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Abstract 

In the light-front dynamics, there is no pair term that plays the role of the 

dominant isovector pion exchange current. This current gives rise to the large and 

experimentally observed contribution to the deuteron electrodisintegration cross-

section near threshold for pseudo-scalar irNN coupling. We show analytically that 

in leading 1/m order the amplitude in the light-front dynamics coincides, however, 

with the one given by the pair term. At high Q2, it consists of two equal parts. 

One comes from extra components of the deuteron and final state relativistic wave 

functions. The other results from the contact NNiry interaction which appears in 

the light-front dynamics. This provides a transparent link between relativistic and 

non-relativistic approaches. 
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1 Introduction 

The contribution of Meson Exchange Currents (MEC) to the deuteron electrodisintegra-

tion cross-section near threshold [1] is firmly established. The cross-section in the impulse 

approximation has a minimum at about Q2 « 0.5 (GeV/c)2, contrary to experimental 

data (see refs.[2] for a review). Isovector MEC associated with the exchange of a pion 

fill this minimum and are mandatory to understand the data. In first order in a 1/ro 

expansion, the dominant contribution comes from the pair term illustrated in fig.l. This 

term corresponds to the creation of a ;ViV-pair by the virtual photon. 

However, these first order calculations, especially transparent for physical interpreta­

tion, may be insufficient to analyse the data at high momentum transfer in the region to be 

covered at CEBAF, for example. The light-front dynamics provides a general framework 

in which a self-consistent analysis beyond first relativistic corrections can be achieved. 

It has been developed in an explicitly covariant form adapted to practical use (see for a 

review ref.[3]). 

In the impulse approximation, the light-front dynamics was already applied to the 

deuteron electrodisintegration amplitude in ref.[4] and, in its explicitly covariant form, in 

ref.[5]. In these studies the non-relafcivistic wave functions for the deuteron and for the 

final* So-state were used. Relativistic effects were found to be small in both calculations. 

This may not be a surprise since these studies did not account for the dominant MEC 

contributions which are also of relativistic origin. 

In order to achieve a consistent calculation, several relativistic effects should be 

considered. The first one is the modification of the non-relativistic wave function and the 

appearance of extra components. The second one is the contribution of a contact NN-K^ 

interaction (see fig.4 below) which is a new feature of the light-front dynamics. 

Extra components of the light-front wave function appear because of its dynamical 

dependence on the position of the light front. The usual light-front dynamics deals with 

the state vector defined on the surface t+z = 0. In the covariant version the state vector is 

defined on the light front characterized by its general position ui- x = 0, where u = (u0, u) 

with u)2 = 0. The dynamical dependence of the wave function on the light-front position, 

manifesting itself in the case of £ + z = O a s a lack of covariance, is now explicitly 

parametrized in terms of a four-vector u without loss of covariance. The dependence of 

the wave function (but not of the physical amplitude) on the four-vector u leads to extra 

spin structures and increases the number of components of the deuteron wave function 

from two (S- and D- states) up to six. Similarly, the relativistic continuous spectrum 
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wave function of the np-system (corresponding to the 'So-state in non-relativistic limit) 

is determined by two components instead of one in the non-relativistic limit. 

In the one-boson-exchange approximation, these new components were estimated 

from a perturbative calculation for the deuteron [6] and for the continuous x So-state [7]. 

It was found in particular that for the deuteron wave function one of the component, 

called /s , is rather important. The decomposition of the wave function incorporating the 

dominant components, usual S- and D-waves and the extra component / s , has the form: 

# £ , * ) - -j*3us(k) - \ \ ^ S ^ - A tto(fc) + fy\k x n}f5(k) , (1) 

with n = w/ufo, where we choose for convenience UJQ > 0. In this equation, k is the 

relative momentum between the two nucléons in their center of mass frame and k = \k\. 

At k > 0.5 GeV already, /s exceeds all other components including the S- and D-waves. 

The same was found for the extra component g2 of the continuous spectrum wave function 

with zero total angular momentum: 

^(£, n) = gx (k) + -a[kx n]g2(k) . (2) 

To avoid any misunderstanding, we emphasize that the parametrization of the light-front 

wave functions in terms of the four-vector ui in eqs.(l,2) is not the reason of the origin of 

these extra components, but rather a convenient method for their representation. 

The contact interaction originates from the diagram in the old fashioned perturba­

tion theory corresponding to the creation of a nucleon-antinucleon pair from the vacuum. 

In the infinite momentum frame, this contribution for scalar particles disappears due to 

the increase of the denominator containing the difference of energies between the inter­

mediate state and the vacuum. For fermions (nucléons), this increase of the denominator 

is compensated by an increase of the numerator. The finite result is a contact-like inter­

action, which can be introduced in the light-front Lagrangian from the very beginning 

[8, 9]. 

Relativistic effects in the deuteron wave function exert considerable influence on the 

deuteron form factors [10]. The analysis of the data beyond the non-relativistic expan­

sion is the subject of numerous calculations of relativistic wave functions and observables 

(deuteron form factors, deuteron electrodisintegration, etc). In almost all relativistic 

approaches, the link with non-relativistic calculations is not at all clear. This is rather 

unfortunate if one wants to incorporate our knowledge of the non-relativistic phenomenol­

ogy developed over the last 20 years into the relativistic formulation of few-body systems 
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and their electromagnetic interactions. This is also important to understand the quali­

tative features of the relativistic approaches (the light-front dynamics in our case), and 

especially their link to MEC contributions. 

One of the striking features of the comparison between light-front dynamics and 

non-relativistic approaches is in the fact that the pair term indicated in fig.l does not 

contribute in the light-front dynamics. Indeed, u can be chosen transverse relative to 

the photon momentum: w • q = 0. In the non-covariant approach u> = (1,0,0,-1), this 

corresponds to the usual condition q+ = q0 + qz = 0. However, since all the particles 

are. on their mass shells (but off energy shell), the NN-pair has a positive invariant mass 

{PN + Pjv)2 — 47n2, and, hence, uj{px + Ppf) > 0. This pair cannot be created by the 

photon with u - q = 0. 

So, where has the dominant contribution from the pair term gone? In the present 

paper we show analytically how in leading l/?n order the light-front dynamics provides 

the contribution to the deuteron electrodisintegration amplitude coinciding with the well 

known corrections from the pair term. At high <32, this amplitude consists of two equal 

parts: the first one comes from the contribution of the dominant extra components /s 

and g2, the second one results from the contact NNTTJ interaction. Preliminary results 

were published in ref.fll]. For simplicity, we concentrate on the leading contribution from 

7r-exchange with pseudo-scalar coupling. We shall comment in the last section about the 

extension of our results to the pseudo-vector coupling and to other contributions to MEC. 

The plan of the paper is the following. In section 2 we calculate the deuteron elec­

trodisintegration amplitude taking into account, in addition to S- and D-waves, the extra 

components /s and Qi in the deuteron and continuum state wave functions respectively. 

In section 3 we find analytical expression for this extra component. In section 4 the con­

tribution of the contact NNirj interaction is calculated. Section 5 contains concluding 

remarks. 

2 Deuteron electrodisintegration amplitude 

The amplitude of the transition 7*d —* np (1SQ) has the following general form [5]: 

where q is the four-momentum transfer, p is the deuteron momentum, fj, and p are four-

dimensional indices for the deuteron and the virtual photon respectively. The amplitude 
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(3) is automatically gauge invariant and is determined by the only invariant function A. 

The cross-section has the standard form which we give to fix the normalization 

da 

dttedE' 

with: 

- = (-) I W2 + 2tan2àe)Wl (4) 

W2 = ^ W , Wl = {l + S/<?)Wa, (5) 

where Q2 — —q2 = — (fce — fc^)2, v = pq/Mj and p* is the momentum of one of the final 

nucléons in their cm.-system. 

We calculate below the invariant amplitude A. For simplicity, we shall not take into 

account first the final state interaction and incorporate it later. The vertex Vd —• np (1SQ) 

is represented graphically in fig.2. This graph corresponds to a special graph technique 

developed by Kadyshevsky [12] and applied to the light-front dynamics [3]. While all 

particles are on leir respective mass shell, the vertices containing the dashed lines are 

off energy shell. For convenience, we represent the deuteron wave function in the four-

dimensional form [6]: 

7pfl=a(ki)OtiUca(k2) , (6) 

where Uc is the charge conjugation matrix and Ou will be detailed at the end of this 

section. Using these rules we obtain for the diagram of fig.2 the following expression: 

G^ = im-^22-27r-3^Tr [y5(kf + m)T^(k + m^ik - mj\ . (7) 

where Tjf is the isovector nucléon electromagnetic vertex: 

T j = 1PFÏ + ^°P»Q*FÏ, (8) 

with apu = |[7p7i/ - 7i/7pj and fc = 7 ^ . The superscript V refers to the isovector part of 

the form factors. We neglect in the amplitude the relative momentum of final nucléons, 

i.e. put p* = 0, so that fci = k/ = (p 4- ç)/2. The relative momentum will be taken into 

account later in the final state interaction wave function. Note that the matrix 75 appears 

in (7) due to the relativistic spin wave function of the ^ o state [5]. 

The expression of the electromagnetic current used here is different from the one 

with Sachs form factors employed in a previous paper [5]. These two expressions are not 

equivalent to each other off-energy shell. The present one for its F\ part is consistent 

with the minimal substitution in the Dirac equation. Sachs form factors may be used, 

but extra terms have then to be introduced in the current. 
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The amplitude GMp in eq.(7) does not coincide with FMP in eq.(3). The tensor G^p 

depends on u and, due to its decomposition on the general invariant amplitudes, has the 

form: 

GUP — -^-~2ePiun(ivPi^ + ̂ pnu-yQu^yBi + ePfU,1pl/u;~tB2 (9) 

+(KQP + VpQjBa + {V^p + VpujB* + (V>p + VpPfi)B5 , 

where V̂  = e^,^7 ua q& p7 . The decomposition (9) contains the symmetric structures in 

front of the functions #3,4,5. Corresponding antisymmetric terms (like Vtlqp — Vpqfl) are 

not independent and can be expressed through the first three items. We emphasize that 

C/ii/ depends on cv even for the components of the wave function which do not depend on 

u>. In the latter case, u; enters through the rules of the graph technique for the amplitude 

of fig.2. 

The dependence of the electromagnetic vertex on u was discussed in refs.[13]. The 

decomposition (9) enables us to separate immediately the ^-independent parts from un-

physical a?-dependent ones so that one can extract directly the physical form factors from 

the initial tensor Gpp. From eq.(9) we immediately find1: 

m2 

The deuteron vertex function OM, which enters in eq.(6), has the general form: 

(fci - k2)v. . 7 / . * u u /ii\ 
°* = Vl 2m2 + ^m ~ ^^Tp)15^ klah^ • ( U ) 

We keep in eq.(ll) the dominant functions only. They are expressed through us, UD and 

/s defined2 in eq.(l). In leading 1/m order one has: 

fx = -g-ws(fc) - ( g + ~j J uD(k), <P2 = ^ (y/2us(k) + uD(k)) , <p5 = ^ ^ M V • 

(12) 

From eqs.(7,10), we thus get in a 1/m expansion: 

A = ^$jî{GM MA/2) + ~uD(A/2) - Cp^/5(A/2) j , (13) 

'In ref.[5] the symmetrization of the last three items in eq.(9) was not taken into account and con­
sequently the expression for A differs from (10). This fact, however, has no influence on the conclusion 
of ref.[5]. Using eq.(10) we have not found neither any difference in leading order nor any noticeable 
numerical difference in the cross-section in the interval 0 < Q2 < 10 (GeV/c)2. 

2The definition of the wave function used in [5] differs from the present paper by the sign in front of 
t i D . 
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where A = y/Q1 and k = A/2. We introduce here the magnetic and charge nucléon 

form factors GV
M = F? + F% and G% = F? - Ç2/(4m2)F2

v' * F}\ In the plane wave 

approximation with p* = 0, the function i/?i does not contribute to (13). Let us emphasize 

that the contribution of the extra component / 5 is proportional to the charge form factor 

Gç (or Ff in leading 1/m order). Neglecting / 5 in eq.(13), we recover the usual expression 

in the plane wave approximation given in refs.[l, 5]. 

3 The deuteron relativistic wave function 

In order to make the link with the usual non-relativistic approach, we calculate below 

analytically the expression for the extra component / 5 in leading 1/m order. We start 

with the equation for the wave function [6]: 

(k2 + K2Mk,n) = -m J ^(k\n)ayV{k\k,n)ay—^ , (14) 

with K2 = m|ed|. In eq.(14) the energy e' = \jm2 + k2 has been already replaced by the 

mass m of the nucléon. Higher order corrections will be neglected below. Like in. ref.[6], 

we substitute in the right hand side of this equation the relativistic kernel V (for n-

exchange only) and the non-relativistic wave functions containing us and Up only instead 

of the complete ip(k',n). The extra components of the wave function are generated by 

the relativistic kernel. We shall concentrate in the following on the term which has the 

structure [k x n], see eq.(l), and calculate its coefficient. 
—• 

The expression for xp<TyV<Ty in the case of the pseudo-scalar coupling reads: 

$ffyVav = ~ {~^]
r8-{k2 - h') $ff- (fc, -£, ' ) , (15) 

ra IJL2 + (k- k ')2 

where n is the pion mass. Our notations for the kernel are indicated in fig.3. The factor 

—3 in (15) incorporates the action of the isospin operator T\T2 (not included explicitly) on 

the deuteron state. Note that we use the definition of coupling constants with g2. « 14, 

and not with gl/4ir « 14. 
-* —* 

It is convenient to work in the system of reference where k\ + fa = 0 , and thus 

k\ = k = —fa- The vectors k\' and fa' are equal to k' and — k' in the system where 

fa + fa ' = 0 but not in the system where fa 4- fa = 0. Let us thus express them through 

In the light-front dynamics all the four-momenta are on their corresponding mass 

shells but generally off energy shell. The latter means that the four-dimensional momenta 
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satisfy the following conservation law: 

fci + k2 ~
 W T = fc'i + ^2 — wr' (16) 

The scalar parameters r , r7 are responsible for the off-energy shell effects. This is the 

reason why the system at rest for the final particles (ky 4- k2 = 0) does not coincide with 

that for intermediate particles (fci' -f k2' i1 0). From eq.(16) it follows that k\' ~k2' = 

Û(T' - r ) . The zeroth component of (16) gives uQ(r' — r) = (fc72 — k2)/m. In first 

approximation, the total momentum wir1 — T) = f}u)0{r' — r) is evidently shared equally 

between fci' and k2'. Hence, we obtain in first \Jm order: 

k, ' = k' + nik12 - k2)/{2m), k2' = -k' + n(ka - fc2)/(2m) (17) 

Substituting these expressions for the momenta k^2, £1,2' and for ip in eq.(15), 

neglecting /s in the integrand and after integrating over d3k' which generates the structure 

[k x n]i, one gets: 

fs[k x n\i/k = 
Zglsft f(k2-k'2) 

8v/3: 
?V2 rvr 
7r2m2 J (k 

d3k' 

1 1 Ik'k' 
-^usik^j - ± ( - ^ - S^uoik') 

(Jt2 + « 2 ) / / 2 + (/b-fc')2 

{{k - k') x n}j . (18) 

Up to a coefficient, this component gives rise to an amplitude similar to the pair contri­

bution, if one neglects in eq.(18) the factor (k2 — k'2)/(k2 + K2). Since k? is restricted 

by the integration domain to low momenta, this factor ac k » k' ~ AC is close to 1. From 

eq.(18) it follows: 

Mk) = 
39ÎV2 

- i[(ifc- k') -k-3{k-k') • k' (k'ty/k^UDik')} . (19) 

Here the factor (k2 — fc'2)/(fc2 + AC2) is omitted. We shall come back to this point in the 

last section. 

Transforming eq.(19) to coordinate space, we find for fs the following expression: 

sftZgl f°° exp(--/xr) 
Mk) s. r 

T?Jo 
L0xr+l)ji(A:r) w(r) + -^w(»") d r . (20) 

2v/3m' 

where •u(r) and u'(r) are the usual S- and D-state wave functions in r-space. Generally 

speaking, the function fs, as well as the relativistic extention of S- and D- state wave 
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functions depend on the scalar product nk. In first approximation this dependence is 

absent and all the n-dependence of the deuteron wave function is reduced to the vector 

product [k x n] in eq.(l). 

We should also take into account the extra component g2 of the final state wave 

function indicated in eq.(2). However, there is no need to repeat the calculations. The 

contributions including / 5 and g2 differ from each other by the opposite order in time of 7-

and 7T-ex'..nanges. In the leading order static limit, the result will be the same except for the 

isospin factor and sign. The isospin operator TIT2 acting on the * So-state with T= l gives 1 

instead of —3. Another factor —1 appears from opposite order of 7-matrices. As a result, 

the ^-contribution can be incorporated by the replacement —3g% —» —(3 + l)g% = —4<?2. 

in the amplitude. 

Making this replacement in (20), from eq.(13) we find: 

A = 
7T 

rA 1 rùi 
rdr 

+ ^ r ^ < « r + ' > h + T H M» • (2i) 

The form of the second term coincides with the one given by the pair term contri­

bution [1, 14] (for a plane wave in the final state). However, the coefficient of this term 

is smaller by a factor of 2. We show below that an equal contribution is provided by the 

contact term. 

4 Contribution of the contact NNn-y interaction 

The diagram corresponding to the left contact term is shown in fig.4. We associate with 

the crossed line the factor [9]: -à>/|47r(aW)], where / is the four-momentum transfered via 

the crossed line. For u = (1,0,0, —1) this factor is proportional to (70 + 72) given for the 

fermion contact term in ref.[8]. An analogous instantaneous interaction appears in QED 

in the infinite momentum frame [15]. The relative time order of the NNn-vertices in fig.3 

is irrelevant in the static limit. Besides this diagram, we will take into account later the 

diagram with the right contact term, obtained from fig.3 by changing the relative time 

order of the 7r- and 7-exchanges. 

The contribution of the diagram of fig.3 to the amplitude A has the form: 

-Zgl m2 1 r d*h' 
8^^372 Q2 ( w . vf^ <Wh J fl2 + {k_ fc>)2 

,u!~. I =;—=;— (22) 
7 J nl+lk-k'V ' 
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xTr -ilsi'kf + m)rj" ( - , J i75(fe + m)0^(k\ - m)iis(ki ~ m) 

Since we still keep a plane wave in the final state, the integration in eq.(22) corresponds 

to the left loop of the diagram in fig.3. The scalar products of the four-vectors appearing 

after the trace calculation are expressed approximately through k = q/2.k' and n. We 

put, in particular, x' = (a? • fc{)/(u; • p) ~ 1/2 — n • k'/(2m). For free final particles with 

zero relative energy, x = (u> • ki)/(u> • p) = 1 — (a; • k/)/(uj • p) = 1/2. By this way, we 

obtain in leading \Jm order: 

- Mnk'f/k'2 - l)fc2 + {kk')}uD{k')}. (23) 

The integrand (23) contains (nk')2 and after integrating over <f3f the amplitude 
—* 

A00"* could depend on n through nk only. However, since u; - q = 0, we get in leading 

order nk — 0 (this is equivalent to x = 1/2). So, in spite of the presence of n in eq.(23), 

the amplitude Acont does not depend on n. To eliminate the fictitious n-dependence it 

is convenient to average (23) over n- directions in the plane orthogonal to k. This is 

equivalent to the replacement: (nk')2 —» (k'2 — (k'k)2/k2)/2, after which the integrands 

of eqs.(23) and (19) coincide with each other. Note that the factor (k2 — kr2)/(k2 + K2) , 

which has been neglected in the transformation from eq.(l8) to eq.(20), is absent in eq.(23) 

from the very beginning. We thus get: 

Am'~^ka^k) (24) 

with / 5 given by eq.(19) and k = A/2. Comparing (24) with (13) we find that the 

contribution from the left contact term coincides exactly with the contribution of the 

extra component /5 . 

The right contact term is given by eq.(22) with the replacement: 

r> (-4^))i75 "*h5 (~M^7s) r -
Without any isospin factors the right and left contact terms give opposite contributions. 

Therefore, like in the case of the extra component g2, the right contact term can be 

incorporated by the replacement Zg2 —• 4g2.. We thus find that the total contribution of 

the contact interaction equals the contribution from the extra deuteron and final state 

components and, hence, increases the coefficient Gcg2/(mA) in (21) by a factor of 2. 
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The incorporation of the final state interaction (neglected throughout above for 

simplicity) results in multiplying the integrands of eq.(21) by the final state wave function 

W ( r ) , with the asymptotic normalization sin(p*r + 5)/(p*r), where 6 is the 1SQ phase 

shift. 

With the coefficient 2G£<?£/(mA) and with the incorporation of w ( r ) , eq.(21) 

exactly coincides with the pair term contribution [1, 14]. 

We would like to conclude our derivation by two comments. 

First, it is known that MEC of interest here arise from the charged pion exchange. 

Since the /s component in the deuteron state, as well as the g2 component in the scattering 

state, are calculated from the full IT exchange contribution, they involve the charged as ŵ ell 

as the neutral 7r exchange. A detailed examination of their contributions shows that for 

/s these contributions are respectively proportional to —2 and —1 making —3 altogether 

while for <?2 they are proportional to —2 and +1. When adding these two contributions, 

the part corresponding to the neutral pion exchange cancels out, in complete agreement 

with the MEC approach. Similarly, it can be shown that the contribution of the TJ meson, 

which contributes to both /s and g2, cancels out in the total result in leading 1/m order. 

The second comment originates from the identity of the light-front dynamics ap­

proach with the non-relativistic approach completed by MEC. This identity suggests the 

existence of a unitary transformation to go from one to another3. The identification of the 

transformation is similar to what was done by one of the authors, in a different context 

however [16]. The idea is to remove part of the wave function (the f$ and #2 components 

in the present case), which contributes to the one-body current, and to transform the 

corresponding contribution in the form of a two-body current. The following develop­

ments, valid to lowest 1/m order, are made using notations commonly applied to the 

non-relativistic approach. 

Starting from the expression of the 7r-exchange interaction and using (17), one can 

easily calculate the new term which appears in the NN interaction. This one gives rise 

to the f$ (or g2) component. It can be written as: 

KV*(Z £'\ - (£2 ~ kn) 4n£ [Si x 02) • [(& - k') x n] 
6V {k,k) = — r ^ ( r i 7 i ) — - £ — p - - . (25) 

m 8m' (p + (k - k ') 
In r-space it is given by: 

6V"(r) = [H0,-iU(r)], (26) 
3This possibility was mentioned by H.J.Weber to one of the authors (V.A.K.) while it was indepen­

dently explored by another one (B.D.). 
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where HQ is the kinetic energy part of the Hamiltonian and U{r) is defined by: 

U(f) = g ^ ( ? ï - T Î ) ^ x a2] 
^ e x p H x r ) } x n (27) 

with f=fi — f<i. 

One can now performs on the total Hamiltonian, H = Ho + V + 6V"* + H^, the 

transformation: 

H — exp(-iU)H exp(iU) ^Ha + V+H,*- \iU, Ha] + 0(g4) . (28) 

In writing the last formula we have taken into account the relation (26) which allows 

one to eliminate 8V* from the total Hamiltonian. The counterpart of this transformation 

is the appearence of terms of order g4 in the NN interaction which can be considered 

as higher order terms, and, more importantly, terms of order g\ in the electromagnetic 

interaction. The part of interest comes from the charge density and, more specifically, 

from its isovector part which does not commute with U{f). The result is: 

<5#ei = -[iU;Hei] 
8m2 [ai x CT2] 

•^fosHuO IT, x f2]2G
v
c{Q

2) 

x(exp(i<jfi) - exp(z'<?r2)) , (29) 

where e is the photon polarization vector. In the same notations and approximations the 

contact term is given by: 

jjcont 
"el &[s'x9']-

^fexpt- fxr) 
x (e~n£0) fcxfzlzG^^XexpfoTO-exptigra)). 

(30) 

It is easily seen that the term containing the factor neo in eq.(30) is cancelled by the 

term (29) arising from the unitary transformation, leaving i,he term proportional to e. 

This last term is nothing buc the usual pion pair term current. The above example also 

illustrates in a particular case how the physical amplitude turns out to be independent 

of n. This means also that the functions £1-5 in eq.(9), after incorporating the impulse 

approximation and the contact terms, have to be of higher order than 1/m. 

On the other hand, while the disappearence of the charge density term proportional 

to eo is consistent with the non-relativistic expectation that the deuteron electrodisinte-

gration is a transverse (magnetic) process, the appearence of the charge density in 6Hei 

and H^11 in intermediate steps of the calculation should not be a surprise. In a covariant 

approach, like the one we started from, and provided the amplitude in a given approx­

imation does not depend on o>, the calculations of the only relevant form factor can be 

performed equivalently from the spatial or time component of the current. 
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5 Conclusion 

We have shown that the light-front dynamics, despite the absence of explicit contribu­

tions from the excitation of pair terms by the virtual photon, reproduces the well-known 

non-relativistic phenomenology, including the main features of MEC. In the standard ap­

proach, this contribution is dominated at moderate Q2 by 7r-exchange and is associated 

with iVAMntermediate state. In the light-front dynamics, half of this contribution is given 

by a new component in the relativistic NN-waxe function containing no other interme­

diate states except for NN. The second half is not included in the wave function, and 

comes from a contact NNirr/ interaction which arises in the light-front dynamics. 

The absence of a minimum in the experimental deuteron electrodisintegration cross-

section at small momentum tranfer, half of which is filled by the contribution from the /5 

component in the light-front dynamics, is already a strong indication of the presence of 

this extra component in the relativistic deuteron wave function. 

We have not considered in this paper the contribution to MEC coming from the 

direct coupling of the photon to the pion in flight (the so-called mesonic current). This 

contribution is of course also present in the light-front formulation. It is however identical, 

in leading 1/m. order, to the non-relativistic contribution. This is why it has not been 

discussed in this paper. Moreover, other mesons are expected to contribute at large 

momentum transfer. They can easily be included in the calculation of the relativistic 

two-body wave functions, as it is done in refs.[6, 7]. 

It is also well known that, in leading 1/m order, the pair contribution associated 

with pseudo-vector TTNN coupling is zero. The deuteron electrodisintegration amplitude 

is however equivalent to the one given in the pseudo-scalar representation since in that 

case the photon can couple by minimal substitution on the itNN vertex, generating a 

genuine NNir"/ current. In the light-front dynamics, the equivalence between the two 

representations is realized in the following way. In the pseudo-vector representation with 

7T-exchange only, the /s component in the deuteron wave function is strictly zero in leading 

order. This is due to the off-shell condition at the TTNN vertex. The contribution from 

the light-front contact term is also of higher 1/m order for this representation. On the 

other hand, the current originating from direct coupling of the photon to the pseudo-

vector TTNN vertex has its analogue in the light-front dynamics, providing the equivalence 

between relativistic and non-relativistic formulations in leading 1/m order. 

Our result is a very good illustration of the "duality" in relativistic nuclear physics 

where one and the same contribution in different approaches (i.e. in different representa-
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tions) is obtained from different physical starting points. We have found an approximate 

unitary transformation which connects the wave functions relative to these representa­

tions as well as the electromagnetic current operators. In leading 1/m order and in lowest 

order in g2 this transformation eliminates extra components of the wave functions and 

turns their contribution to the one-body current into a two-body one. 

We would like to come back finally to the approximation we made by replacing 

the factor (k2 - k'2)/(k2 + K2) in (18) by 1. This approximation is valid as soon as 

the momentum transfered by the photon is larger than typical momenta involved in the 

non-relativistic deuteron (or final state) wave functions. If this is not the case, our pro­

cedure to calculate the / 5 component is not adequate, since higher order meson exchange 

contributions to the irreducible NN interaction kernel should be considered. Such correc­

tions should be included in an exact calculation of the wave functions and electromagnetic 

observables in the light-front dynamics, but is of no importance in our formal comparison. 

For the sake of comparison with non-relativistic approaches, we took into account 

in our analytical derivation the leading 1/m order only. However, the formulation of the 

few-body system wave functions and electromagnetic observables can be done exactly 

in the light-front dynamics. This formalism provides a completely coherent relativistic 

framework in which the forthcoming data at high momentum transfer can be safely ana­

lyzed. 
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Figure captions 

Figure 1 : Contribution of the pair term to the deuteron electrodisintegration amplitude 

in the non-relativistic framework. 

Figure 2 : Impulse approximation contribution in the light-front graph technique. 

Figure 3 : 7r-exchange kernel in the calculation of the relativistic deuteron wave function. 

Figure 4 : Contribution containing the contact NNTTJ interaction (crossed line). 
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