Eapn s
a 1C/95/162

INTERNATIONAL CENTRE FOR
THEORETICAL PHYSICS

ASYMPTOTIC DESCRIPTION
OF TWO METASTABLE PROCESSES
OF SOLIDIFICATION FOR THE CASE
OF LARGE RELAXATION TIME

(&
INTERNATIONAL G.A. Omel’yanov
ATOMIC ENERGY

AGENCY
o

N
UNITED NATIONS
EDUCATIONAL,
SCIENTIFIC
AND CULTURAL
ORGANIZATION

{i
Neces”

MIRAMARE-TRIESTE




-

a—— T

- -

———

B R B X BUIR L L el e U



IC/95/1G2

International Atomic Energy Agency
and
United Nations Educational Scientific and Cultural Organization

INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS

ASYMPTOTIC DESCRIPTION
OF TWO METASTABLE PROCESSES
OF SOLIDIFICATION FOR THE CASE
OF LARGE RELAXATION TIME

CG.A. Omel'yanov!
International Centre for Theoretical Physics, Trieste, Italy.

ABSTRACT

The non-isothermal Cahn -Hilliard equations in the n-dimensional case (n = 2,3} are
considered. The interaction length is proportional to a siall parameter, and the relaxation
time is proportionak to a constant. The asymplotic solutions describing two metastable
processes are constructed and justified. The soliton type solution describes the hirst stage
of separation in alloy, when a set of “superheated liquid” appears iusile the “solid” part.
The Van der Waals type solution describes the free interface dynamics for large time. The
smoothness of temperature is established for large time and the Mullins-Sekerka problem

describing the free interface is derived.
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1. Introduction

The aim of this paper is Lo consider two metasiable processes of solidification. The
simplest processes of phase separation and sclidification in a birary alloy are described
by the non-isothermal Cehn-Hilliard equations (2, 7-9}):
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()
B 1
S = A (Eap oo ¢ +9).

Here r € 2, 0 C A" is a bounded domain with smooth (C*) boundary 89, n = 2, 3;
A is the Laplace operator; # is the temperature; & > 0 is the thermal conductivity
cocflicient; (e, 1) is a smooth Tunction; / > 0 is the latent heat of melting; £ > 0 is
the surface tension; © > 0 is the time of relaxation; a > {0 is the interaction length; ¢
is the normalized concentration. The value ¢ = 0 corresponds to the uniform mixture,
whereas the values ¢ = 1 correspond to the pure phases, i.e. to the species which are
distingnished from the alloy.

The system (1) is interesting from the physical viewpoint in the case

Ea i, a1 (2)

Let us introduce a small parameter ¢ > 0 and let
z
a ==z, - = const, T = const, e— 0. (2)
@€

For simplicity, we also assume that & is a constant and { = 2. Then, preserving the
notation and performing simple transformations, we can rewrite system (1) in the form
of the Cahn-Hilliard system with ¢ small parameter

&)

o (04 ) = A0+ f(z. 1),
s 3)
heE = A (52;_\5.9 +p -+ 5&19) ,
i
where & > 0, /£y are constants, r € €, & — 0.
The initial data
Ol=p = 8, ), ¢li=e = ¥(2,€), (4)
where 69, " are certain smooth (for £ > 0) {unctions, and the boundary conditions
i Z 7]
( e =0 (5)

z ' ON Ay £
complete the problem. Here N is the external normal to 89, £ = [0,T] x 80, T > 0.
The detailed mathematical analysis of the solution. for arbitrary initial data 6°, °
is impossible at present. Sc we shall consider only two specific for the metastable stage
processes, choosing the special initial data respectively. It is well known that there exist
so- called stable, unstable and melastable stages of processes in alloys [31]. Under the
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assumptions (2') they correspond to the cases: ¢ > 1or 5 < =1, and —-1/V3 < ¢ <

1/v/3, and -1 < ¢ < —1/v3or 1//3 < p < 1 respectively. Here and below flz) =

w— lin&f(m, £) denotes the weak limit in the T sense. The numbers +1 correspond to the
e

zero points ol the equilibrium chemical potential F'(¢) = ¢® — . The numbers £1/v/3
correspond to local maxima/minima of F”.

The physical setting of our problem is the following: to simplify problem we assume
that the initial concentration ©°(z) € (1//3,1} for all € ©. The set of such points with
concentration will be called “solid”. Sinee the interval (1/y/3,1) belongs to the domain
of attraction to the point @}, = 1, the concentration cught to increase and to tend to 9:::1.
But it is impossible to obtain the situation when {z,1) = Lrg':q al each point of {1, since
the global mass m{),

mig) = [ ein

conserves in time and m(%) < |9]. Thus one must assume the appearance of subdomains
0F such that ¢ € (1/v3,1]as 2 € Qf and & ¢ [-1,-1/v3) as © € £}, . Aflter that the
next stage of the solidification starts, when the subdomains QF transform. The soliton
type asymptotic solution, constructed in the present paper, describes the first stage when
the “liquid” part {}; appears inside the “solid” part, but the volume of £ is still small
enough.

The Van der Waals type asymptotic solution describes the motion of Of when |0} >
const uniformly in €. Our construction allows us as well to establish that the temperature
remains a smaoth function (in the leading term with respect to €) during these processes.
Therefore, the solidification process, described by Cahn-Hilliard equations {3), differs, in
principle, from the dynamics of “selid”/ “liquid”, described by both the phase field model
and the Cahn-Hilliard model (1) for small time of relaxation. Actually, according to the
phase field model and (1) for 7 ~ £, the temperature has a weak discontinuity on the (rec
interface, whereas, according to Lhe model (3), the temperature is alinost the same eon
the “solid” and “liquid” domains (for botb [£3;7| < 1 and |§};7]| ~ const). So we can say
that the appearing set 07 s the domain of “superheated liquid”. We shall consider only
the case @ € (l/\/g, 1]. Nevertheless, it is clear that our construction also allows us to
describe the analogous processes in the case % € [—1, —1//3},

The Cahn-Hilliard equation (the second equation in (1) with § = const) was proposed
by J. W. Cahn and J. E. Hilliard [7--9] as a simple model for the process of phase separation
of a binary alloy at a fixed temperature. The surveys of physical aspects of this model
are given also by V. P. Skripev & A. V. Skripov {41], J. D. Gunton & M. Droz [18],
Y. 5. Lipatov & V. V. Shilov [22], A. Novick-Cohen & 1.. A. Segel [31], T. Nose [32]. This
equation arises as well in the study of mathematical biology and ecology, see D). S. Cohen
& J. D. Murray [13) and M. Hazewinkel & J. Kaashoek & B. Leynse [19]. The numerical
results for the Cahn-Hilliard eguation were got by C. M. Elliott & D. A. French [17]
and I'. M. Rogers & K. R. Elder & R. C. Desai [4(]. The equilibrium theory for the
Cahn-Hilliard equation was investigated by J. Carr & M. E. Gurtin & M. Slemrod [10] in
the one-dimensional case such that £% ~ a « 1. The existence of extremely slow evolving
solutions of this equation in the same case was established by J. Carr & R. L. Pego [11]
and N. Alikakos & P. W._ Bates & G. Fusco [1] (see also references cited therein). The
initial value problem for the Cahn-Hilliard equation is investigated in detail in the case
when 7, £, a are constants, n < 3 and § = const. For the description of the resylts the
reader is referred to C. M. Elliott & 5. Zheng {16], S. Zheng [46], P. W. Bates & P. C. Fife
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[3], R. Teman [45], where the existence and uniqueness theorems, as well as the existence
ol an attractor are proved.

Nevertheless, it is clear that these results do not describe the limit problem of {1)
as @,§ = 0. So, there we have the problem about the correspondence between the
initial problem {1} with «,& « 1 and the limit problem as e, — 0. A similar relation
between the phase field sysfem with a small parameter ¢ < 1 and the limit (as = tends

to zero) modified Stefan problem was established by E. Radkevich {39], V. Danilov &
G. Omel’yanov & E. Radkevich [14, 13, 33, 34], P. Plotnikov & V. Starovoitov [38],
M. Soner [42], see also the paper by B. Stoth {43] and the papers [35, 36] about analogous
problems, Moreover, it is impossible to reduce the problem with a small parameter £ -3 0
to the already studied problem with € = const. Actually, by changing the scale ¢ = t/¢?,
' = r/e, svstem (1) can be transformed as follows
i) U ! ’ '
el Gl S EAV A
ar
Oy
v
Flozo = 0"(a" ), @lean = 7 (2, 0).
Here }7(r' ' ey = Fler,e¥t,e), f' = ¥ fler, e2t).
Now we note that the conditions

= Ay (Auy’ 49" = (@) +emi8) (6)

N6 L2(SYY]| < comst, 1% L4 8)]| < const,

which are natural for ¢ = const, imply the senseless assumption

9] = & as £ =0,
since
fﬁ,(‘\poﬂ(x",e))zd.r' = E]'—‘f“(wpo(r,s))?‘dx = const
and ” varies from —1 to 1. Here and below || f; X|| denotes the norm of f in the space
* Thus we have to admit that
bk < a1 @) <

wlich corresponds to |2} o const. Here ¢ = const.
Further, the solvability of (6) for ' < 77, where T} is a constant, means only the

solvability of the initial problem with the small parameter for times t < £} — 0 as
g —+ 0. Let the estimate

’ g i I 4 ! i c
I L7200, T LN+ (1Varps QN+ V05 Q) € s,,,lfz
hold for ¢ < 7Y, Here @' = [0,T]] x . Then, using the construction common for

parabolic equations, we see that the energy equality

5 d

" L) 1-",2" - 2 'lzdr
5 Jo#d = [ (et <3 [ PVl
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implies the following estimate
4o yrennz 232 1o « S
SIS @+ g e < 5

for all t' < T]. Here A > 0 is the minimal eigenvalue of the Laplace operator —A, on
{ f.g) denotes the scalar product of vectors f, g in ", b = const.

Therefore,
2 2
LTy < O a—etae! 4 —eREhY
I BRI € e 4 g (1= o),
Hence, .
flso's LAY (') < ﬁ

The last inequality yields the useless estimate for the solution with respect to initial
variables

I L@ <2 as e

So, problemns with a small parameter have to be examined from the viewpoint of both
constructing an asymptotic solution and proving the existence and uniqueness theorems.

The multidimensional Cahn Hilliard equation with a snmall parameter was considered
by B. Stoth [44] in the spherical symmetry case, and by R. L. Pego [37].

The non-iscthermal multidimensional equations for the process of phase separation
were obtained by H. Alt & 1. Pawlow [2], where the existence of a weak solution satisfying
a generalization of (1) is established in the case 7.€,a = const. The Van der Waals type
asymptotic solution of the multidimensional Cahn-Hilliard system {1} was constructed
and established by G. Omel'yanov & V. Danilov & E. Radkevich [35. 36] in the fast
relaxation case

a=¢, & /a = const, 7/a = const, ¢ =0

In this paper the asymptotic solutions of problem (3)-(3) are constructed and justified
under the assumption that the classical smooth solution of (3)-(5) exists. The asymp-
totic solutions are constructed on the basis of a modified fwo-scale method (V. Maslov &
V. Tsupin [23), V. Maslov & G. Omel'yanov {24, 251, V. Maslov & V. Danilov & K. Volosov
[28]) for obtaining solutions with localized “fast” variation. A similar method was used
by E. Radkevich [39] and V. Danilov & G. Omel'yanov & E. Radkevich [14, 15, 33 36] for
obtaining the asymptotic solutions of both the phase field system and the Cahn-Hilliard
systemn in the fast relaxation case.

It is very important to note that the boundary layer construction of the asymptotic so-
lution cannot be used in problems with free boundary. The “boundary layer construction™
means the construction of a pair of asymptotic sclutions Y (7, z, £, £) like boundary layers
on the left (7 < 0) and right (5 > 0) sides of the free boundary I'y = {z,7 = 5(r,t)/c =0}
along the direction normal to I';. As in elliptic problems, Yy vanish (or tend to some con-
stants) al the points sufficiently far from Iy, and Y, = Y_ on [\, Obviously, in general,

the function g v QF U, = {r,5(z,1) = 0}
_ +9 ¢ U = {z,5(z,1) 2 0},
Y(E‘w,twf) ‘{ Yo, QU UT, = {z.5(r,t) <0} "

is continuous only on ) = OF U7 UT;, and cannot be a classical solution of our
problem for £ > 0, so ¥ is a weak formal asymptotic solution. In fact, the function (7)
does not describe the behavior of the solution close to Ty, since ¥ is not the solution
on I';. But the main purpose of the whole construction is to describe both the solution
close to ' and the evolution of I'. Nevertheless, it is_possible to define the classical
solution on ¥ in the case when the analytical extensions Yy of Yy exist, and ﬁ\n@ =Y.,

ﬁ{wo = Y,. The additional conditions for the existence of such analytical extensions,
the so-called Hugoniot fype condifions, are exaclly the condilions on the free boundary
(Gibhs-Thomson law and so on) (see V. Maslov & G. Omel’yanov [24] for analogous
problem). This defect of the houndary layer construction was eliminated by using the
so-called method of matched asymptotic expansions, see G. Caginalp & P. C. Fife [5].
Nevertheless, a version [37] of this method results in unbounded “lower” terms of the
asymptotic expansion. Obviously, this follows from the fact that the necessary condition
for the existence of a bounded solution of the model equations is of no practical use, since
the normalization condition was posed (see [37], p. 272). The possibility of constructing
an asymplolical expansion up to an arbitrary precision 1s a very important condition in
the theory of perturbations. This is the first necessary step to justify the asymptotic. As
a rule, the unboundedness of lower terins means that the leading term is uncorrected. For
cxample, the unboundedness of the lower term of the asymptotic expansion for weak non-
linear problems indicates that the lirst term includes some additional terms, which were
not posed at the jnitial instant of time. It leads to the so-called three-waves and three-
trains processes deseribing the non-linear interaction between the waves and a generation
of new waves for positive time, see V. P. Maslov & G. A. Omel’yanov [26, 27].

2. Soliton type asymptotic solution

Let us formulate the main result of this section. By 8y = fo{x,t), o = wolz, 1) €
(I/ﬁ, 1), ¥ = ¥(x), we denote the solutions of the following model problems

h:-ogj—to = (5‘93 - Wﬂ)a TE Qs t> Gs
5 (8)
— WO
K"QU|!=U = KPU{I)’ Wl}: = 0‘
)
’;t" = Ay + fiz, 1) — %ﬁ, TEN £330,
an ©
0. (4]
0,y =T Fxls =0
1.. . déo
kD, = Ek,,(1 +Gia)) + Gog by, =0. (10

Here D, = 1/|V] is the normal velocity of motion of the surface I'y = {z € Q,¥{z) =
t}; K, = div(y) is the mean curvature of [y, v = V/|Vy| is the vector normal to T'y;
F = F(z.¢(z)) for all continuous functions F(z,t); 8/8v = (v, V);

ey IQ? _ Gigo) g .
Glpo) = 72(@ — 1), (rg = %o y ‘6'"; = (v, V‘Pﬂ(m, ¥,
6
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Q=) -1, I=v2glJ, J=(V2go+Q)/Vh b=1-gk
Theorem 1. Let Ty = {z € ,1(x) = 0} be a sufficiently smooth closed surface of
codimension 1. Let sufficiently smooth solutions of problem (8)-(10) exist, and py €
(1/v/3,1), and let dist (I, 80) > const for all t € [0,T]. Then, for any M > 0, there
exists o formal asymptotic {up to O(M+'}) solution of problem (3)-(5). The leading term
of this asymptotic solution has the form

Mz, te) = Oo(z,1) + Oz),
(11)
Pl t,e) = galz.0) + x(n.z) + Ofe).

Here

x = ~8QH e+ 8be 4 850}, (12)

E=80+di(e)), n=0t—wlz)fe, F=0Q/ VY|

1 € ('™ is the solulton of the inhomogencous linearization of equation (10).

Remark 1. From (11), {12) it easily follows that our asymptotic solution is a so-
called self-similar solution. It implies the special choire of the initial data (4) in an
e-neighbourhood of T, i.e., ° must exhibit the special behavior (nol only in the prin-
ciple term, but also in the lower terms of the expansion of %, &) with respect to ).
The initial temperature 8° can be an arbitrary smooth function in the principle Lerm,
nevertheless its lower terims must exhibit a special behavior close 1o [,

Remark 2. [t is not too difficult to prove that equation (10} is a quasilinear parabolic

equation, in which r, (along the vector » = ¥/ VL-"'!L_ ) is a time like variable, and r,
{tangentiai to [';) are space like variables. So. the additional condition in (i0) is actually
the initial condition [14, 15]. The classical solvability and unigueness of sclutions of
quasilinear parabolic problems with smooth coefficients are the result of the realization
of some matching conditions between the initial and boundary data [21]. So, we assume

that these matching conditions are realized.

At first let us consider the staterient of Theorem 1. Formulas (11), (12) and the
solutions of problems (8)-(10) describe the motion of the soliton y on the smooth “back-
ground” g (a soliton type solution was obtained also in [17] by numerical simulations
for the one-dimensional Cahn-Hilliard equation). Obviously, the surface ', is the set of
maximum magnitude of |x|

G0
A =max|x| = ~alp, = Q{5 + 20~ 7}

It is easy to prove that this solution exists if and only il 3o € (1/+/3,1). The amplitude A4
is 2 monotonically increasing function, A}, > 0, and trivial calculations show that A — 0
and ¢ — 0 as $g — 1/+/3. It is also clear that there exists 2 value ¢* € (1//3,1) such that
A< @y as g € (1/v/3,9%), and A > @y as @g € (p*,1). Thus, moving into the dormnain
with @y € (", 1), the soliton solution describes how the set 7, = {z € Q4,35 + x < 0}
with negative concentration arises. Let us consider the behavior of the solution as o
tends to 1. Setling wg = 1 — 3(x,t)exp(—1/8), & < I, we get the following relations

16 s ‘
A= 3+<9(e ), G=-140().

Hence, D, ~ & and the velocily of the soliton motion decreases as § ~+ 0. On the other
hand, the volume of the set {};, increases, since b ~ exp (—1/68) and |}, | ~ 107, 16l ~ /8
for & < 1. Thus, this solution describes the appearance of a sufficiently large domain of
“superheated liquid”, since the concentration ¢ ~ ~7/9 on Q; . and the temperature
flo is almost independent of iy at these points. Nevertheless, this asymptotic solution is
correct only if |}, ;| +Dase 0.

We shall also see that the first corrections of the asymptotic expansions for the tem-
perature and concentration have the form of smoothed shock waves, So,

1
1w — lim E(9 — Bg) = A pH(t — ), w—lim —(p— g~ x) = A H{t —~ ¢),

0 = =0 £

where 7f is the Heaviside function,
i . KT
Al‘@:‘z_fl’),,, .41“‘0:2_‘*51)1,
o Pl
are the amplitndes of jumps on Iy, 1t is casy to calculate that 4,4, A, are bounded as
wo — 1.

Let us prove Theorem | and consider the general method for constructing the asymp-
totic solution of this problem up Lo an arbitrary precision.
First, we introduce the following classes of functions

H o= {f(n‘.z',t} c R < Q). fE € (0,
nl{g}‘ anrrn(f(”!_‘,.‘“ _ fi(l‘, t)) = 0}’

{f(?],.r,_f) eH, Ft=Ff" :0},
= {0 e <0t 0t fine ) = of

lj

where
e A
" G alv
Here and helow Q = [0, 7] < Q.

Ymz0, »20, v20, |al 20, |]>0.

Lemma 1. 1. Let S(r.t) € ("(Q) b such that 35/dt|r, £ 0, where T, = {{x.,1) €
&, 8(a 1) =0}, Then, for any funchion f(y,x, 1) € H, we get

:

f(j—(-“:—?-)zi) = f(ﬁi_:w z, t) + O(e),

where £ = 1f{) 2 the equation of the surface S(z,t) =0 and 8 = 85/84|r,.
2. Letp(n, o ), ((n,z,1) € H be such that u* = +1, (* =1, {~ =0. Then, for any
function f € H, we have the representetions

[ = UL U = ouin et + anln,e,0)
F= 74U = 730 a,1) + waln, 7, 1),

8



where w; are funclions from S,
3. The relations

-y
(=)=

o) () = gt (T e i) + 0
hold for any functions f(n,z,1) € S, glz,1) € C=(Q).

,:r,t) =0, k20,

The proof obviously follows from the definition (see also [24]).
Remark. The representation S = t — 3%(z) does not mean that the solution must move
with velocity of order (1). Actually, since the function 1{z) can increase rapidly along
the direction normal to the surface I's = {x € {1,¢(x) = 0}, the motion of the solution
can be arbitrary slowly.

Let us begin to construct the self-similar asymptotic solution of problem (3)-(5). First
of all, we note that the leading term of the asymptotic expansion for § must be a smooth
function, since the leading term of ¢ is a soliton. This implies that the asymptotic selution
has the following form

Oz, 1,e) = M(z,1,¢) +5VM(ﬂ:E§~’E—), m?N a:,t,e) + O(MHY),
o(e,t6) = ¥ (2, t,6) + WM(“CL(-?-Q I gt s) oMY,
&
M N
I(z, t,e) = ZEJBj(I,t), oMz, i,¢) = Zs’n,al z,t), (13}

=0

M
V”(‘?afaxaf,f) = Eejil{uj(ns‘l'at)+Yj(TaI’:t)}!

i=l1

M
WM(‘L Tvl'-»ta“:) = X(’?:Ia t) + Z E]{WJ'(T],I, !) + Zj(Tv I,¥t)}'

3=1
Here z, is the distance from ! along the internal normal, 2’ € 89,
S, 8, 0; €CTQY,  Y(r21), Zi{ra ) €P,

x(mz,t) €S8, Uiz, t), Wiln, o, t) € H,

and a9
vr=o wi=0. S| g0 r=(en, swo=0; (14)

By Lemma 1, without loss of generality, we can assume that

S =1—1p(z), x = x(n.z).

Substituting {12) into equations (3}, we get the relations

51 =}

—{(% + Ll)v“ + %w*‘} +5(/_\ - %)v“,

Eizﬁg(ﬁgw“ +WH (@7 4 WY

(9% + &) — A9™ — f = -16-{1321«'“ -
(15)

- ey = Lol = Lu{Eaw 4w - @ W)}
+{(C;A + LW 4k £V + n%(@“ + W)
HA(LWY + Y 4 WY — (3% + W)}
—e{LAAW™ 4+ kW) + ALLWH - w1 9*)}

+e2A {A(DM + W) + £ V™) = 0.
Here a o? 8. @
£2= |w{ et |va|26 T %n - an,,,
= 2(V¢,V)+ Ay, I, =2(Vay, V) + Azy.

First, let us obtain the regular terms of expansion (13). Passing to the limit as
17— fo0, T = 00, from (15), (16) we get

o (M 4 BT AIM — = —iw"* — (3 - /_\) pHE

ot at
K%(@DM + WMi)-}-A(‘pM T+ WM _ (q)M + WMi:)S) (17)

+er AT 4 SPA(A(DY + WHE) 4 g VM)
Introducing the notation

0f =0, +UF, ®F =, + W j=12..,M, (18)

and setting the terms of the order O(e’) equal to zero, we get equations (8}, {9) for
the leading terms, as well the following equations for the lower terms of the asymptotic
expansion

7]
(3-2)0 = sttt zear, >0,

(19)

a
ra® = A(3e) - 1)0F) = fE,(2,0).

10
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Here QF are subdomains of © such that
N ={zed(z)<t), U ={zepz)>t}, A=0fu;Ul,

f:a(z,t), fk*‘v(x,t} are functions of the previous terms of the expansion and their deriva-
tives. In particular,

ffea:*"gzq’fa FE, =m0

Now we note that the supports of fast variations of boundary-layer functions and of
functions rapidly varying on a neighbourhood of I, do not intersect (up to terms Q{e>)),
since dist (@}, ;) > const. Hence the solution in a neighbourhood of I'; and in a
neighbourhood of 81 is constructed differently.

Let us consider a neighbourhood of Ty. Passing to the limit as ¥ = oo, we obtain that
the terms in (15}, (16) belong to the space S, since relations {17) hold. So we can use
the method developed by V. Danilov, G. Omel'yanov and E. Radkevich [14, 15, 35, 36,
39): step by step we decompose the coefficients at 7 in (13}, {16). 3 = —2,-1,0,.. ., into
the Taylor expansion at the point 2 = (.} and use the relation 5 = (f — 4#}/¢. Further,
passing to the functions of independent variables 7, z, we obtain the asymptotic solution
on the surface 'y, Finally, we define a sufficiently smooth extension of these functions on
[0, 7] = €1, so that the lower terms of the asymptotic expansion exist and belong to the
space H.

Let us denote F = Fin, #,8)|¢=v(z) and consider the terms O(z~?) in (16):

a8 9% .
EF{'V "’!2ﬁ + ¥ — (&0t UJ} =0.

After the integration, we get

3 [1on®x . A
0_’7{! [O—T,ﬂ"+\“(yfu+\)}—const..

Obviously, const = 0 since y € 8. Therefore
W PX .
Vel X =t ¥ = 120 a oo (20)

Choosing ¢ = ~¢3, we get that the solution on I’ has the form (12}, where the “constant”
of integration ¢ = (1) is an arbitrary function from .

Let us extend ¥ by the identity to y = (. 7) for all (z.#) € Q. Now, setting the
terms O~ **) equal to zero, from (15), (16) we get the following equations

2'/ . B}
% =F! =0 as 5 -0, (21)
1
8 . . . .
an LW, =F7, We—=0 as 55— —oo. (22)
Here
. ' ' ,
L= iv-w‘:anz +1 - zi{‘yﬁu + \) \
11
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Ff, F’f are functions of fy, g, ..., Ur, Wi_; and of their derivatives at the point t =
Pir), k=1,2,..., M. In particular,

P . f)\
FF = _'__{H_ 30 + 2 }
1 ()??2 (hf + (‘raﬂ X) 1
(23)
2P0 oy d ) Ly
3 2 Ry S A2 28X
+3 {2 ”au}r’h;("“” = I
- Y
Ho= vl (24)

It is not too diffienlt to prove that the following statement holds (see also [14, 24])

Lemma 2. The solutions [y € H, Wi € H of (21), (22) exisl if and only if

fes,  Ives, (25)
[ TRy =0, / Y Brdy =0, (26)
SR ax
EAY —
/_m £ ar]dn 0, (27)

whers .
. v
e f [ FEOp, o)
Using (23), (24). it is easy to see (hat the conditions {25), (26) hold automatically for

k=1
Further, since

oy
ff= uﬁ + 31+ Evo)(2eox +x7)|,_ + VERBIn(J'R),

R = {e* + 420 — 2V2Q}{e* + e + 2v2Q) 1,
simple caleulations yield the statement
Lemma 3. fork =1 condifion (27) is equivalent fo equalion (10).
Now, since (25) (27) are satisfie<d for & = . we can obtain the functions £, Wy

= 07 () 0), W= Wi e)(n,2) + wi(n.z).

[Tere
2

C=YmR e H, t=i1, ¢ =0,

|5

0 = —alh, W = Ufe/Q?,
wiln, 7} = widn r) + dalz)yg(n,z) € 8,

¢z is the “constant™ of integration, a = 27 /3.

12



Let us define the extensions L'}, W,

Ul = ui(xat)C(T?‘I): H!l = \‘Vl(I1t)C(naI)+wl{n1I)- (‘28)
Here
Uy = 9+ - gli:* wy = ¢’+ - (D;c (281)

#t, ®f are sufficiently smooth extensions of 07, & in OF U T'Fs, such thal the heat
equations (19} are satisfied for &£ = 1. Here 0 < 6 <« 1 is an arbitrary number.
Thus we have the following conditions for jumps of 85, &% on T,

] _ i _ Hd :
I | L (29)
Here we use the notation [f*]ln = [ liiyo— I i Zo and note that the vector 17 is directed

from 0} ta ;.

Let us consider equations (21), (22) in the case b = 2. The right-hand sides of these
equations belong to &, since equation {8) and the first equation {19) hold for & =
Further, after some calculations, we get the {ollowing statement

Lemma 4. For k = 2 conditiorns (26) are equivalent lo the equalities

. L
[di] ‘ = —aD {1+ 2D, 4K, igi}

v Q? abQ i
a + \f’n . . o, 190 .
E» —(3pf — )d3 — 12Vl —== {Qh.f = DdiviQVe) + 53—} {30)
2 Ka x 24
D“ZQ? + QA

Finally, for k = 2, after some trivial but cumbersome caleulations condition {27) can
be transformed to the following linear inhomogeneous equation for the phase correction
Py

oy

h'a,—“:(uk u‘l-l- 'l'“( ) (31)

Here K’ is 1he variation of the operator A from (10}, the right-haud side f¥1(r) depends
on the functions v, fa, o, ﬂli, ¢'f.
The following constructions are perforned similarly:

1. Calculating UF, W2, we get conditions for jumps of the functions t?f d’f on [y

2. By using formulas similar to (28), we define the extensions {7, W, on (). Siuce 67,
&% is the solution of (19), we see that conditions (25) held;

3. Conditions (26) imply conditions for the normal derivatives of 6% |, ®F_, on I';

4. Condition (27) yields an equation (similar to (31)) for the “constant™ of integration

'l;) k-

in fact, since

fBm+ )y + €8+ 28 s + .= fBn+ 1 + e + ™5 +..)) + Ofe?),

the functions 4, k > 1, arc the lower corrections to the principle phase 3. So, these
functions describe the front of the soliton wave more precisely.

We must also pose the initial conditions for the heat equations (8), (9), {19). Since
By, wo are smooth functions on §¥ % [0, T] and 8%, & are smooth functions on 0 x [0, T7,
let us define the initial data as follows

P = — llmG (w,e) @9 =w — lime"(z,€), T e fl,
£=0

()
.
Wi:uv ~|imL(UU(r gy —10 722153(9 + —f—)‘f)‘ ) renf
k ey oF T ¢ = 3 J el 0
— P il N
PV TR S SN T i .
@y = !5‘:{5*(*’ (r.a)— g — J;c ("03+H’+ZJ)|:=D)’ T € 5.

These formulas yield the initial data {8), (4) and the initial data for equations {19):
£ _ ot t_ of +
0 =0 (=), wy =¥ (), refly. (32)
Obviously, the behavior of smooth (for the ¢ > 0) {unctions §°(z, &), ¥%z,¢) may be
arbitrary outside an e-neighbourhood of 1y, but §°, »® must be of a special form in this
ncighbourhood.

Now let us cousider the boundary conditions on the external boundary 49 and cal-
culate the boundary-layer functions. 'The soliton part of the asymptotic solution sat-
isties both boundary conditions (5) up to O(£™). So, for v on X, a discrepancy in
the second boundary condition arises only from the regular part of the solution, since
dist(I",, dQ1} > const and, in general,

d
— A 0.
G ovel #
Let us put ZJ- =0 for j = 1,2 since
4]
acz (2, ) = (1),
aN £ =0 ( )

Then, using the construction common for the boundary layer asymptotic solutions, we
abtain the equation for Zy:

Y
a7 7
where ¢ = 33l — 1 > 0. Obviously,
Zy = cala’, t) exp{—/g 7).
Now we can see that the boundary condition

* a
5% TN

—qZy =0, VAT B LR S (32)

&lPo (33]

14
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leads to the formula

Further, we note that the appearance of the boundary-layer function €®Z; necessarily
implies a correction of the Neumann condition in the term O{e?). Let, for definiteness,
a0 NI = 30, Then the Neumann coudition for @ has the form

av;| 0% 13
9% 9% 2 Agd . 34
N s~ 97 oo qaN T (34)

The appearance of the boundary-layer functions Zi 1n1phes the boundary-layer terms
¥ in the # asymptotic expansion, Since the boundary 6t is fixed, ¥; =0, 7 = 1,...,4
we get the equation for ¥;:

)

FYe  d , . .
e Eé;,('r,;r. S, Yo =20, 77— o0 (35)
Therelore
Y5 = -q'ﬁ"z AS"U] exp(—+/q 7.

d '\’dt
Conversely, the appearance of Y5 leads to a correction of the Neumann condition for the
temperature in the term Ofe?). Thus, the Neumann condition for 87 has the form

aYy! i

afr | I
I L S R T

a

Aoy

(36)

\

Finally, the asymptotic expansion in a small neighbourhood of 40 has the following
form

6 = Bolz, )+ 307 (a0, 1) + 3. 207 (w 1) + Yy{m, o' 1)) + O[M 1,

i

" It+§;w 1!+ZN )4 Zilr ) + O,

Here Z5, Y; € P are described above, Z, € P, k > 4, and Y, € P, j = 6, are calculated
from linear inthomogenecus problems like {32}, (33}, {35). In turn, we oblain the boundary
conditions for problems {19):

1. Conditious (8), {9) for fg, wo;

2. Conditions

267 bl
—| =10 ——| =10
BN b ! va T
for 6,7 =1,...,3, 873
3. Conditions {34}, (36) for 87, 6;;
4, Conditions
‘6_9_;': _ Y BGJ;) 02
IR L - ANz~ 81 l=o

for §7, 7 > 5 and @7, k > 3.

!'* . e I , .. . e MR A a1 g e e . —
.. .. . ; ol st
N _‘h--u- - “".'W - P

) ) d hual g - B e
B S acctmsssnn. atamtnn B TR L PO TR G

Theorens 1 is proved, Moreover, analyzing our construction, we obtain the statement,

Thearem 2. Let the assumptions of Theorem | hold. Then for eny integer M > 0 there
exist the functions

M
0% =0 + ZEJ(HJ' + U+ + EMH(UMH + Yys1)s

(37)
M
e = got x+ e, + Wit 2+ MY W + Zusn)
=1
such that 2
a7 05+ 63— A8 - fla ) =M F,
(38)
Bom sr
DB AP A+ () +emty) = M,
a3 M1 v G o _ Melpe
1 P R N R T (39)
0310 = 0° (r,o) T (07 5 0), wilmo = Pla 0+ x|+l +0). (40)
Heve D, 3, Fel Fef are (smoolh for ¢ » 0) functions such that
16: L300 + [l6: L2 < cove, (40')

H}_M’ ’ _)H + Hffgnc(Q)H <oy,
H[u' (BN + NF5: O < e, (41)
(FLs L2+ 1FE LD <€ eave,

where the constents ¢; are independent of €.

Remark. Estimate {40') is better, if 6%, " are of special form in a neighbourhood of Ty,

3. Justification of the soliton type asymptotic
solution

In this section we shall obtain estimates for the differences between the exact #, ¢ and
asymptotic 83, 35 solutions of problem (3)-(5). Letl us introduce the notation o = §—8%,
w =1 — % and let the initial data #° x° exhibit a special behavior. Then, from {3)-(5)
and (38} -(40}, we get the following problem for the remainders o, w

a
E(a +w)—Ag = —eMFl (42)
?ﬁ 2 a2 2 . Moe
Ko +A(€ Aw 4+ w(l - 3py, — Ipyw —w )+.smo)_—e Fi (43)

16



da M1 pé O d M

— | = —e Féo | =0, —Aw| =M 1F¥

Nz M aNlg aN T M (44)
olizo = AEMH'fo;« W=y = *EMpr:}-

Here F&¢  F%¢ are smooth functions satisfying {41), f&% are functions such that

F5 LR+ 11 FH@)) < ev/e (45)

with constant ¢ independent of ¢. To simplify the notation, we omit the superseript
denoting asymptotic solutions,

The main result of this section is
Theorem 3. Let there exist a sufficiently smooth solution of problem (3)-(5) on the time
interval [0, ), where the quaniity T > 0 ts independent of £, Let also the assumptions of
Theorem 1 be satisfied, M > 2 and there exist a constant v > 0 such that wy — 1/v/3 > v
uniformly in x € 3, t € [0,T]. Then the eslimates hold

llws L0, T); LA + N L7200, T): L)) || < 0 M, (46)
(Vew; QY + || Va; EHQ)| < e MHV2 0 |aw; LHQ)|| € ¢ M12
with constant ¢ independent of ¢.
First, we obtain an auxiliary result.
Theorem 4. Under the assumptions of Theorem 3, the following estimales hold
flos 2000, 70 L + s B0, T B2 ()| < e M2, {47)
190 QY+ Ve LQI < ¢ 4712 [l 3@ £ e £
Proof. Multiplying equations (42), (43) by o, w respectively and integrating on {1, we getl
the relations

1d ; ) @ g
s lel+ [wods 4 IVolt = = [oFldr - M [ orlar, (as)

Bl 1 Al + BTl = [ (T Vasli — ol )

—3] (Vio, Vigue)dr + exp j (Vew, Va)dr (49)
2

@
-mEM/ wfﬁda‘-{—EM“f wf"_ﬁdr'—{—e”“r‘tl/ wFid.r.'.
3 an an
Here and below || f|| denotes the LE{§}) norm of f.
Further, multiplying (42) by w, integrating on @ and summing with (48), we obtain

1d

- 2 2 . 2 i
5 Il + ol 42 [ wods | + 19512 + [ (V0. Vo)de

oM 8 Ayt — M+t , 8 gt
e [ (wto)Flda — Ln(u+a’)1Md.r. (50)

17

Let us fix a constant A" > 1/y. Multiplying (49) by A and summing with (50), we get
the equality

1d AP 2,
53 {(1 + Rl + o]l - 2[9(..)0(1::}
Vel + K| Aw)? + 3K lwVw)*

= I\'[Q(Vw,Vw(l - 3% ))dz ~ 31{[9(VW,VLPMQJ2)CII
o ‘ oM 9 .
ek — 1)_/9(&,%)@ ¢ /ﬂ{(w+cr)fM +wKFL) de (51)

—eM [ (o + @) FS — WK (EL 4 ens o) .
Sag

We shall analyze the terms in the right-hand side of (51).

Lemma 5. Let py be the asymplotical expansion (37). Then
; 1
[vevett - sgde = - 3 OIVePde - 5 [wibids 1, (32

I
= [190ltary + e + 5 [ (01T + £0a) + V),

where R ( y
_, cosh”p+ Acoshp + (1 +24)/a
Vi=a {cosh p + o) €4 (58)

1 ;
p=4£- 511181), o= @ey/2/b, A= Q% 2/b, A = pA*/6b,

gi. Wi are smoeth funciions such lhal
lge| Cconst. ¥, e8, UyeH, [Py <const.

Proof ol Lenuna h. Using the expansion (37) and rewriting @, in the form @y = wo +
Y+ Sy, we get

fn(vw,ku — 3% ) )dr = -/9(3-»,03 - 1)|Vw|?dz
3 (54)
+./n [Vew|*(gix + eg)dz +§fnwnﬂgoi,d:c,

where g; = —3(y + 2p0), gv = (20 + 2x + s}, )p},- Obviously, g are bounded functions.
Further, simple calculations yield the relation

1 1 i 1-

A%k = SIVHIN] + (po + X} + 2+ Ve, (55)

Here B .
T = _QXH(‘V‘H:H”M + (vw,vvo))
+lo + X) (| VE[*Winy — Txa) + (01 + W2) V9 PXam,

18
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¥, is bounded (in the C-sense) and Il is the operator described in (16). Let us rewrite
the function x in the form

x = —A{coship+ a}",
where p, A > 0, a > 0 are described in (53). Now it is easy to calculate that

3IVEI{ x5 + (90 + X)xan } = ¥i(1 — W3),

where W, has the form {53) and

:{A+l

Obviously, ¥, € &, Finally, let us note that the term ¥ can be written in the form

¢ = ¥, ¥, where 3 is a function from , since W) salisfies (22) and . X, vanish like

1/ cosh p as 7 — Zoo. This equality, (54), and (55) complete the proof of Lemma 4.
Now, using (42), {44) and integrating (51) with respecl to ¢, we get

o

K
- 2 - 2 2 2 ’
13K WVl + K ]ﬂ(s% —1)|Veitdz + ?2/:1“’ ¥,dz}dt

cosh2,0+(cx2+2)coshp+2(y}{msh p+ Acoshp+ (24 +1 /’r:r}

P +liol} 0+ [ {191 + 2 K] Aw?

= 3 0 kRSP + 170+ 2 [ firbde} [ wods
(56)
+£{K!— SR'L(VM,Vmez)dI +(em K — 1)L(vw,va)dx

“/ (+ o) F% + wh FE do

—gMH /an [(w + 0} b, — WK (FS + emy 8] da’ .
It is easy to see Lhat
1
of [ wmdi] < aullwt + —Jol,
[+] 211

, 1 .
2|/(\7w, Voldr| < oy [Vl + — Vol
1] ¥z

Ql=%(m+ ()2 +4), cm:%('ﬂx'—l+ (Ph —1)2 +4 ).

Let us choose the constant A" large enough, so that v/ — a; > 1/2, 1t is possible, since
4K — oy varies from  to 1. Further, by the embedding theorem (see, for example, [21})
and {41). we get

€M+|| ];Q [(w +a)F —WR(FE + Eh‘lFf:)}dr’r
1 PO
< el L2@Q)] + llos LAAQ)) € e+ 2wl + 7 oIl

19

Here and below ¢ denotes a universal constant, |[f|lx is the H*()) norm of f, and H*
denotes the Sobolev space.
Therefore, choosing ¢ small enough, from (56) we obtain the following inequality

Ll 4 1 0+ [ {7 1990 + 5 1961

. . K
R (| Aw]? 4 3K [V + %[ W dz ! < cetM (57)
[ Q

t
+ [E el < o)) + 38 [ (F0, Vpuutide|}ar
To estimate the integral / we shall need the following

Lemma 6 ([25], [33]}). For any function w(t) € C™([0,T]) and for any nonnegative
functions f, v,

fit,z) e L0, T LA(RYy n LY(RY),  wlt,z) € B=(0,T; S(R')),

where S is the Schwarlz space, there exists a constant eg > O such that, for all € € (0, 4],
7 st e(t ZE D) e < 811 1R+ o(6) el LR,

where & > ke'/7# is an arbitrary constant, p € (0,1/2); k& > 0 is a constant. Here
0 < c(6) < const/6* and r{e) =0 ase — 0.

Remark. A similar estimate was established by M. Berger and L. Fraenkel [4] for the
boundary layer problem. The support {up to ({e*)) of the boundary layer part of
the asymptotic solution lies in the e’-neighbourhood of the boundary 89, & € (0,1)
is a constant, and the remainder is equal to zerc on 9Q. So, by Lemma 6, we have
some additional condition, which means that f = 0 on a surface inside the domain
Q, = {x.|v(t,{z — w)fe)| = a} for sufficiently small ev. This condition, very natural for
elliptic problems, was used by M. Berger and L. Fraenkel extensively. Moreover, the proof
[} is incorrect withaut this condition. (bviously, such an additional condition does not
appear {or the {rec houndary problemns.

Let us estimate the principal terms of 1.

Lemima 7. Let e be small enough. Then

[ 19ulailvde < 80 [Dul? + ¢ 2 Aul?, (58)

5 [ ulnlds < 2 [ wt0de + e ol (59)

where & > 0 are arbitrary constants.

20



Proof. Dencte by N, a p neighbourhood of the interface I's, where 1 > 0 is a constant
independent of . Since x = ({e™) outside N, we have

/ IVwi?|g: | xdz Scu/ |Vu)|2)(dz—t—f:”e:u/s {Vewl|*dr
) N 1

for any positive k. Here ¢ = max ig1l-
=€

Choosing p sufficiently small, we pass to the variables y = (y,...,ya) in NV, where 3,
is the coordinate normal to [y = {z € O, # = ¢{x)}. Thenin N, ={y, lw|<p, ¥ <
¥y <YF, i=2,....n} we have

[ [Vuwl*xdz = i /y}:+ /u\ ol (L y ) dysd

Vwl*xde =[] V| v( =, y, o
X, X - L - Y Yy
where J iS the Jacobian Of thlS change of variables,

[Viw| = 1vrw”1=z(y‘y): v{n.y. ) = x(B(n + V.’l))‘a-zr(w’]'

By Lemma 6 and the embedding theorem for n = 1. we get

f |Vw|txdz
N

noocyt e ) § e g 1/2
<11/ {61 [ ot s+ cenie ([ 190l s }dy‘
e A -y —u
< B|Vwll + e e F R (o) {1Vl 4 e | Vw)? + flaw]P}

<

Vuoll* + ¢ e 2rie) {| Vel + )| Awl}.

Here we choose k3 = 1 + k; /3 and use that J > 0 is a bounded smooth function.
This implies estimate (58). Similarly,

;/N )7\1;1i'l2‘d:rf i%/flwz‘l’ld$+cr(g)5*l/2
H
) IHI fy"j ”‘" T ;L'z(ﬂt,;z)“w”;' JU, H'(*#J:J”lh dy,
i=2 H

< S o I coer{ e IR+ e+ i)
Lemma 7 is proved.

Further, choosing ¢ small enough, we have the trivial estimate

1
5/9|V¢ulzlgﬂdx+E/ﬂw:'%\\l’g+elll4\dx "
< ellwll + & {IVel? + 5 [ wHbde}
B 2 Jn

with an arbitrary constant 83 > 0.

pal

Let us estimate the last term in the right-hand side of (57). Using the Galliardo-
Niercnberg inequality, we get that

‘j(Vw:VLprz)dml < cj lw] |Vw]?de + E/ |[Vw| widz
I Q £J0
(61)
—n n < -1 n
< el g Vel el oy

S BatIVall” + £ ully) + ¢ 72T o TR,

Choosing reasonable constants §; and using (58)-(61), we can transform (57) as follows

1
vt {1Vl + 1Vl + Al + [Vl
(62)
! 2y M T -r LAl e
+;”\/\IJ_“;|| }di <ect “Jr(:‘/(; {o@y + o)y} ar.

Here p 4
. . . +n
Uy = {wll® + 2?3, A=, r=2 .
—n 4—n
Let us fix a number Ty € (0,7, T < oo, and let t € [0,T1]. Then, according to the
Gronuoll lemma, (62) vields

T
HORS: (a"‘”’f' +a"/ J U1+*dt'),
0
Let 7 = max U({). Then
te(u,1y]
2o (M LY, (63)
To analyze the last relation, we need the following lemma proved in [29].

Lemma 8. Let positive numbers p, q, A salisfy the estimate

)‘ 1/
4 < T+ ) . (64)

Then the solutions of the incquality
D<z<gt+pz'™

fill the domain consisting of an interval adjoining 2 = 0 and a half-tine, separated from
each other by the point z, = q{l + A)/ A

-

In our case p = cT1e~". Thercfore, since ¢ is small enough, inequality {71) holds for
any M > 2. Thus we obtain the estimate

PR < M+
!.IEI[!:)c'l]J:.I] Uiy <e . (65)

It is easy to see that (65} and (62} yield the estimates (47). This completes the proof of
Theorem 4.

22
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Proof of Theorem 3. Let us choose the number M* = M + I, where M > 2. Then, by
Theorem 4, we get

=05 + M, w = o+ M,
where oy, wy are functions fror £7(0, T L*(1?)} uniformly bounded in . Nevertheless,
W
9:' 29:+EM+1 MA1Y Lt:’ﬁ’ :99?\:+5M+1yr;+15

yfﬁl =z, O+ Vun(n, a8} + Yy (2’ ),
y:-H = @t )+ Wap (0, 0 + Zoar, 2, 1),

where n = (t — Ylz))fe, 7 = xx/e. It is easy to calculate that
Y0 L0 T5 PO + 0§05 L0075 L)) < e

Therefore,
0=024eMen. o= p et
where
. 6 . :
GM:yM+l+\/gJM'~ WM:y;rH"’\/EWM’

are functions such that the estimate

NV oras L2015 LN+ V500 270,05 LR
F llorsers £200, 75 PO A flwners 2700, T3 LA < const

holds uniformly in €. This estimate and Theorem 4 complete the prool of Theorem 3.

4. Asymptotic behavior of the solution for large
time

The purpose of this section is {0 counsider the process for large time, e, when the first
stage of separation is completed and some domains of *solid” and “liquid™ are formed.
Respectively, our aim is to study the dynamics of the interfaces between these domains.
We shall assume that the distances between different interfaces are greater than a constant
(uniformly with respect to time and £). Tt is clear that in this case we can consider only
onc couple of such domains in 2 without loss of gencrality. We shall also assume that
the right hand side f in {3) is 2 smooth funclion, slowly varying with respect to ¢ and
preserving the zero mean value:

j fdr = 0.
i}

Changing the time scale t = /¢, we rewrite the system (3) as follows

J .
(0491 = A0+ f(z7),
(66)

—Re = A (52’_\99 +w— "+ 5&19) ,

23
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Let us pose the boundary conditions (5) on the external boundary and the initial condi-
tions

BJT:O = 6”(1'1 E), ‘PJT:O = Wu(x:‘f): {67)
where 2° is a certain smooth (for € > 0) function such that

P N + S0 -
P_lg{}zp =1 as r&flf, lfé"g =-1 a z€efy.

Here £33 denote subdomains ol Q such that Q = 0 U5 U Ty, Ty is a sufficiently smooth
closed surface of codimension 1. Let 'y @2 =@ and, for definiteness, Q5 N J7 = J4Q.
Precisely as in similar problems for both the phase field system {14, 15, 33, 34, 39} and
the Cahn-Hilliard system with the fast relaxation time [35, 36), one can assume that as
¢ —+ 0 the limiting temperature has a weak discontinuity on the free interface, since the
limiting concentration is the Heaviside function. In fact, it is not true.
Lemma 9. Lef I't = {xr € Q, 1 = ¥(x)} be « smooth surface of codimension 1 such
that dist (I'r. @) > const for afl 7 € [0, 1o]. Let also 8, @ be the solution of problem (66).
{67, (5} such that w —liirdp is the Heaviside function H{t —4(x)). Then the temperature

8 is a smonth function up fo lerms Ole).

This result is in agreement with the behavior of the soliton type asymptotic solution as
the “hackground™ 2y tends to £1. Actually, the leading term of the asymptotic expansion
[or the temperature is a smooth function and Lthe amplitude of jump for the first correction
remains bounded as wo — ! (see section 2). So, it is very natural te assume that the
leading term of temperature will be smooth during the whole time of bifurcation (from
{ ~ const to ¢ ~ 1/2), when the concentration of “superheated liquid” tends to —1I in
{1, s (respectively, when the concentration of “supercooled solid” tends to 1 in QLHJ.
The statement of Lemma Y means that this assumption is true.

Returning to the problem for large time and taking into account the statement of
Lemuma 9, we shall assume that the leading term of the asymptotic expansion for the
initial temperature 8% is a smooth function uniformly in £ > 0.

Let us formulate the mnain result of this section. Denote by &y = fy{x, 7} the solution
of the following Neumann problem

Aby = - flz, 7)., xef), T>0 %0\%

Let also &F = (e, 7). 4 = (2} be the solution of the following model problems

= 0. (68)
B

AT = —%f(x,'r), reft, r>0

{69)
avyy " - aof _
AN (s =9 [(ID1] 11‘1‘ =0. [ ov rr =D,
. Vi ; .
div (W) = h:gq):]t,. Ipl]—-o =10. (70)
By 6% = 0% (x,1) we also denote the solution of the problem
AgE :%, TeE 10
ar
71
B _y [} =0 BN ap "
anN xﬁ ’ ilep &5 1% [‘T_ v
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Here we uge the same notation as in Section 2, x; = 3v/2.
The uniqueness of 8y, ®F, # follows from the normalization conditions

[ 00z = K, f@fdﬁ [ #ras = 5t fafdﬂfe;dw - K°,
It

+ — + -
ot n; af Iris

where K, K? are the coefficients of the expansions

fﬂﬂrsdm-—ZE.ﬁg [t,p e)dr =Y RY.

i>0 20

Theorem 5. Let there exist sufficiently smooth solulions of problems {69)-(71), and let
dist (Tr, 00) > const for afl 7 € [0,Tp]. Then, for any M = 0, there exists ¢ formal
asymplotic {up to Q™)) solution of problem (66), (67), (5). The (wo leading terms of
this asymptotic solution have the form

8z, 7,e) = bz, 7) + 5{%(6‘?{(&'{) +802,7))
by (8ide 1) - 0 ) + O)
ole,7,6) = xim o) + e 5(¥0e,7) + 0y, 7))

3 (@) - O a0 ealn, o)} + O,

Here
x=tanh (B(n+nlx)):  m={(7—d@Nje. §=(V2|Vul)
8L, L are sufficiently smooth extensions of solutions to problems (69), (71) #%, OF in

O UTE;, where 75 is a layer of width 6 lying in QF and being adjocent to Ty, 6 > 0 s
an arbitrary number; wy € §; ¥ € O™ is the solution of the inhomogeneous linearization
of equation (71).

Let us prove Theorem 3 and consider the general method for constructing the asymp-
totic solution of this problem up to an arbitrary precision. By Lemma 8, the asymptotic
solution has the following form

S(LB T"E) In )+0(EM+1),

f(z,7,8) = 9¥(z, 1} + EVM(—-’T—, - x,T, €

S €
w(z, 7,6) = e®¥(z,7,8) + WM(—j-I—’;—), %,r, T, E) + My,

M
?(z,T,2) ZE’B z,7) "z, 7,e) =3 & gla, 1), {73)
=1

V¥ mm, 1) = 3 e e V27 4 Uy (2,73 + Yo, 1)),

j=1

25

WH(y, 7.1, 7} = x{n,2.7)
25{7111 S, 1) + Wiln,, 1) + Z5(r, 2", 1))
Here 2, 1s the distance from 00 along the internal normal, ' € 891,
'5':-0!'1”!]:6“591 € Cm(Q)a Y}(T, IfaT)a ZJ(T!S':',T) € p:

Vg o, 1), (2, 1), U, 2.7), G, 2, 1), Wi, 2, 1) € H,

and as
- - = W™ =0, ==
X *l, f 0, 5 0 37 ir, # 10,
pile, =0, ilry = 0. e ={r e, S(z,r) =0} {74)

By Lemma 1 and {74), without loss of generality, we can assume that
S=rowrh x=xOneh
Ve, 1) = of +oix0n2),  Gjln,2,7) = uf + 45 x(n, ), (75)

o = MVHem Vi), g = (G ) £ 65

o) —

Precisely as in [35, 36] and section 2, substituting (73) into equations (66), we get the
relations for the regular parts of the asymptotic solution

A - 8 Mt M At 2 3 Mt M
AY +f—£{aT(W +9M) = AV 4 e G (VM + @),
A(wM:l: (Wwi).i]
a Mt +12
te { Py — A3 — 1)eM +wa“)} (76)
a
2 M2 JEtE Mt M
e {A((A = 38" )W E 4 kY )”%‘D }
+EA(ADY ~ (BM)P) =0
It is easy to see, that to pass to the limil as n — +o0o, T — 00 is equivalent to calculate

the weak limit as ¢ — 0.
So, as ¢ tends to zero, we have

A= ctxE) = o0,

which does not contradict the assumption (74), i.e., x* = +1.
Let us introduce the notation

07 =0, + oV +UF, &F =, +1,Gf + W (77)

Now, setting the terms of the order O(s7) equal to zero, from {76) we get equations (68),
(693, (71) for the leading terms and similar equations for the lower terms

ABE = [yl 1), AGF = fE,(2,T).
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-n e

Here f&,(z, 1), f,ffw(:r, T} are functions of o, 8%, ..., ®F | and their derivatives.
Let us consider a neighborhood of T';. Using the same construction as in Section 2
and [35, 36], and taking the terms O(c %) in relations similar to (16), we get the equality

@ (1 . Ll _
3n2{ﬁw+x x}-ﬂ, #9—]/\/§|v¢|-

After the integration, we obtain

R N SO
B | 35 o2 X — X~ ¢ = const.

Obviously, const = 0 since ¥ € M. Therefore

L% o s . -
ﬁiw.kxix =, X v £l as 15— xoo. {(78)
[t can be easily shown that, if and only if ¢ = 0, equation (78) has the solution such that
¥ € H and ¥% # % exists. Therefore the solution on [y has the usual Van der Waals
tanh form

%(ma) = tanh(3(n + 1)),

where the “constant” of integration ¢ = () is an arbitrary function from g,
Since ¥t = &1, we can extend ¥ by the identity to x = x(n. ) for all {x,7) € Q.

Further, setting the lower terms equal to zero, we obtain equations (21), (22), where

Lo .
L= e+ L= R
232 iy * v

FZ, F¢ are functions of the higher terms of the asymptotic expausion at the point 7 =
iz, k=1,2,..., M. In particular,

o P U \
FE=0. R = {“au P |

i * Oy 23 dr dnd

. . Jv. Ay . 4212
B = 24" {Q(W.vm) (R CE S R "}

=y

Obviously, we get {7, = 0. Let us consider the solvability conditions for equations (21),
(22} in #. It is easy to see that for & = 1 conditions (25), (26) hold automatically.
Further, since

Y
ff211£+3w(x“—1)~

simple calculations vield the statement

Lemma 10. Condition (27} for k =1 is cquivalent to the equalily

div ( ve ) =33 5. (79)

Vel

[S%)
~1

g % - SE. “ﬂuum;m*m-mwn;mﬁw m*mﬂiw*ﬁ ;-2 .

Now we can obtain the function W; = w,(#, z), where

Wl(ns .'.l') = wl.l(n!ml + If)Z(E)X"i(U!I) € 51

wyy is a particular solution of the inhomogenious equation (22) for k = 1, and +; is the
“constant™ of integration. Thercfore, the functions Wi vanish, and the equality (79) can
be rewritlen in the form (70), since v|r,. = 0.

Let us define the extensions W, v, G,

w1+ W= yipd (2,7) + g (2,7 (g, 2) + wilm 2).

Here

1 _ _ 1 -
et = Q(CDTL_ = 2o+ L), ey = §{¢1+c = ®%)
®% are sufficiently smooth extensions of ®F in 2 UT'T,, such that the Poisson equation
is satisfied. Here 0 < § <€ 1 is an arbitrary number.

Now, let us consider equations (21), (22) in the case & = 2. It is easy 1o establish that
conditions (25) are satisfied and for & = 2 conditions (26) have the form

‘ 1 dp .
(zfvt‘"a V) + ﬁ#) -r=¢“/l] =2,
(80)
1 Oy -
o T=y

where [V] = '~ — ¥+, Note that
Volp, = —prVel,
for any smooth function p such that p|.. = 0. Hence, relations (80) imply
(Ve Vodic, Vil = 2. (VY. V)l [G1) = 2«

Morcover. the last cqualities can be rewritten in the form of Stefan conditions in {69),
(T1), since 8, ) € Q) and p1. 1 are equal to zero on [y, Let us alse note that the
realization of the continuity conditions i (69), (71) is the result of our construction.

Finally, alter sonte trivial but cumbersome calculations condition (27) for & = 2 can
be transformed to a linear inhomogeneous equation for the phase correction ;.

The following constructions are performed in the same way, see also [35, 36] and
Section 2.

Now let us consider the boundary conditions on the external boundary 9¢ and calcu-
late the boundary-layer functions. The principle term of the asymptotic solution ¢ = x
satisfies both boundary conditions (3) up to O{c™). So, a discrepancy in the second
boundary condition for ¢ on I arises only in terms O{¢). Let us put Z; = G for j = 1,2,3,
then we obtain the equation for Z;:

gt
—Zy — 27, =1, Za =0, 700
ar?
Obviously,
b oa—VE T —a2 O e
Ze = eqlz’ T)e ViT = =2 SREWA@‘ o
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Further, we note that the appearance of the boundary-layer function £*Z, necessarily
requires some corrections in the Neumann condition in the term ¢¥¢%). So, the Neumann
condition for &3 has the form

a9 az 1
3 = 0 —AD;
E Jr 1= 2 anN

The appearance of the boundary-layer [unctions Z, yields houndaryflayer lterms Y; in the
# asymptotic expansion. Since the boundary 99 is fixed, ¥; = 0, 7 = 1....,6, and we get
the equation for ¥Y7:

Ay a

31'27 = ;d-TZ4(T, 'y, Yo =0, 7 o0

Therefore o2
. o-5/2 - A
Yi= 2 A |, exp(=v2 7).
Conversely, the appearance of Y7 leads to a correction of the Neumann condition for

temperature in the term (%), Thus, the Neumann condition for #; has the form
by | oY; L
ONlg  arlme 40NOT

The following constructions are performed simnilarly.
Theorem 5 is proved. Analyzing our construction, we also obtain the statement.

«

Theorem 6. Let the assumptions of Theorem 5 hold. Then for any integer M 2 0 there
ezist the functions

M4
=0+ 3. 08 +p,V, + U + Y+ U0y + Yiga),
i=1
(81)
Ml
=X+ E Moy + G+ Wi+ Z) + M W0 + L)
=1
such that 4
en (00 + @) = A0 — e 1) = MHUFL
il .
ke ;M A (PAGS + 0% — (03 + emn03) = MHYUFE, (82)
06 M2 e d‘e’u d M g
Ee Foo nl, =0 et e b
Here F&8 F28 are (smooth for £ > Q) functions sueh that
(70 CQI+ I F5 C@) <«
e CEN+ IS CO € e, (83)

(175 L2+ 7S LA < eav/e,

where the constants ¢; are independent of ¢.
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5. Justification of the asymptotic solution for large
time

Let us introduce the notation o = # — 27, w = ¢ — »% and let the initial data 6°,
¢” exhibit a special behavior. Then, from (66), (67), (3) and (82), we get the following
problem for the remainders o, w:

a3 . 1 M e
g(a+w) — EAQJ =" Fy,

O 1 . .
Kair +A{E.Au.}+ g”"(l _35‘5;*3955&@—&4)2) +KZ]0'} = -EM}-"G’ (84)
o) e | ] | M
(9:‘\"'}; - M2 5?\7!‘._”-‘ aNAw FMﬂ
UI‘I:() - 75M+1/2ff1: WiT:O = “EM+1"'2_)F:;.

Here Fi@, F2 are smooth functions satisfying (82), functions f%% are such that

I f LA+ L5 LA € evE (85)

with constant ¢ independent of e, To simplify the notation, we omit the superscript
denoting asymptotic solutions.

The main result of this section is
Theorem 7. Let there exist u sufficicntly smooth solulion of problem (66), (67), (5) dur-
ing the time [0, Ty), and lef the quantity Ty > 0 be independent of £, Lef also the assump-
Hons of Theorem 3 be salisfied and M > 2. Then the estimates hold

o L2000, To); LA + flo: L0, To): EHON|| < e M+,
(86)
Ve QY + V0 LAY < e e¥P, | Awi Z(Q)| € e ™

with constant ¢ independent of =.

FProof. Similarly to the proof of Theorem 4, afller some transformations, we get the equality
with an arbitrary constant A" > Q:

Ld Rl 2
5 o {0+ Rl + o+ 2 [ wode}

1 i 3K
¢ 119+ emtaul + v
w B0, Va1 = 362 )z — Lhuf[Vw Veuw?)de
£ Ja

- %(I _5"1]")L(V“’1V°)d3*EML{(W+U)fi+war;}d:r

M fm {(w + OV — WK (er FE 4+ F;;)} dz". (87)

Let us analyze the energy relation (87) by using the following version of Lemma 5.
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R

Lemma 11. Lef ¢, be the asymptotic expansion (81). Then
1 2 ‘Zf 2 3 f w?
2 _ A B v/ U Bl
Ejn(w,wu 3¢l = = [ [Vlide ~ 5 [ Fxrde+31,
1 21 - ey 2 9 2y,
I= 2 [19ef =3+ i [ el - e
1 1 p .y .
+ 5] w’xTAEdI *fnl‘?w\‘(?x +eph e dr
' 2 [ wxe(Vee, O ~ [ (e, Vi), + i D
. “+ [ﬂu)mn W, ﬂ_? I — Qu.! W VIdyw, + T
\ 2 . )
1 wrd .3
, L fw o a0 y )
L 25/9 7o (Hanx(n,r) sAx(n,z)) ,,:Z;Edl'
Here 11 is the operator described in (16), w5, = (py — ¥)/e denotes the lower terms of
erpansion (81).
Proofof Lemma 1i. It is casy to establish that
f (Vo Viw(l — 3¢ )))dr = —zfﬂ |Vl + 3/9 (Vewo, Viwll — 2, e,
£
1 . )
lf (Y, V(w(l - %)) )de = ] V(1 = e + ——/zwz.-'lxzd.r
£ Jn
v —L\W|2(2,\+w;,)p;.d‘r—j“w<w V250, + el e,
X
| Since | — x? = gx,/#, we have

1 2a 2 l/ Y
=— | w*A\dz = ——
25/;1 n 2 ar” (.U

It is clear that

17 1 ‘ ] 1

N AN —/ S A d: 2/-,,' Ve, Vo )de,
50 aTA_\rIJrz ﬂw X 3 r+ A Y rf rd) T

.

d
=y - x—ell
SN

i e+ f Ay, T )l o Ioy

efAy (Ti

Thus

e

f%—ai ydr = f ?Yr ‘/;d\(r(l—\)d

z a . a
o ?5% (“57 - EA) K 2)| gy d

This equality completes the proof of Lemma 11.
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Now, using Lemma. 11 and integrating (87) with respect to T, we get

2K
— Ve

S {0+ R+ ol (r +f{

B jovuir+ 25 [ ﬁx-rd:}dr

+ = [|[Vol* + el Aw]® +

&
_ ! w+1{ . 2 o2 }__
= S BN I 2 [ fa e} - [ wods
. .
+[ {3K1 - f[l/(vw,v%,u!)dz
[H & Q
- l(l - frcll\')f(Vw Va)d.r-«aM/ [(w+a)fﬂ +w1{}"“’]d1‘
£ [ ) Q M M

M [ [l = 0V - wl(en P + FY)] da' (88)

[t is easy to sec that

2 ./nwmb" < o ffefl® + % lofl?, o= %(mﬂ' (K +4 ),

i
2|/(Vu,‘?cr)dr‘ < o ||Vul? + = ||Val
Q o
Further, by the embedding theorem and (83}, we get

U+}|]ﬂ$2 w “at 7“'[‘("2['\: F::)] dT’|

1 1
< M L2OQ) | + [l O < ¢ M1 Sl + 7 ol

Here, as usual, ¢ denotes a universal constant and | f|ix is the H*(9) norm of f
Therefore, choosing ¢ small cnough, from (88) we obtain the following inequality

ﬁ

O {4 o o + / {2 vl + 5 190

bl Al + 'T e Vall? + ?LFXde}dT’
.
< . r_‘2.’lf+l RN 2 2
ettty [Lan | i) + o)

J[
. |f Vo, Vippet? )dx|}df (89)
Further, using Lemma 6, it is not too difficult to prove the following analog of Lemma
7 {see also [35, 36])

Lemma 12. Let ¢ be small enough. Then

; é ; .
U+ 2T + e Hw]? + e Duwil?,

[l <
where & = x/8; &, &3 > 0 are arbitrary constants,
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Now, using the Galliardo-Nirenberg inequality, we get the estimate for the last term
in the right-hand side of (89).

é IL(Vw, Vip s e |
< 5] lw| [Vw|Pdx +i2j in e
£ J £

c —n 44n n n
e o e A [ Rl P e

¢ . e
< 2 [Vwff + bae ol 4+ ¢ ¢ WA e,

It is clear that, choosing reasonable constants &, we can transform (63} as follows
Tl 7, ] 2 2
Uirr+e [ {2 IVl + Vol + 2 law)
o ‘e £
1 7 L 2 ’
el + e N (90)

T
20 +1 ot PELEFFIUIRY B Lt
ce +(‘./0 By + ey Y ar.

Here

U =l + P, A= —
According to the Gronuoll lemma and to Lemma 8, {90} yields

{“‘-’J“ + “O'H}(T) < ('EMH«":’
(91)
[Wew; LXQ)| + |V or; LAQW < es™*, | Aws LHQ)) € ™.

Finally, repeating the construction of Theorem 4, we establish that (1) and Theorem 6
vield the estimates (86). Theorem 7 is proved.

6. Proof of Lermma 9.

First of all we note that the weak limit of temperature must be a function smocther
than the Heaviside function. Really, let 8 be of the lorm

B = ale, TH(T — P(r)) + bla.7), (92)

where b is a function smoother than H. Then (92) and the heat equation imply that the
following relation must hold in the T sense

ad'(r — ) = (1 + a)d(T — ¥) + smoather terms, (92"
where &, § denote the Dirac’s §-function and their derivative. Obviously, it is impossible,

since a # 0.
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Therefore, we must assume that the asymptotic expansion for the solution of problem
(66), (67), (3) has the formn
Oz, r.2) = 9"(2,7,e) + V¥ (‘LI""‘). I—E’i,x,r.s) +O(MH),
£

plo,re) = c®Me, 1, ) + WH (—LI’;-’E], %ITE) + MY,

(w.7.¢€) Z()f? ®¥(x,L¢) ZE"thxr (93)

VM, T, ’."QJ = pula, Vol 2, 1)
+Z Hps (oo r)WVsln o) + Uilg, 2,7y + Vi, 2', T}
WM T, f ;) =(nx,7)
+ i vy le, TV, ) + W, )+ Zi(r, 2, 7)}.
J=t
]_l_ﬁ:r(‘ Yo, th € H, py € (", pylr; = 0, and we use the notation (73). Tt is clear that
Al ~ d(T — ), so, we avoid the contradiction (92').

Further. repeating the construction of Theorem 5 and using the notation [77), we get
the lollowing equations

Aft = f, ret T, (94)
G0 VY, V) My i dpo V4 (95)
T Ve ap Tor op
The solvahility condition for the model equation {(95) yields the relation
(299, Vo) + vor V¥ F)| _ (W5 = V) =0, (96)
Obviousiy, from (93} and (96) we get the matching conditions on the free interface
a0z
. 0 =
Bl =0 [ . =0 (97)

Let s define the function 8y as the solution of the Neumann problem {(68). Then we
obtain the Tollowing problem for the discrepancy 8% = 88 — 6,

AfY =0, reQE r>0,

dai |

[éi”l'r =0, [ E {1 . (98)

iz + | §-dr =0.

[%3 -
i Ea s

(}

Since I'; is a smooth surface of codimension 1, the encrgy equality

gt G120y —
fn}w idx+fn;\\_”91do: 0
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vields 6% = 0. Consequently, [/; = 0 and we get the asymptotic expansion {73) for the
solution of problem (66), (67), (5). According to Theorern 6, the exact solution # can be
written as follows:

=0 +ea o L0, Ty L)) N LA, To, HY(Q)) < ceMH!

for all M 2 2. It means that # = 8% = 8, is a smooth function. Lemma 9 is proved.
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