note that the boundary layer construction of the asymptotic so-
lution cannot be used in problems with free boundary. The "boundary layer construction"
means the construction of a pair of asymptotic solutions Y±(jj,x,t,e) like boundary layers
on the left (?j < 0) and right (r) > 0) sides of the free boundary F( = {x, TJ = S(x, t)/s = 0}
along the direction normal to F,. As in elliptic problems, Y± vanish (or tend to some con-
stants) at the points sufficiently far from P,, and V+ = V_ on P,. Obviously, in general,
the function

V, tot UP, = {x,S(x,t) > 0},
0^ U P, = \x,S(xJ) < 0}

(7)

is continuous only on fl = (If U !1, U P(, and cannot be a classical solution of our
problem for £ > 0, so Y is a weak formal asymptotic solution. In fact, the function (7)
does not describe the behavior of the solution close to P,, since Y is not the solution
on P,. But the main purpose of the whole construction is to describe both the solution
close to P, and the evolution of I\. Nevertheless, it isj>ossible to define the classical
solution on fi in the case when the analytical extensions Kj. of V± exist, and V+| <0 = V-,

l_|^>0 — V+. The additional conditions for the existence of such analytical extensions,
the so-called Hugoniot type conditions, are exactly the conditions on the free boundary
(Gibbs-Thomson law and so on) (see V. Maslov & G. Omel'yanov [24] for analogous
problem). This defect of the boundary layer construction was eliminated by using the
so called method of matched asymptotic expansions, see G. Caginalp &: P. C. Fife [5j.
Nevertheless, a version [37] of this method results in unbounded "lower" terms of the
asymptotic expansion. Obviously, this follows from the fact that the necessary condition
for the existence of a. bounded solut ion of the model equations is of no practical use, since
tho normalization condition was posed (see [37], p. 272), The possibility of constructing
an asymptotical expansion up to an arbitrary precision is a very important condition in
the theory of perturbations. This is the first necessary step to justify the asymptotic. As
a rule, the unbouudedness of lower terms means that the leading term is uncorrected. For
example, the unboundedness of the lower term of the asymptotic expansion for weak non-
linear problems indicates that the first term includes some additional terms, which were
not. posed at the initial instant of time. It leads to the so-called three-waves and three-
trains processes describing the nonlinear interaction between the waves and a generation
of new waves for positive time, see V. P. Maslov & G. A. Omel'yanov [26, 27].

2 . Soliton type asymptotic solution

Let us formulate the main result of this section. By 9Q = 80(x,t), ip0 = tpo(x,t)
( l / \ /3 , 1), 4' = i>(x), we denote the solutions of the following model problems

(8)

= 0,

, oo,

= 0- (10)

Here Dv — l/|Vt/>| is the normal velocity of motion of the surface P( = {i € il, i}>(x) —
<}; IC, = div(i/) is the mean curvature of P(, v = Vi/I/|VV'| is the vector normal to Fe;
F = F(x.ij>(x)) for all continuous functions F(x, t); djdv — (y, V);

On —



Theorem 1. let Fo = {i € n,^(x) = 0} be a sufficiently smooth closed surface of
codimension 1. Let sufficiently smooth solutions of problem (8)-(10) exist, and t̂ 0 e
(l/i/3,1), and /e< dist |T,, dft) > const for all t E [0,T\. Then, for any M > 0, there
exists a formal asymptotic (up to O(eM+])) solution of problem (3)-(5). The leading term
of this asymptotic solution has the form

Here

x = -$

(ID

(12)

£ C™ is the solution of the inhomo/jeneous linearization of equation (10).

Remark 1. From (11), (12) it easily follows that our asymptotic solution is a so-
called self-similar solution. It implies the special choice of the initial data (A) in an
^-neighbourhood of To, i.e., <p° must exhibit the special behavior (not only in the prin-
ciple term, but also in the lower terras of the expansion of ,50(:r,£) with respect to e).
The initial temperature 8" can be an arbitrary smooth function in the principle term,
nevertheless its lower terms must exhibit a special behavior close to IV

Remark 2. It is not too difficult to prove that equation (10) is a quasi linear parabolic
equation, in which i t (along the vector v — V^/\Vi'\\. ) is a time like variable, and x,
(tangential to Vt) are space like variables. So, the additional condition in (10) is actually
the initial condition [14, 15]. The classical solvability and uniqueness of solutions of
quasilinear parabolic problems with smooth coefficients are the result of the realization
of some matching conditions between the initial and boundary data [21 j . So. we assume
that these matching conditions are realized.

At first let us consider the statement of Theorem 1. Formulas (11), (12) and the
solutions of problems (8)—(10) describe the motion of the soliton \ on the smooth "back-
ground'' <p0 (a soliton type solution was obtained also in [17] by numerical simulations
for the one-dimensional Cahn-Milliard equation). Obviously, the surface V, is the set of
maximum magnitude of |vj

.4 = max |x| = - {

It is easy to prove that this solution exists if and only if yo € (1 /vo , 1). The amplitude .4
is a monotonically increasing function, , 4 ^ > 0, and trivial calculations show that ,4 -+ 0
and G —> 0 as ip0 —> I / T / 3 - It is also clear that there exists a valuer* 6 ( l / \ / 3 ,1 ) such that
A < tp0 as î o G ( l / v3 ,y* ) i a n ( i -4 > I/JO as <p0 G (v*, ' ) - Thus, moving into the domain
with ipn e (v*, l)i the soliton solution describes how the set fi,~e = {i € fi,v?0 + ,\ < 0}
with negative concentration arises. Let us consider the behavior of the solution as ipa

tends to I. Setting <̂o = 1 — i^( i , / )cxp( —I/A), 6 <S. I, we get the following relations

. 16
P - i / ^ G = -\

Hence, /}„ ~ S and the velocity of the soliton motion decreases as S ~+ 0. On the other
hand, the volume of the set Jl^t increases, since b ~ exp( —1/8) and |fi£,| ~ I^Vr/il ~ ejb
for 6 <£ 1. Thus, this solution describes the appearance of a sufficiently large domain of
"superheated liquid", since the concentration ip ~ -7/9 on fi,""^ and the temperature
#o is almost independent of ?̂0 at these points. Nevertheless, this asymptotic solution is
correct only if |fl|"E^| -+ 0 as £ -> 0.

We shall also see that the first corrections of the asymptotic expansions for the tem-
perature and concentration have the form of smoothed shock waves. So,

w - lim -(6 - 6a) = A\,oII(t -

where II is the Heaviside function,

w - lim -

••Pa

are the amplitudeH of jumps on I',. It is easy to calculate that AixQ, <4i,̂ > are bounded as

Vu - > 1 •

Let us prove Theorem 1 and consider the general method for constructing the asymp-
totic solution of this problem up to an arbitrary precision.

First, we introduce the following classes of functions

n =

S =

win

Here and below Q = [0,7'] < I!.

Lemma 1. 1. Let S(.v,t) G C:<(Q) be such that f)S/dt\r, ^ 0, where V, = { ( i , l ) G
Q,S(xJ) = 0}. Thai, for any function / ( / ; ,x , ( ) £ U, we get

where t = V'(^) *s the equation of the surface S{x, t) — 0 and f3 — 8S/dt\r,.
2. Le.tfi(ri,x,t), ({n,x,t) e H be. suck that n* = ± 1 , (+ = 1, ( " = 0 . Then, for any

function f 6 H, we have the representations

f= \{J+

f =



where w; are functions from S.
3. The relations

k>0,

hold for any functions f(r)tx,t) eS, g(x,t) G C™(Q).

The proof obviously follows from the definition (see also [24]).
Remark. The representation S = t — ^( i ) does not mean that the solution must move
with velocity of order 0(1). Actually, since the function i>(x) can increase rapidly along
the direction normal to the surface Po = {x 6 f!,</j(x) = 0}, the motion of the solution
can be arbitrary slowly.

Let us begin to construct the self-similar asymptotic solution of problem (3)- (5). First
of all, we note that the leading term of the asymptotic expansion for 0 must be a smooth
function, since the leading term of tp is a soliton. This implies that th^ asymptotic solution
has the following form

0(x,t,e) =

M

(13)
j = 0

V(j,,r,Xtt,e) =

J = l

Here xN is the distance from di\ along the internal normal, x' € dil,

S, 6,, v, € C»(Q), Y,{r,x',t), Zj(r,x',t)€V,

x(n,x,t)es, u}(n,x,t),w,(r,,x,t)£H,
and

si C

By Lemma 1, without loss of generality, we can assume that

S = t-iP(x), X = \(i-x).

(14)

Substituting (12) into equations (3), we get the relations

at
(IS)

-^(LiW" + wM - (*M + w

| (
at

WM = 0.

Here

(16)

First, let us obtain the regular terms of expansion (13). Passing to the limit as
17 -» ±00, T -}> 00, from (15), (16) we get

M + W M ± -

M±) 4- «iVw ±).

Introducing the notation

(is)

and setting the terms of the order O{£3) equal to zero, we get equations (8), (9) for
the leading terms, as well the following equations for the lower terms of the asymptotic
expansion

(19)

10



Here fi* are subdomains of fi such that

are functions of the previous terms of the expansion and their deriva-
tives. In particular,

Now we note that the supports of fast variations of boundary-layer functions and of
functions rapidly varying on a neighbourhood of f( do not intersect (up to terms O(e°°)),
since dist(dft, Pi) > const. Hence the solution in a neighbourhood of V, and in a
neighbourhood of dU is constructed differently.

Let us consider a neighbourhood of F f. Passing to the limit a s r - » oo. we obtain that
the terms in (15), (16) belong to the space S, since relations (17) hold. So we can use
the method developed by V. Danilov, G. Omel'yanov and E. Radkevieli [14. 15, 35, 36,
39]: step by step we decompose the coefficients at e1 in (15). (16). j = - 2 , - 1 , 0 , . . , , into
the Taylor expansion at the point t — 0(.t) and use (he relation T; — (> — V*)/E. Further,
passing to the Functions of independent variables i;, x, we obtain the asymptotic solution
on the surface Tt. Finally, we define a sufficiently smooth extension of Lhe.se functions on
[0, T] X il, so that the lower terms of the asymptotic expansion exist and belong to the
space Ti.

Let us denote F = F{r/, x, t)|,_Vl(T) and consider the terms O(e~'2) in (16):

After the integration, we get

Obviously, const = 0 since \ <z S. Therefore

\ 4 0 as 7 / 4 ±oo. (20)

Choosing c = —^oi w e get that the solution on I\ has the form (12). where the ''constant '
of integration 4>i — i'li^) ]s a n arbitrary function from (""((l).

Let us extend x by the identity to \ = \ ( J ; , .r) for all (x,t) € Q. Now, set I. ing the
terms O(£~2+*) equal to zero, from (15), (16) we gel the following equations

= Ft, Uk —>• 0 as ij - > - 0 0 , (21)

Here

I Wk = Ft, Wk 4 0 as i / 4 - o o . (22)

_

Or?

11

Fl are functions of 0(,,fo,... ,Uk-t, Wk-\ and of their derivatives at the point t =
it = 1,2 , M. In particular.

(23)

Ff = | V 0 p 2 - ^ . (24)
or)

It is not too difficult to prove that the following statement holds (see also [14, 24])

L e m m a 2. The solutions 0k £ H. 114 € H of {21), ("22) eiml if and only if

t-l € 5, Ft G S, (25)

/ " /'/'rt1^ = 0, f" Ftdr, = 0, (26)

(27)

whr.re

it - I" /"' W.-W
Using (23). (24), it, is easy to see that the conditions (25), (26) hold automatically for

* = 1.
I'urther, since

ft = l"l|^ %

R =

sinijjlc ca lcula t ions vifld I.!IP htat.finent

L e m m a 3 . lor k - 1 rontliiiou (21) !> vtjuivittcnt to equation (10) .

N o w , s h u t ' ( 2 5 ) ( 2 7 ) a r e s a t i s f i c t l for k~l. w e c a n o b t a i n t h e f u n c t i o n s b \ , W^:

0, = r,+ (.r)C(?;. J-), IV, = W+(XK{>1,X)+UI{T>,X)-

Her,-

c+ = i, C = 0 ,C = ~-H.Jii

», W',+ = U+K/Q2,

</'2 is the '•constant" of integration, a —

12



Let us define the extensions L\, Wi

Here
lii = 9t ~ 07, Wi = $T — 07 C?R'\

I lc lc: " 1 T l c ^ l c ^ " )

9fc> ®fc are sufficiently smooth extensions of Of, * f in Q* U Tfj, such that the heat,
equations (19) are satisfied for I" = 1. Here 0 < S <£ i is an arbitrary number.

Thus we have the following conditions for jumps of fff, $* on V,

(29)

r i_,, mid note that, l.hc vector v is directedHere we use the notation [ /*] | r = / |,< ,0— f*
from SI;1" to S2(".

Let us consider equations (21), (22) in the case k — 2. The right-hand sides of these
equations belong to S, since equation (8) and the first equation (19) hold for k — 1.
Further, after some calculations, we get the following statement

Lemma 4. For k = 2 conditioi.i (26) arc equivalent la the equalities

[dot
Q* bQ O

V-E (30)

Finally, for A: = 2, after some trivial but cumbersome calculations condition (27) can
be transformed to the following linear iiihornogeneoiis equation for the phase correction

Here K,' is the variation of the operator K from (10), the right-hand side /"''(.r) depends
on the functions xb, 8a, ^o, t)f, (tj11.

The following constructions are performed similarly:

1. Calculating U^ , W^ , we get conditions for jumps of the functions 0^. *t>^ on [\:

2. By using formulas similar to (28), we define the extensions f'V, W^ on Q. Since 0^,
$* is the solution of (19), we see that conditions (2.1)) hold;

3. Conditions (26) imply conditions for the normal derivatives of S j . l t $^_, on P,;

4. Condition (27) yields an equation (similar to (31)) for the "constant" of integration
4

13

In fact, since

£2^3 + •••)) + O(e2),

the functions 0|., A" > 1, arc the lower corrections to the principle phase tf>. So, these
functions describe the front of the soliton wave more precisely.

We must also pose the initial conditions for the heat equations (8), (9), (19). Since
0u, ip0 are smooth functions on Si x [0, T] and &*, <tf are smooth functions on fi* x [0, T],
let us define the initial data as follows

w,
J = l

These formulas yield the initial data (8), (9) and the initial data for equations (19):

0? = tffW, vt^Six), xtnl (32)

Obviously, the behavior of smooth (for the e > 0) functions 9°(x,£), <p°(x,e:) may be
arbitrary outside an ^-neighbourhood of Va, but 0", Y?° must be of a special form in this
neighbourhood.

Now let us consider the boundary conditions on the external boundary Oil and cal-
culate the boundary-layer functions. The soliton part of the asymptotic solution sat-
isfies both boundary conditions (5) up to O(e'"). So, for ip on E, a discrepancy in
the second boundary condition arises only from the regular part of the solution, since
dist(r,,yf!) > const and. in general,

j'O.

Let us put Zj ~ 0 for j — 1,2 since

Then, using the construction common for the boundary layer asymptotic solutions, we
obtain the equation for Z:i:

d2

— Z3-qZ3-H,

where y = 3v§jv - 1 > 0. Obviously,

I), T —• oo, (32)

Now we can see that the boundary condition

93 z
dN

(33)



leads to the formula

Further, we note that the appearance of the boundary-layer function £^3 necessarily
implies a correction of the Neumann condition in the term O(e2). Let, for definiteness,
d(l n dtlf = dil. Then the Neumann condition for $.J has the form

dr
(34)

The appearance of the boundary-layer functions Zt implies the boundary-layer terms
Vj in the 0 asymptotic expansion. Since the boundary dil is fixed, Y) = 0, j — 1,.., ,4,
we get the equation for V5:

V5 - > 0, T —> 0 0 . (35)

Therefore

Conversely, the appearance of V-, leads to a correction of the Neumann condition for the
temperature in the term Q(e*). Thus, the Neumann condition for 9^ has the form

dN ~0T
(36)

Finally, the asymptotic expansion in a small neighbourhood of dil has the following
form

4 M

,= l j=S

2 M

Here Z3, V5 C V are described above, '/^ P V, k > 4, and \] 6 V, j > 6, are calculated
from linear inhomogeneous problems like (32). (33), (35). In turn, we obtain the boundary
conditions for problems (19):

1. Conditions (8), (9) for 8D, y0;

2. Conditions

dN

3. Conditions (34), (36) for *J , 6+;

4. C'onditions

= 0

dr dr

for 07, j > 5 and * j , fc > 3.

«*• — . . i - . . . * : - «.-• . .

Theorem 1 is proved. Moreover, analyzing our construction, we obtain the statement.

Theorem 2. Lei the assumptions of Theorem 1 hold. Then for any integer M > 0 there
exist the functions

(37)

that
d

(38)

<?JV

0, 9, jFjf,-0, F^-e (ire (smooth for £ > 0) functions such that

(39)

(40)

(40')

(41)

when the constants c, are independent of e.

Remark. Fstiniate (40') is better, if 8°, 90 are of special form in a neighbourhood of IV

Jll + ||F*;C'(S)[| < ca,

3 . Justification of the soliton type asymptotic
solution

In this section we shall obtain estimates for the differences between the exact 0, if and
asymptotic #", î >" solutions of problem (3)-(5). Let us introduce the notation <r = 6 — CJJ,
w = ip — ip™ and let the initial data 8a, <p° exhibit a special behavior. Then, from (3)-(5)
and (38) (40), we get the following problem for the remainders c, w.

du>

"~dt

(42)

(43)

16
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8N

Here JFJ^, F£" are smooth functions satisfying (41), flf are functions such that

(44)

• cy/l (45)

with constant c independent of s. To simplify the notation, we omit the superscript
denoting asymptotic solutions.

The main result of this section is
Theorem 3. Let there exist a sufficiently smooth solution of problem (3)-(5) on the time
interval [0, T], where the quantity T > 0 is independent o/f. Let also the assumptions of
Theorem 1 be satisfied, M > 2 and there exist a constant 7 > 0 such that fo — l/\/3 > 7
uniformly in r E !!, ( £ [Oi^j' Then the estimates hold

\\ui- L^dO/f); L7(n))\\ + \\n- L^i^/L); L2(Q))\\ < c eM+\ (46)

11 \ 7 , , . i 2 ! n \ \ \ -L n r ? / r - t 2 < n \ U < ^ - M + 1 / 2 M A , r i i n \ \ \ <r ̂  , A / - i / aII v u , L ( y j | j + || V J T , L \t^)\\ s c c , | | ^ u , L ( v J I I S ^ e

with constant c independent of-:.

First, we obtain an auxiliary result.

Theorem 4. Under the assumptions of Theorem 3, the following estimates hold

IK ^ ( ( 0 . n, lAtt))\\ + Ik; /'""((<>,T); ^(£J))|| < c EM^I\ (47)

*\ t2(Q)ll < c eM+1 'a. IJAw; I2(Q)|| < c eM"1/2.

Proof. Multiplying equations (42), (43) by a, UJ respectively and integrating on it, we get
the relations

{ 4 8 )

-3

i|2 = jf (Vu,, V

, f (Vuj.Va) (49)

Here and below ||/|| denotes the L2(fl) norm of / .
Further, multiplying (42) by u, integrating on Q and summing with (48). we obtain

1 d
2d(

\\a\\2 + 2 / uadx (Vw.

= - £ M X f
(50)

Let us fix a. constant A' > I/7. Multiplying (49) by ft' and summing with (50), we get
the equality

^ {(1 +

+\\Va\\

= A' / (Vu,
Jn

+ (f«,A' - 1 )

3A'||OJVU>||3

ZK I (VLJ,SI<pM<
Ja

) / ( (51)

l F°M)}dx'.

We shall analyze the terms in the right-hand side of (51).

Lemma 5. Let \pM be the asymptotical expansion (37). Then

(52)

/ =

where

= .-I
tosh3 yo + ,4 cosh p + (1 +2A)fa

es,
1

= (- ~ In86,

(roshp + nY

(ji, tyk are smooth functions such that

\g,\ < const. #2 e 5, * 3 £ W, 1*41 < const.

Proof uA Lennna 5. Using I lie expansion (̂ 37) and rewriting ipM in the form ipM —

(53)

(54)

1 (
2 Ja

where </L = —3(\ + 2^0), ffa = (2^o + 2^ + EV̂JVT
Further, siniplf calculations yield the relation

1

^^,. Obviously, ji are bounded functions.

+• X ) \ ' D I I + ~ * + *4- (55)

Here

- fix,)

18



<P4 is bounded (in the C-sense) and tl is the operator described in (16). Let us rewrite
the function x ' n the form

X ~ -A{coslip + a}~\

where p, A > 0, a > 0 are described in (53). Now it is easy to calculate that

where 'Pi has the form (53) and

* { Acoshp + (2

Obviously, >p2 € <S. Finally, let us note that the term ^ can be written in the form
41 = * 1 * , ! , where * 3 is a function from H, since Ŵ  satisfies (22) and XT,, A™ vanish like
1/coshp as n -> ±oo. This equality, (54), and (55) complete the proof of Lemma A.

Now, using (42), (44) and integrating (51) with respect to t, we get

l- {(1 HI1} (0 + £ {\\Va\\2

h'j(3<fl -

^ 2 M + 1 {(1 + ICAWSII 3 + l l /

f' \KI-3K ( {VL>,VipMui2)
Jo ^ Jn

/ f l /£/
(56)

It is easy to see that

2| /1 in
ai\\w\\2 + — \\a\\2,

a 1

1 , ^ 1
0 2

Let us choose the constant A' large enough, so that 7A' — a2 > 1/2. It is possible, since
7A' — Qj varies from 0 to 1. Further, by the embedding theorem (see, for example, [21])
and (41), we get

a)Fs
M - wK{FZ ]

|k; L2(dQ)\\) < c£
3
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Here and below c denotes a universal constant, \\f\\k is the Hk(il) norm of / , and Hk

denotes the Sobolev space.
Therefore, choosing e small enough, from (56) we obtain the following inequality

^ ^ {INI2 + HI2} (0 + fa{\ IIVu,||2 + i liv^ii2

+£2A' ||A^||2 + 3A' ||wVw||2 + ̂  j J'^idx]^' < ce2M+1 (57)

A' I/| + c(|H|2 + |k||2) + 3A' I J (Vu, V ^ w 2 )

To estimate the integral / we shall need the following

Lemma 6 ([25], [33]). For any function ip(t) e C°°([Q,T]) and for any nonnegative
functions f, v,

/(«,x) e ^ ( O . T j ^ t f l 1 ) n L'ffi1)), v(t,x) e Lm(0,

where S is the Schwartz space, there exists a constant eg > 0 such that, for all £ d (0,£<>],

f(t, x)»(t, ̂ ^-)dx < 6||/; i ' t ^ l l + c(S) c3/2r(£

> ke^2^" is an arbitrary constant, ft 6 ( 0 , 1 / 2 ) ; k > 0 is a constant. Here

0 < c(6) < const/63 and r(e) - K ) a s e - » 0 .

Remark. A similar estimate was established by M. Berger and L. Fraenkel [4] for the
boundary layer problem. The support (up to O(£°°)) of the boundary layer part of
the asymptotic solution lies in the e^-neighbourhood of the boundary 3fl, 8 € (0,1)
is a constant, and the remainder is equal to zero on dil. So, by Lemma 6, we have
some additional condition, which means that / = 0 on a surface inside the domain
fi,, = {x, \v[i, (x — ip)/e)\ > a} for sufficiently small a. This condition, very natural for
elliptic problems, was used by M. Berger and L. Fraenkel extensively. Moreover, the proof
[•1] is incorrect, witlvmt this condition. Obviously, such an additional condition does not
appear for the free boundary problems.

Let us estimate the principal terms of / .

Lemma 7. Let £ be small enough. Then

7u\'*\gi\xdx < Si \\VUJ\\2 + c
if

1

(58)

(59)

where i5, > 0 are arbitrary constants.



Proof. Denote by Mp. a fi neighbourhood of the interface F,., where fi > 0 is a constant
independent of e. Since x = Oie00) outside A^, we have

<c0 f \Vu,\i
X

for any positive k. Here CQ = max \gi\.

Choosing ft sufficiently small, we pass to the variables y = (yu ... ,yn) in ,VW, where yi
is the coordinate normal to [Y = ( i 6 (1, (' = I ^ ( T ) } . Then in A',, — { y, |i/i| 5- /J, V̂ ~ <
y, < Y*, i: = 2 , . . . , n} we have

_2 -'V,

where J is the Jacobian of this change of variables,

By Lemma 6 and the embedding theorem for n — 1. we get

f, |Vo.|2x

< ft /̂ +

Here we choose k2 — 1 + Art/3 and use that ,/ > 0 is a bounded smooth function.
This implies estimate (58). Similarly,

< ^ / u;2*,

Lemma 7 is proved.

Further, choosing £ small enough, we have the trivial estimate

\Vui\2\g2\dx + -

with an arbitrary constant fe > 0.

(60)
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Let us estimate the last term in the right-hand side of (57). Using the Galliardo-
Niercnberg inequality, we get that

(61)

f{Vw. VVh,u!2)dx\ <c f |u>| \VLJ\2(IX + - f \V
ii ' Ja s Jn

• + c- ||<s->/"

Choosing reasonable constants 6, and using (58)—(61), we can transform (57) as follows

f {(/((')
(62)

Here
4 + n
4 - n "

Let us fix a number /', € (0,7'], T < oo, and let t e [0,Ti]. Then, according to the
Gromioll lemma, (62) yields

Let 2 — max (-'(()• Then

•* < c ( - 2 l V ' + l 4 . c - r 7 * ' + A j

To analyze the last relation, we need the following lemma proved in

Lemma 8. Let positive numbers p. <j, A satisfy the estimate

A , , _ . . . _ i / \

(63)

(64)

Then tin: solutions of the inequality

0 < z < q + p z' + x

fill the domain consisting of an interval adjoining z — 0 and a half-line, separated from
each other by the point z, = <j(l + X)/A.

In our case p = cj\s~r. Therefore, since e is small enough, inequality (71) holds for
any M > 2. Thus we obtain the estimate

max t/(() <e2M+}.
6[0T]

(65)

It is easy to see that (65) and (62) yield the estimates (47). This completes the proof of
Theorem 4.
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Proof of Theorem 3. Let us choose the number M' = M + 1, where M > 2. Then, by
Theorem 4, we get

where crM», ujMi are functions from £°°(0,7*; Z,2(il)) uniformly bounded in e. Nevertheless,

where 17 = (( — i>(x))/e, r = xK/e. It is easy to calculate that

Therefore,

where

are functions such that the estimate

+ \\o>U';L°°(0,T-J/(n))\\ + ||uM,; U"J{0,r-,L'2{Q))\\ < const

holds uniformly in e. This estimate and Theorem 4 complete the proof of Theorem 3.

4 . Asymptotic behavior of the solution for large
time

The purpose of this section is to consider the process for large, time, i.e., when the first
stage of separation is completed and some domains of "'solid" and "liquid" are formed.
Respectively, our aim is to study the. dynamics of the interfaces between these domains.
We shall assume that the distances between different interfaces are greater than a constant
(uniformly with respect to time and e). It. is clear that in this case we can consider only
one couple of such domains in Q. without loss of generality. We shall also assume that
the right hand side / in (3) is a smooth function, slowly varying with respect to t and
preserving the zero mean value:

' fdx = 0.L
Changing the time scale { = r/£, we rewrite the system (3) as follows

(66)

2,'!

Let us pose the boundary conditions (5) on the external boundary and the initial condi-
tions

e\r=o = 0°(x,s), v,|T=o = / ( i , £ ) , (67)

where ^° is a certain smooth (for e > 0) function such that

= —1 as x e SIQ .

Here iig denote subdomains of fl such that Q — t l j U HQ U TO, TO is a sufficiently smooth
closed surface of coclirnension 1. Let ru D <9S7 — 0 and, for definiteness, dftg flflf! = dU.

Precisely as in similar problems for both the phase field system [14, 15, 33, 34, 39] and
the Calm Hilliard system with the fast relaxation time [35, 36], one can assume that as
£ —y 0 the limiting temperature has a weak discontinuity on the free interface, since the
limiting concentration is the Heaviside function. In fact, it is not true.
Lemma 9. Let \\ — {x G !"!, T — I/>(J)} fee ft smooth surface of codimension 1 such
thai dist. (rT.d£!) > const for all r e [O/J'o]. Let also 6, ip be the solution of problem (66).
(67), (5) such that iv — liniyj is the Heaviside function H(r — yj(x)). Then the temperature
& it ti smooth function up to terms O[c).

This result is in agreement with the behavior of the soliton type asymptotic solution as
the "background'1 yo tends to ±1. Actually, the leading term of the asymptotic expansion
for the temperature is a smooth function and the amplitude of jump for the first correction
remains bounded as 90 -> ±1 (see section 2). So, it is very natural to assume that the
leading term of temperature will be smooth during the whole time of bifurcation (from
/ ~ const to t ~ 1/s), when the concentration of "superheated liquid" tends to —1 in

(respectively, when the concentration of "supercooled solid" tends to 1 in * <j)

The statement of Lemma 9 means that this assumption is true.
Returning to the problem for large time and taking into account the statement of

Lemma 9, we shall assume that the leading term of the asymptotic expansion for the
initial temperature t)a is a smooth function uniformly in £ > 0.

Let us formulate the main result of this section. Denote by 0B = S 0 ( I , T ) the solution
of the following Neumann problem

A0O = - / ( * , T) , : r £ f i , r > 0 ; ^ = 0.

Let also <t>* — <J>f ( A T ) , V = '/'(a") be the solution of the following model problems

+ ^1 +

div ——— = Kj<J>f, f i r = 0.
\\V4>\) • lr°

By Of = 8*{X,T) we also denote the solution of the problem

A # * = -57' :r e f!*, r > 0;

i
dN

= 0, [0±1

(68)

(69)

(70)

(71)
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Here we use the same notation as in Section 2, K2 = 3\/2-
The uniqueness of 90, $f, 8f follows from the normalization conditions

where A'f, /vf are the coefficients of the expansions

6a(x,z)dx = £ V A'f,

Theorem 5. Lef there exist sufficiently smooth solutions oj problems (69)-(71), and let
dist(FT,9n) > const for all T e [0,To]. Then, for any M > 0, there exists a formal
asymptotic (up to O{eM+l)) solution of problem (66), (67), (5). The two leading terms of
this asymptotic solution have the form

0(X,T,S) = 9O(X,T)+£{
]- (61+ (s, r) + J - ( J ; , I ) )

,T, e) = xW, z) + e{ ^

(72)

O(E2).

Here

fl*,., $fc are sufficiently smooth extensions of solutions to problems (69), (71) $f, $f m
fij U F j j , u;/iere PJj is a layer of widtk b lying in fij and being adjacent to VT, 8 > 0 is
an arbitrary number; uj\ £ S; tpi € C100 is the solution of the inhomogeneous linearization
of equation (71).

Let us prove Theorem 5 and consider the general method for constructing the asymp-
totic solution of this problem up to an arbitrary precision. By Lemma 9, the asymptotic
solution has the following form

9(x, T,S) = tf"(x, T, e , ^ , Xi T,

>=o
(73)
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Here xlV is the distance from dQ, along the internal normal, x' G 30,,

and
OS

ft|r-, = 0, 7ilrr = 0, IV = { i € n , 5(:r,r) = 0}.

By Lemma 1 and (74), without loss of generality, we can assume that

(74)

mj;,.T.,r) = af + a,\(i),x), GJ(TJ, I,T) = p.] + llJ x(ij,z}, (75)

± _ 1 + i . 1 / ^ / i + r - r

Precisely as in [.'35. 36] and section 2, substituting (73) into equations (66), we get the
relations for the regular parts of the asymptotic solution

A<r + / = £[^{wu± •

A(W M ± - (WM ± ) 3 )

dry

(76)

It is easy to see, that to pass to the limit as JJ —> ±c», T
the weak limit as e -> 0.

So, as £ tends to zero, we liave

oo is equivalent to calculate

whicli docs not contradict the assumption (74), i.e., \± = ±1.
Let us introduce the notation

tff = ^ + Pi V? + Uf, *f = ^ + 7jGf + Wf. (77)

Now, setting the terms of the order O(e]) equal to zero, from (76) we get equations (68),
(69), (71) for the leading terms and similar equations for the lower terms

=/£,(*, r).
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(l**l«l t-l.il

Here / * S ( X , T ) , / J ( I , T ) are functions of Co, ̂ f, • • •, $*_i and their derivatives.
Let us consider a neighborhood of TT. Using the same construction as in Section 2

and [35, 36], and taking the terms O(e~2) in relations similar to (16), we get the equality

£{££• *-*•}-•
After the integration, we obtain

Obviously, const = 0 since x (z H. Therefore

\ —> ±1 as ioc. (78)

It can be easily shown that, if and only if c — 0, equation (78) lias the solution such that
X £ W and \ + 7̂  X~ exists. Therefore the solution on FV lias the usual Van der VVaals
tanh form

where the "constant" of integration v''i — t/'i(x) is an arbitrary function from C°°(U).
Since x* = ± 1 , we can extend \ by the identity to \ — \(ri,x) for all (X,T) € Q.

Further, setting the lower terms equal to zero, we obtain equations (21), (22), where

F"£, F% are functions of the higher terms of the asymptotic expansion at the point r =
^i(j), k = 1,2,.,, , M. In particular.

F U\t = 0. F* = ~ U\% + 3.\V.

017 9'/ 2jP « r ai/J J lr=u'

Obviously, we get C'i = 0. Let us consider the solvability conditions for equations (21),
(22) in K. It is easy to see that for k — 1 conditions (25), (26) hold automatically.
Further, since

simple calculations yield the statement

Lemma 10. Condition (27) for k = 1 is equivalent to the equality

(79)

• * * ' • '

Now we can obtain the function W\ = Wi(»(, x), where

w^i is a particular solution of the inhomogenious equation (22) for k = 1, and \£>j is the
"constant" of integration. Therefore, the functions Wf vanish, and the equality (79) can
be rewritten in the form (70), since 7 i | r r = 0.

Let us define the extensions W], 71 d

Here
1

<i>*. are sufficiently smooth extensions of 0* in fl* U P J j , such that the Poisson equation
is satisfied. Here 0 < S <^ 1 is an arbitrary number.

Now. lei us consider equations (21), (22) in the case k = 2. It is easy to establish that
conditions (2?>) arc satisfied and for fc = 2 conditions (26) have the form

(80)

where [V] = V" - V+. Note that

for anv smoot function ft such that p | r . = 0. Hence, relations (80) imply

[V,] = 2 : (VV',V7 l) | r r[G1] = 2*.

Moreover, the last equalities can be rewritten in the form of Stefan conditions in (69),
(71), since 0[, i^! t C's"'((5) ami />,, ->[ are equal to zero on FT- Let us also note that the
reiili/iil.ion of the continuity conditions in (G9), (71) is the result of our construction.

Finally, alter some trivial but cumbersome calculations condition (27) for k = 2 can
be transformed to a linear in homogeneous equation for the phase correction ^ ] .

The following constructions are performed in the same way, see also [35, 36] and
Section 2.

Now let us consider the boundary conditions on the external boundary dfl and calcu-
late the boundary-layer functions. The principle term of the asymptotic solution <p = x
satisfies both boundary conditions (5) up to O(e°°). So, a discrepancy in the second
boundary condition for ^ on S arises only in terms O{e). Let us put Z} = 0 for j = 1,2,3,
then we obtain the equation for ZA:

. - 2Z4 = 0, Z4 - j . 0,

Obviously.
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Further, we note that the appearance of the boundary-layer function e4Z4 necessarily
requires some corrections in the Neumann condition in the term O{e3}. So, the Neumann
condition for 4>̂  has the form

dN 1h
The appearance of the boundary-layer functions Zj. yields boundary-layer terms Vj in the
0 asymptotic expansion. Since the boundary dil is fixed, Y} = 0, j — 1, . . . , 6, and we get
the equation for Y?:

OTl OT
0, T -> oo.

Therefore

Conversely, the appearance of Y7 leads to a correction of the Neumann condition for
temperature in the term C(e6). Thus, the Neumann condition for 0jT has the form

dN
an

4 dNdr

The following constructions are performed similarly.
Theorem 5 is proved. Analyzing our construction, we also obtain the statement.

Theorem 6. Let the assumptions of Theorem 5 hold. Then for any integer M > 0 there
exist the. functions

(81)

= X

s+vr -
d

(82)

Here. F%", F£e are {smooth for £ > 0) functions such that

(83)

where the constants Cj are independent of e.

5 . Justification of the asymptotic solution for large
time

Let vis introduce the notation a = 8 — 0™, u — <p — <p™ and let the initial data (P,
if3° exhibit a special behavior. Then, from (66), (67), (5) and (82), we get the following
problem for the remainders a, w.

A

(84)

da
= o.

Here T"';1-', Ff;'" are smooth functions satisfying (82), functions f\f are such that

; c-Ji (85)

with constant c independent of e. To simplify the notation, we oinit the superscript
denoting asymptotic solutions.

The main result of this section is
Theorem 7. Let there n-ist a sufficiently smooth solution of problem (66), (67), (5) dur-
ing the time [0, 7'0], and lei the quantity To > 0 be independent oft. Let also the assump-
tions of 'Theorem !> he satisfied and M > 2. Then the estimates hold

, To); [?

with constant c independent of s.

(86)

Proof Similarly to the proof of Theorem 4. after some transformations, we get the equality
with a.u arbitrary constant K > 0:

1 d
2dr

((1 +KA')| |W|| ; !

+ -||VfT||2

= — / (Vu,

'-L
L 3 A '

' in
Let us analyze the energy relation (87) by using the following version of Lemma 5.

30



Lemma 11. Let tpM be the asymptotic expansion (81). Then

^ , Vu>(l - ~ jf | • - i / -rXrdx + 3/,
£2 Jn 3

o. p

fix.

//ere II is (fte operator describe! in (16). v'ju = (f\t ~ \')A" denotes the lower terms of
expansion (81).

Proof of Lemma 11. It is easy to establish that

/ {Vu.V{u(\ - 3<p2
M)))dx =-2 f \Vu,-\2dx + :i { {V^V(u-{\-^l)))dx,

Jii Jit Jn

- I (Vu, VM1 -v\,)))d.i- = - ( |Vu;!2(l - x2)dx + i

Since 1 — \;2 = eXr/3, we have
J = 1 / J

LE Jn
[ SA(L

2 Jn or p

It is clear that

2 Jn ,3 d

^) = \ : ' - X -d

- / w2\.,A-rf:r + 2 / i j \ r(
2 Jsi (J is;

^ vi)dx,
P

Thus

This equality completes the proof of Lemma 11.
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Now, using Lemma, 11 and integrating (87) with respect to T, we get

/
£ Jil

{3A7 - — / (Vw, VVM

) [ {Vuj,
Jn

F*)] dx'}dr'. (88)

[I. is easy to see that

•2\ f wvdx < <> H^ll2 + -1 Jn a

2J f (Vu,\Vcr)
1 Jn

l''iirlliiM\ by the enibcdding theorem and (83), we get

W* + F*)] d,r'\

\\o-,L2(<m)\\) < c

a

Here, as usual, c denotes a universal constant and ||/|jt is the Hk(Q) norm of / .
Therefore, choosing £ small enough, from (88) we obtain the following inequality

1 f b i l r j ^

2a

^ ||u,Vu,||2 + ^ / f l ^

(89)

Further, using Lemma 6, it is not too difficult to prove the following analog of Lemma
7 (see also [35, 36])

Lemma 12. Let s be small enough. Then

re * = Xrffi; °I, &2 > 0 ore arbitrary constants,
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Now, using the Galli&rdo-Nirenberg inequality, we get the estimate for the last term
in the right-hand side of (89).

- \j (VW.V^MW'

p/J
< - IMI(R~")/'1 ||uj||(''+n)/4 + —

It is clear that, choosing reasonable constants 8,, we can transform (fi3) as follows

V(T) +

(90)

Here

According to the Gronuoll lemma and to Lemma 8, (90) yields

(91)
\\Vu;;L2(Q)\\ + \\Va; L2(Q)\\ < ceM+\ jjA^; L2(Q)\\

Finally, repeating the construction of Theorem 4, we establish that (91) and Theorem 6
yield the estimates (86). Theorem 7 is proved.

6 . Proof of Lemma 9.

First of all we note that the weak limit of temperature must be a function smoother
than the Heaviside function. Really, let 8 be of the form

6 = a(x,T)H{T - ^( (92)

where b is a function smoother than H, Then (92) and the heat equation imply that the
following relation must hold in the T? sense

aS'(r -!/>) = (! + d)b(T - i>) + smoother terms, (92')

where <5, 8' denote the Dirac's <5-function and their derivative. Obviously, it is impossible,
since a / 0.
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Therefore, we must assume that the asymptotic expansion for the solution of problem
(66), (67), (5) has the form

, j\T,t) =

M

(93)

H£re V'o, (•', 6 H, p0 € CrJ-\ pa\fT - 0, and we use the notation (73). It is clear that
A0 ~ 8{T - <l]), so, we avoid the contradiction (92').

Further, repeating the construction of Theorem 5 and using the notation (77), we get
the following equations

± = / , x e fi±, T > 0, (94)

^ i

|VVf dr d
(95)

The solvability condition for the model equation (95) yields the relation

(2( Vtf., VpD) + Por|VV|2)|^(V0
+ - %') = 0. (96)

Obviously, from (9'3) and (96) we get the matching conditions on the free interface

ft/
= 0.

l'v
(97)

l e t us flefine the function 0a as the solution of tfie N e u m a n n problem (68). T h e n we
obta in the [ollowing problem for the d iscrepancy (?* = #* — (?0

^* = 0, ! | , T>0 ,

= 0, / 0+dx + ! Q-dx = 0.
H /n-7

Since IV is a smooth surface of codimension 1, the energy equality

/ \vo+\2dx + I \ve-fdx = o

(98)



t

yields (F = 0. Consequently, U\ = 0 and we get the asymptotic expansion (73) for the
solution of problem (66), (67), (5). According to Theorem 6, the exact solution 0 can be
written as follows:

0 = <?" + <?, ||<T; Lx(0,T0;L
2(n)) II L2(0,To; Il'(n)}\\ <c£jM + 1

for all M > 2. It means that & — 8" — 0O is a smooth function. Lemma 9 is proved.
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