Radiological Survey Results at 914 Black Oak Ridge Road, Wayne, New Jersey (WJ005)

R. E. Rodriguez
C. A. Johnson
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Radiological Survey Results
at 914 Black Oak Ridge Road,
Wayne, New Jersey (WJ005)

R. E. Rodriguez and C. A. Johnson

Date issued —May 1995

Investigation Team
R. D. Foley — Measurement Applications and Development Manager
R. E. Rodriguez— Survey Team Leader

Survey Team Members
R. E. Rodriguez D. E. Rice
V. P. Patania P. F. Tiner
A. C. Butler* W. H. Shinpaugh*

*Midwest Technical, Inc.

Work performed by the
Measurement Applications and Development Group
Prepared by the
OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee 37831-6285
managed by
LOCKHEED MARTIN ENERGY SYSTEMS, INC.
for the
U. S. DEPARTMENT OF ENERGY
under contract DE-AC05-84OR21400
LIST OF FIGURES

1 Diagram showing general location of the Wayne Interim Storage Site (WISS) relative to the Wayne and Pequannock, New Jersey vicinity properties... 4

2 Diagram of the property at 914 Black Oak Ridge Rd., Wayne, New Jersey showing soil sampling locations and gamma measurements. ... 5
LIST OF TABLES

1 Concentrations of radionuclides in soil and other materials at 914 Black Oak Ridge Rd., Wayne, New Jersey (WJ005)... 6
ACKNOWLEDGMENTS

Research for this project was sponsored by the Office of Environmental Restoration, U. S. Department of Energy, under contract DE-AC05-84OR21400 with Lockheed Martin Energy Systems, Inc. The authors wish to acknowledge the contributions of V. P. Patania, D. A. Roberts, D. A. Rose, and J. M. Lovegrove of the Measurement Applications and Development Group for participation in the sample preparation and analyses, editing, graphics, and reporting of data for this survey. The surveying assistance of the staff on the survey team is also gratefully acknowledged.
ABSTRACT

The U. S. Department of Energy (DOE) conducted remedial action during 1993 at several vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W. R. Grace facility. The property at 914 Black Oak Ridge Road, Wayne, New Jersey was not one of these vicinity properties; however the owner requested that his property be radiologically surveyed.

At the request of DOE, a team from Oak Ridge National Laboratory conducted a radiological scoping survey of this property. The purpose of the survey, conducted in early November 1993, was to determine whether any radiological contamination might be present on the property. The radiological survey included surface gamma scans and gamma readings at one meter, and the collection of soil and/or debris samples for radionuclide analysis.

Results of the survey demonstrated no radionuclide concentrations or radiation measurements in excess of applicable DOE guidelines.
RADIOLOGICAL SURVEY RESULTS AT 914 BLACK OAK RIDGE ROAD, WAYNE, NEW JERSEY (WJ005)*

INTRODUCTION

As part of the Formerly Utilized Sites Remedial Action Program (FUSRAP), the Department of Energy (DOE) conducted a remedial action project in 1993 at several residential vicinity properties in the Townships of Pequannock and Wayne, New Jersey. Figure 1 shows the general location of these vicinity properties.

Although the property at 914 Black Oak Ridge Rd. was not one of the properties being surveyed, the owner had requested a survey of his property because radiological contamination had been found and was being remediated on the adjoining neighbor's property.

During early November, 1993, a team from the Oak Ridge National Laboratory (ORNL) conducted investigative radiological surveys of several properties in the Wayne and Pequannock, New Jersey area, and at the request of DOE, the team conducted a radiological scoping survey of this property. The survey consisted primarily of a complete gamma scan of the grounds and the collection of soil and gravel samples for radionuclide analysis.

This report describes the results of the radiological survey of the private residential property at 914 Black Oak Ridge Rd., Wayne, New Jersey, conducted by ORNL at the request of the Department of Energy's Office of Environmental Restoration.

The property at 914 Black Oak Ridge Rd., is a single family dwelling with separate three-car garage and a gravel drive that surrounds the house (Fig. 2).

A walkover survey of the property (a technician walks slowly over the property swinging a detection probe at ~1-2 inches from the ground surface) was conducted on November 2, 1993 by ORNL's Measurement Applications and Development Group. The purpose of the survey, which extended further to the east than the property boundary, was to determine the nature and extent of any radiological contamination that might be present on the property.

A field survey drawing showing 10-m grids and indicating soil sampling locations and gamma radiation measurements is included in this report as Fig. 2.

SCOPE OF THE SURVEY

A comprehensive description of the survey methods and instrumentation used in this survey is given in Procedures Manual for the ORNL Radiological Survey Activities (RASA) Program, ORNL/TM-8600 (April 1987), and Measurement Applications and Development Group Guidelines, ORNL-6782 (January 1995).

* The survey was performed by members of the Measurement Applications and Development Group of the Health Sciences Research Division at Oak Ridge National Laboratory under DOE contract DE-AC05-84OR21400.
The radiological survey of this property included: (1) a surface gamma scan of the grounds, sidewalks, and driveway, and (2) the collection of surface and subsurface soil samples for analysis.

Gamma radiation levels were determined using a portable sodium iodide (NaI) gamma scintillation detector connected to a Victoreen ratemeter. Measurements were recorded and converted to μR/h. Because NaI gamma scintillators are energy dependent, measurements of gamma radiation levels in counts per minute (CPM) are normalized to pressurized ionization chamber (PIC) measurements to estimate gamma exposure rates in μR/h.

Surface (0-15 cm, or 0 to 6 in) and subsurface (15-45 cm, or 6 to 18 in) soil samples, were collected randomly over the property. Confirmatory samples were taken from one location on the driveway on the south side of the house where elevated gamma levels had been identified. These are referred to as biased samples and are labeled as B1A and B1B. Systematic samples (S1-S9) were taken at locations irrespective of gamma exposure rates. Locations of the samples are shown in Fig. 2, and results of the analysis are shown in Table 1.

Direct measurement results presented in this report are gross readings; background radiation levels have not been subtracted. Similarly, background radiation levels have not been subtracted from radionuclide concentrations measured in environmental samples.

SURVEY RESULTS

Gamma measurements at one meter from the surface ranged from 9 to 15 μR/h. Surface gamma measurements generally ranged from 10 to 12 μR/h in the grassy areas of the front and back yards, and up to 21 μR/h at the surface of the gravel drive. All of these measurements are comparable to background levels in the northern New Jersey area.

Surface and subsurface soil samples were collected from the front and back yards of the property, including two biased samples taken from the gravel driveway. All samples were analyzed for radium (²²⁶Ra), thorium (²³²Th), and uranium (²³⁸U).

Results of the soil analyses are in picocuries per gram (pCi/g) and are shown in Table 1. A curie (Ci) is a unit used to express activity of radionuclides. Radionuclide concentrations of ²²⁶Ra and ²³²Th ranged from 0.62 to 1.2 pCi/g in the systematic samples, which are comparable to typical average background levels for the northern New Jersey area of 0.9 pCi/g for these radionuclides (T. E. Myrick, et al., ORNL/TM-7343, 1981), and well below the DOE guideline for these radionuclides in soil, which is 5 and 15 pCi/g above background averaged over 100 m² for surface and subsurface soil, respectively.* Ranges for the biased samples, taken from the graveled area were from 0.71 to 1.7 pCi/g for ²²⁶Ra, and 0.96 to 2.4 pCi/g for ²³²Th, which are also well below DOE guidelines.

* For residential properties in this area the guideline for ²³²Th is 5 pCi/g for both surface and subsurface soil.
Concentrations of 238U in soil ranged from 0.78 to 1.3 pCi/g in biased samples (gravel), and from ~3.2 to 6.6 pCi/g in systematic samples (see Table 1). All these values are also below the site specific guidelines for uranium in soil.**

SIGNIFICANCE OF FINDINGS

Generally, gamma measurements on the property at 914 Black Oak Ridge Road, Wayne, New Jersey were comparable to the average values for the area and were well below DOE guidelines. The slightly elevated gamma measurements found on the driveway are attributable to the naturally occurring radiological elements in the gravel (predominantly 40K, which ranged from 12 to 20 pCi/g), as indicated by the radionuclide analysis of samples from the drive. Furthermore, the results of the soil analysis showed that the lawn soil contained normal levels of radionuclides for the New Jersey area. Based on the results of this survey, it is believed that no radiological contamination is present on the property.

** DOE guidelines for uranium are derived on a site-specific basis. Guidelines of 100 pCi/g have been applied to this FUSRAP site. Source: Memo, J. W. Wagoner II, Director, Division of Off-Site Programs, Office of Environmental Restoration, U. S. Department of Energy, to L. K. Price, Director, Former Sites Restoration Division, Oak Ridge Field Office, U. S. DOE, April 25, 1995.
Fig. 1. Diagram showing general location of the Wayne Interim Storage Site (WISS) relative to the Wayne and Pequannock, New Jersey vicinity properties.
Fig. 2. Diagram of the property at 914 Black Oak Ridge Rd., Wayne, New Jersey showing soil sampling locations and gamma measurements.
Table 1. Concentrations of radionuclides in soil and other materials at 914 Black Oak Ridge Rd., Wayne, New Jersey (WJ005)

<table>
<thead>
<tr>
<th>Sample number<sup>a</sup></th>
<th>Grid location</th>
<th>Depth (cm)</th>
<th>Radionuclide concentration (pCi/g)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>226Ra</td>
</tr>
<tr>
<td>S1</td>
<td>5240N,10060E</td>
<td>0-15</td>
<td>0.68 ±0.06</td>
</tr>
<tr>
<td>S2</td>
<td>5220N,10050E</td>
<td>0-15</td>
<td>0.66 ±0.08</td>
</tr>
<tr>
<td>S3</td>
<td>5210N,10070E</td>
<td>0-15</td>
<td>0.77 ±0.07</td>
</tr>
<tr>
<td>S4</td>
<td>5198N,10033E</td>
<td>0-15</td>
<td>0.62 ±0.09</td>
</tr>
<tr>
<td>S5</td>
<td>5180N,10080E</td>
<td>0-15</td>
<td>0.88 ±0.05</td>
</tr>
<tr>
<td>S6</td>
<td>5200N,10100E</td>
<td>0-15</td>
<td>0.73 ±0.09</td>
</tr>
<tr>
<td>S7</td>
<td>5220N,10100E</td>
<td>0-15</td>
<td>0.75 ±0.07</td>
</tr>
<tr>
<td>S8</td>
<td>5240N,10090E</td>
<td>0-15</td>
<td>0.81 ±0.07</td>
</tr>
<tr>
<td>S9A</td>
<td>5175N,10120E</td>
<td>0-15</td>
<td>0.78 ±0.07</td>
</tr>
<tr>
<td>S9B</td>
<td></td>
<td>15-30</td>
<td>0.74 ±0.08</td>
</tr>
<tr>
<td>B1A</td>
<td>5200N,10063E</td>
<td>0-15</td>
<td>1.7 ±0.1</td>
</tr>
<tr>
<td>B1B</td>
<td></td>
<td>15-30</td>
<td>0.71±0.1</td>
</tr>
</tbody>
</table>

^aLocations of soil samples are shown on Fig. 2.
^bIndicated counting error is at the 95% confidence level (± 2σ).
^cSystematic samples are taken at locations irrespective of gamma exposure rates.
^dBiased samples are taken from areas with elevated gamma exposure rates.
INTERNAL DISTRIBUTION

1. B. A. Berven
2. K. J. Brown
3. R. F. Carrier
4. R. D. Foley
5-7. C. A. Johnson
8. M. E. Murray
9. P. T. Owen
10-12. R. E. Rodriguez
13. R. E. Swaja
14. M. S. Uziel
15. J. K. Williams
16. Central Research Library
17-18. Laboratory Records
19. Laboratory Records-RC
20. ORNL Patent Section
21. ORNL Technical Library, Y-12
22-27. MAD Records Center

EXTERNAL DISTRIBUTION

28. W. L. Beck, Oak Ridge Associated Universities, E/SH Division, Environmental Survey and Site Assessment Program, P.O. Box 117, Oak Ridge, TN 37831-0117
31-33. R. R. Harbert, Bechtel National, Inc., FUSRAP Department, Oak Ridge Corporate Center, 151 Lafayette Drive, P.O. Box 350, Oak Ridge, TN 37831-0350
34-36. J. King, Science Applications International Corporation, P.O. Box 2501, 301 Laboratory Road, Oak Ridge, TN 37831
37. L. K. Price, Director, Former Sites Restoration Division, Oak Ridge Field Office, U.S. Department of Energy, P.O. Box 2001, Oak Ridge, TN 37831-8723
38. James W. Wagoner II, Director, Division of Off-Site Programs, Office of Eastern Area Programs, Office of Environmental Restoration, EM-421, U.S. Department of Energy, 19901 Germantown Rd., Germantown, MD 20874-1290