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1 Introduction 

In this paper the change over all space of the density of states (DOS) &pa(E) induced by 

the Aharonov-Bohm (AB) potential A ( r ) [1], 

in the radial gauge, is calculated for the Dirac and the Klein-Gordon equations. We shall 

talk about the AB potential in a more general sense here. Usually $ = a $ 0 is the total 

flux through the flux tube and $o is the flux quantum, $ 0 = hc/\e\. However, the same 

potential (1) is induced by a cosmic string provided the identification a = e/Quigg, is 

made, where e and Qmgg* are respectively the charge of a test particle and the charge 

of the Higgs particle [2, 3]. In the case of a point spectrum [4] one finds that there are 

no threshold (zero) modes in the AB potential for any a. The Aharonov-Casher and the 

index theorems [5, 6, 7] are corrected in the sense that they give rather an upper bound 

on the number of threshold or zero modes in a given finite-flux background than their 

actual number. Similaxly as in the nonrelativistic case, whenever a bound state occurs in 

the spectrum one finds that it always is accompanied by a (anti)resonance. The presence 

of a bound state manifests itself in asymmetric differential scattering cross sections (cf. 

[10, 11]). To calculate the contribution of scattering states to the integrated DOS (IDOS) 

the Krein-Friedel formula is used [8, 9]. The formula is the basic tool for calculating 

the change of the IDOS in solid state physics induced by potentials of a finite range. 

Recently we have shown in the discussion of the nonrelativistic AB scattering, that when 

regularized by the zeta function it gives the correct answer even for the long-ranged AB 

potential [10, 11]. The DOS pa[E) provides an important link between different physical 

quantities. It enables one to calculate the total energy and effective action, and to discuss 

the stability properties of matter against the spontaneous creation of a magnetic field. This 

question is of principal importance in understanding the nature of the ground state both 

in field theories and in condensed matter physics. The knowledge of Apa(23) determines 

the spectral asymmetry cra{£), 

aa(£) = Apa(£) - Apa(-£), (2) 

where £ ~ \E\ > 0. The latter determines in turn the one-loop contribution E^ to the 

effective energy [12], the induced fermion number Q, and the axial anomaly .4 of the 
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massless Euclidean Dirac operator [13, 14]. One has 

El„= rScra(£)d£, (3) 
•/0 

Q = -\j~<Ta(£)d£, A = Jo°°aa(£)d£, (4) 

and Q = —A/2. By using the above relations one can check for the consistency of the 

result for either of these quantities. Moreover, thanks to the recent advances in the 

fabrication of microstructures, and in mesoscopic physics one can realize the AB potential 

and study its influence in many physical systems (see [15] for a recent review). The flux 

tube in the above experiments can be either penetrable [16] or impenetrable. 

2 Basic properties of the Dirac Hamiltonian 

Let us collect the basic properties of two (2d) and three (3d) dimensional Dirac Hamilto-

nians that will be used in the paper (see [7] for a recent review). The Dirac Hamiltonian 

H [A) in the standard representation in a magnetic field (in units with h = c = 1) is 

*M> = ( I -L ) • W 
where 

n_{ Y,U°i(Pj + A>) n = 3> (M 
I £i=i(Pi + Ax) + i(p2 + A2) n = 2, ^ 

and pj = idj. We have taken the standard representation of 7 matrices in 2d, 

7 ° = (3 = a3, 7 1 = ia2, -y2 = -iaXi (7) 

where CTJ are the Pauli matrices. Let us lift the coordinate z in the 3d Dirac Hamiltonian. 

Then 
. / 0 dx - id2 \ ... 

a-p = axp1 + a2p2=:i^di+id2 Q j . (8) 

This term is nothing but the massless 2d Euclidean Dirac operator. After some algebra 

one finds that the components ( x \ x 4 ) a n < l (x3>X2) of the four-spinor x = (xi>X2>X3iX4) 

combine to give the components of two spinors that satisfy 2d Dirac equations with 

opposite signs of the mass term. In two space dimensions, mass breaks the parity: one has 

two irreducible representation of the 7 matrices since, in contrast to 3d, {70,71)72} and 
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{— 7o» ~7i)~72} are not unitary equivalent. The above decomposition just tells us why 

the 3d Dirac Hamiltonian with non-zero mass does not break parity despite the fact that 

the 2d Dirac Hamiltonian with non-zero mass does. Let us fix a 2d Dirac Hamiltonian 

H(A) in the AB potential by fixing the sign of mass m and the flux a > 0 to be positive, 

and e = — |e|. After separation of variables in polar coordinates it reduces to the direct 

sum, H(A) = Qikyni, of channel operators hm,i in L2[(0, 00), rdr], 

\ m ~i(dT + ^) 
(9) 

u -i(dr-j!) -m 

where v = I + a [3]. One finds immediately that 

^m,llm->-m = -hm,l, (10) 

where V means the complex conjugation. Therefore, for E = —E < —m, the scattering 

states are given by 

¥ _ w ( * , r , V ) = %;l{t,r,<p)\m->-m. (11) 

In what follows the parameter S will stand for \E\. 

3 Impenetrable flux tube 

Let us first consider the conventional set-up where wave functions are zero at the posi­

tion of the flux tube and discuss the point spectrum [4]. The spectrum of the 2d Dirac 

Hamiltonian is in general asymmttric: D ^ D ' in contrast to three dimensions [7]. The 

Aharonov-Casher theorem [5] tells us that in a general finite-flux magnetic field B(r), 

L B(r) d?r=§ = const, (12) 

the 2d Dirac Hamiltonian has exactly either a — 1 = n — 1 or [a] = n threshold states at 

one and only one of the thresholds E = ± m (in the present case at E = m) depending 

whether the flux a is an integer or not. In the case of the 2d massless Euclidean Dirac 

operator, the threshold states are actually zero modes. The reason is that the component 

of the threshold mode that would be multiplied by mass m is zero and so the threshold 

mode is the eigenmode of cr • p, too [5, 7]. The proof of the theorem is an application 

of the Atiyah-Singer index theorem [6] and nobody seems to have checked its validity for 
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Figure 1: In the case of a 2d Dirac Hamiltonian in a generic finite-flux magnetic field the 
threshold states occur at one and only one threshold. In the case of the 2d Euclidean mass-
less Dirac operator they are actually zero modes. There are, however, neither threshold 
nor zero modes in the AB potential. 

singular field configurations. In the latter case one has to check for square integrability 

not only at infinity but at the position of singularities of the field, too. It is here where 

the theorems fail. If one takes their proof as presented, for example in Ref. [7], p. 198, 

and substitutes for -B(r), 

B(r) = 27ra$(r), (13) 

one finds immediately that <j>(r), defined there as 

0(r) = ^ - / In |r - r'J B(r ' ) d V = a In jr| , (14) 

can be calculated exactly. One finds 

<£(r) = a l n | r | . 

The threshold (zero) modes presented there, 

e -*( r \ e-*M(x1 - ix2), . . . , e-^r\xx - ix2)
n-\ 

(15) 

(16) 

are then obviously singular at the origin and are not elements of L2[(0,oo),rdr]. One can 

show this directly by using hm>i as well. For a threshold state at E = m to exist, the 
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upper component xi of the Dirac spinor has to obey 

(dr - jf) x i ( r ) = 0. (17) 

At the threshold E = — m one then obtains 

( f t + ^ ) xa(r) = 0. (18) 

These two equations can be easily integrated. The solutions are 

X i ( r ) = r " and *a(r) =i-<1 +">, (19) 

and they are obviously not in L2[(0, oo), rdr] for any I. If they are square integrable at 

the infinity they are not so at the origin and vice versa. 

In the case of a continuous spectrum the respective radial equation for the up (down) 

component of the spinor reduces to the Bessel equation with a ^-function potential, 

Hfxir) = k\(r) (20) 

where 

* ~ £ - £ + 0±*.?'M- pi, 
Here gm = 2 and (i>+ = I + ajf- = I + 1 + a ) for the (up/down) component [17]. The 

dispersion relation is k = -v/iJ2 — m2 . The spectrum of the Dirac Hamiltonian for E > m 

is given in terms of the Bessel functions, 

* <M = X(r)e a*»e-^*, (22) 

where 

* ^ - N { iy/T^ii (ei)l+lJei{v+1){kr)e^ ) ' ^ 

N is a normalization factor, and ei = ± 1 . Let us write a = n + r} where n is the integer 

part [a] of a and rj is the fractional part. Then square integrability at the origin fixes 

the sign of £t except for the channel I = —n — 1 [3]. The two-component solutions of the 

massive Dirac equation have only one degree of freedom that is reflected in the equality 

of up and down phase shifts [18]. For the conventional AB problem 

SÏ = S? = 8l = \*(\l\-\l + «\). (24) 



The AB potential is long-ranged and the phase shifts 6~j are singular, they do not depend 

on the energy and do not decay to zero for E —> oo. In the channel I = —n — 1 two 

different solutions with opposite phase shifts are possible, 

X W N \ iy/T^Ukry* J ' {^} 

and 
^(r)-l( y/S + mJt-iM \ , 
X l J ~ N V - i V T = ^ J_„(fcr)e«» J * W 

Note that in the limit n —» 0 the state x~( r ) i s singular and there is no such state in the 

spectrum at 77 = 0. By looking at the behaviour as r —> 00 of these two solutions, one 

finds, for example that for n = 0, their phase shifts are 

S- = _ 1 ^ 5+ = i ^ . (27) 

If one takes the solution x+ f ° r I — ~n — 1 then the phase shifts for all I will be given by 

(24). 

4 Self-adjoint extensions and the point spectrum 

From the set (9) of radial Hamiltonians only that with v < 1 admits a non-trivial one-

parametric family of self-adjoint extensions [3]. In this single channel that corresponds to 

I = —n — 1 (Z = — n for positive charge) the AB potential is in the so-called limit circle 

case at zero (see Ref. [19], p.152) where the boundary conditions have to be specified. Let 

us consider the influence of the bound state of energy Eh in this channel [3, 20], 

^6 :_n_1(t ,r,^) = - ^ . ^ _ _ ^ ( K r ) e . v J e »e " . (28) 

Here Kv{z) is the modified Bessel function [21] and K = Jm2 — Eg. The wave function is 

in £2[(0,00), rdr] as it decays exponentially outside the flux tube and is square integrable 

at the origin. However, in the limit JSj, -» dbm the square integrability is lost, in accord 

with our statement about the nonexistence of threshold states in the AB potential. In 

the presence of a bound state of energy Eb the scattering states have to be modified. The 

reason is that the Dirac Hamiltonian hmj has to be a symmetric operator when defined 

on a dense subset of L2[(0,00),rdr], such as the set of absolutely continuous functions 
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regular at the origin [3]. The condition implies that any two states Xi( r) and X2(r) in. the 

Hubert space Z2[(0,oo),rdr] have to satisfy 

r ^*ai£ = r [x^x1 + XÎX2] -> 0 (r -> 0), (29) 

where o-i is the Pauli matrix. Eq. (29) is nothing but the boundary condition at zero. To 

satisfy (29) scattering states with energy E > m in the channel where the bound state is 

present have to take a general form 

**-„ - ! ( i , r l ¥ >) = [x + ( r ) sin/* + x - ( r ) cosfx] e-^+^e-*</-\ ( 3 0 ) 

where x + ( r ) and x~ ( r ) are given respectively by (25) and (26) [22]. In contrast to [3] 

we shall not use the factor (—l)n+1 for x~( r ) - Similarly, as in the non-relativistic case 

[10, 11], in the presence of a bound state of energy Ef, the condition (29) determines the 

parameter /i of the self-adjoint extension to be a function of energy E, 

t a n ^ " » - * , ( * - " , ) V (31) 

^ ( m 2 - £ 2 ) " S-m K } 

The formula is valid only for E > m. Thanks to (10) the scattering states at energies 

E < —m are given by (11) where the substitution m —» —m is made in /x as well. From 

now on we shall write if necessary n± for respectively positive and negative energies. A 

close inspection of (31) reveals that under m —> — m both the sign and the value of tan fj,+ 

change, 
T7i-f-£6 ( £ 2 - m 2 ) " 

t a n " + -> * • * " - = - ( m ' - l i g ) * g + r n " ( 3 2 ) 

The change amounts to the following two changes in (31), 

Eb -> - E t , £ -> - 5 . (33) 

One cannot simply replace £ by — £ in (31) to obtain the value of /x_ for the negative 

energy states. 

The spectrum [see (30) and (31)] is different for different bound state energies 22j. 

Therefore, in physical terms, it is the bound state energy Eb that parametrizes different 

self-adjoint extensions. Now, by comparing the asymptotic behaviour of (30) for r -> oo 

with the behaviour when a = 0 one finds the channel 5-matrix S - n - i = e2,<J-n_1 with the 

phase shift given by 

5-n_1{E) = ^a+A-n.1{E). (34) 



The change A_ n _i = A_n_i(i?) of the conventional phase shifts is 

. , sin(7j7r) .__. 
A_ n _! = - arctan ^ - ~ (35) 

5 The density of states and the Krein-Friedel for­
mula 

As has been established earlier, the point spectrum consists a t best of one point that lies 

in the interval —771 < E < m. The contribution of scattering states to the change ANa(E) 

of the integrated DOS induced by the presence of a scatterer is given by the Krein-Friedel 

formula [8] directly as the sum over all phase shifts, 

ANa(E) = Na(E) - N0(E) = (2ni)~1 IndetS = - X > ( £ ) , (36) 
% 1 

S being the total on-shell S-matrix. The integrated density of states Na(E) here is defined 

as 

Na(E) = lE pa(E') dE', (37) 
J—00 

where 

pa(E) = - i l x n T r G a ( x 1 x l f l + »6), (38) 
IT 

and G a ( x , x , E + ie) is the resolvent of H in the AB potential with the flux corresponding 

to a. The fact that phase shifts can be rather easily calculated without any care of the 

proper normalization of wave functions greatly facilitates the calculation. Moreover, b] 

means of the Krein-Friedel formula it is rather easy to calculate the change of the IDOS 

for all possible self-adjoint extensions of (21). In the conventional AB set-up the phase 

shifts are given by (24) and by using the ^-function regularization one finds, 

lndetS= E 2iSi 
i=-oo 
00 

= MT E d ' l - I ' + O l ) ^ 
l=-oo 

2 E ' - -£ ( '+*) - -£ ( ' -* ) " 
. 1=1 1=0 1=1 « = - 1 

= i-K [2(R(s) - CH(S,TJ) - Cff(a, 1 - t7)l|, x = - ^ ( 1 - r,), (39) 

where fa and £ff are the Riemann and the Hurwitz ^-functions. In the presence of the 

bound state the phase shift is changed only in the channel I = —n — 1 and one obtains 
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for the change of the ID OS 

A i U £ ) = ~\v(l -V)'~ arctan _ _ J ^ } ( 4 0 ) 
2 7T cos(777r) — t a n ^ 

For E > m one finds that tan/x+ is positive [see (31)] and hence there is a typical 

(anti)resonance in the relativistic case for 0 < TJ < 1/2 at the energy £.eJ which has the 

form 
£rea - m _ 1 m- Ej, 

( £ r
2 „ - m 2 ) " cosj]7r(m2-£b

2) ' ? ' l J 

The phase shift <5_Tl_1(fî) (34) changes by —7r in the direction of increasing energy and 

the integrated DOS (40) has a sharp decrease by one. For m — Eb « 1 one finds 

£r« ~ rn + (cos 777r)1-"(m - Eb), (42) 

and Ercil \. m in the limit Eb t rn- In ^ n e limit fit|m the antiresonance merges with 

the bound state. For 1/2 < T/ < 1 the cosine in (40) changes its sign and the resonance 

disappears at positive energies. However, at negative energies tan /x_ is given by (32) and 

has a diffferent sign, too. Therefore, the resonance will occur now at negative energies [23]. 

However, in distinction to the previous case the (anti)resonance obviously will not merge 

with the bound state provided Eb^ rn. i) = 1/2 is a special point since the antiresonance 

is at infinity. Irrespective of the value of rj, one finds for any fixed E > m that tan/ i + —» 0 

in the limit Eb T rn- Therefore, in this limit, /i+ = 0 for positive energies [see (31)]. For a 

fixed negative energy then [see (32)] 

tan/i_ -» - c o , (43) 

and hence p_ = —7r/2. Therefore, at the upper threshold the scattering states (30) are 

given only in terms of x~ 'VP'liile at the lower threshold only in terms of x + - Thus, one has 

the phase-shift flip at positive energies and the conventional phase shift (24) at negative 

energies. In other words, the phase-shift flip occurs only either at positive energies or 

only a t negative energies depending on whether the bound state (28) merges with the 

(anti)resonance into the continuous spectrum at the upper or at the lower threshold. 

Hence, in the present case, the contribution of scattering states with energy B > m t o the 

change of the DOS is 

&Pa(E) = Pa(E) - Po(E) = —7,(1 + r,) 6(E - m) . (44) 
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while the contribution of scattering states with E < — m to the change of the DOS is 

APa(E) = - | T 7 ( 1 -V)5(E + m). (45) 

Note that the change of the DOS is concentrated at the thresholds where it is proportional 

to delta functions. 

Since the phase shifts are known one can calculate differential scattering crocs sections. 

Similarly, such as in the nonrelativistic case [10, 11] one finds for (p ^ 0 that 

(£W=(£H + 
8 T . 2 A 4 sin(7ra) . A , . , , „ x ,lC. 
-- sin2 A_„_! + z . ; ; sin A_n_x cos (A_ n_i + TKCC - y>/2) , (46) 
k k sm{(p/2) 

where 

UO M = 2^sin%7^) " (47) 

is the conventional differential scattering cross section. Note that in contrast to the 

conventional case, in the presence of a bound state the differential scattering cross section 

becomes asymmetric with regard to if -» — (p and give rise to the Hall effect [llj- The 

asymmetry is easy to understand as one has only one bound state (28) which, for ot > 0, 

occurs for I < 0. 

6 Regularization, renormalization, R —> 0 limit, and 
the interpretat ion of selfadjoint extensions 

To identify the physics that corresponds to different self-adjoint extensions one starts -with 

a flux tube of finite radius R and a magnetic field B satisfying (12), and considers the 

limit R —f 0 [3, 24]. The limit is curious in the following sense. Since the flux tube is 

not singular any more the Aharonov-Casher [5, 7] (or index [6]) theorem applies and one 

has, in general, [a] — 1 or [a] threshold (zero) modes (at the lower thershold) depending 

on whether the flux is an integer or not. Then, in the limit R —>• 0 these modes merge 

with the continuous spectrum. To obtain the bound state in the spectrum for R ^ 0 , the 

resulting interaction inside the flux tube for both up and down components of the Dirac 

spinor has to be an attractive potential K(r) of strength at least equal to 

vwi*«=-££««>• ( 4 8 > 
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where V{r) = 0 for r > R. Here, c{R) = 2[1 +e(R)] and e(i2) > 0 [24, 25]. Note that in 

the limit R -* 0 

V(r)\r<R -+ - [1 + £(0)] - - % ) . (49) 
•m r 

If one starts with a homogeneous field regtilarization [B(x,y) = const inside the flux 

tube] the magnetic moment coupling induces an attractive potential VJ„(r) for the dorm 

component, 
Kn(r)UH = -gm-^, (50) 

and a rejiwkiue potential — Vr,(r) for the up component inside the flux tube. Here gm is 

the (possibly anomalous) magnetic moment. Therefore, in order to obtain a bound state 

in the spectrum the potential W c( r) j 

Wc(r) = K(r) + VÇ»(r), (51) 

has to be put in by hand. Here Vm(r) cancels the repulsive potential — Vm(R) for the up 

component. An arbitrary weak attractive potential cannot lead to bound states (cf. [17]). 

For a bound state to survive as R —> 0 the coupling constant has to be renormalized, 

e(R) -> 0 as R -> 0 [26]. The potential Wc(r) is then the critical potential. For either 

weaker or for stronger potentials and without the renormalization, bound states do not 

survive the limit R -¥ 0 [11]. If e(R) in (48) is small but kept constant as R -> 0 then, 

in the nonrelativistic case, E\> -4 - c o [10, 11, 27]. Nevertheless, in the limit R —» 0 

bound states decouple. This is seen in the phase shifts, since Aj(£) -> 0 when Et, -> —oo 

[10, 11]. In the relativistic case then the bound states moves through the gap (—m,m) 

from one continuum into another and no trace of them remains as R —• 0, except when 

WC(R) is present. The same situation persists with the cylindrical shell regularization but 

the number of bound states for a given a can be different [10, 11]. 

7 Spectral asymmetry, effective energy, induced fermion 
number, and the axial anomaly 

In the absence of the bound state, the spectral asymmetry is determined by the continuous 

part of the spectrum. One finds from (44) and (45) that the contribution is actually 

determined by the phase-shift flip, 

o-a(£) = -r,8(S-m). (52) 
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Therefore, according to (3), 

E1
e}f = -mV, (53) 

and consequently, according to (4), 

Q = \v> A = - 1 . (54) 

When the bound state (28) is present then 

aa(S) = sign(£6) 6(£ - \Eb\) + l ± {[ùt^tf) - ÙC^X{£)\ Q{€ - m)} , (55) 

where 0 is the Heaviside step function, and A ^ n - 1 ( £ ) is the change of the conventional 

phase shift (35) respectively for positive and negative energy states in the I = —n — 1 

channel. The superscripts ' ± ' means that the value of tan/z± is taken in (35). The values 

of Eljp Q, and A are then obtained by substituting (55) in (3) and (4). It should be 

stressed out that cra(£) can have both signs depending on the sign of the mass in a 2d 

Dirac Hamiltonian (6), (9). In the case of the 3d Dirac Hamiltonian then 

aa(S) = El
ei} = Q = 0. (56) 

8 Energy calculations 

As has been shown, in the case of the Dirac Hamiltonian (in contrast to the Schrôdinger 

Hamiltonian) the bound state is not present when the flux tube is regularized with a given 

distribution of magnetic field that satisfies (12). In this case the one-loop contribution 

Elfj to the effective energy is given by (53). From the 3d point of view the contributions 

then cancel. On the other hand the classical energy of the magnetic field (58) tends to 

infinity as R —> 0 (when the total flux $ is kept fixed). By summing the two contributions 

one finds that the total energy changes by an infinite positive amount. Therefore, up to 

one-loop the mat ter is stable against a spontaneous field formation. The latter statement 

is in accord with the so-called diamagnetic inequality [28]. 

In the nonrelativistic case in 2 + 1 dimensions we have shown, in an idealistic sit­

uation when magnetic moment gm "> 2 is kept constant and dynamics is ignored that 

a quantum-mechanical instability against a magnetic field formation arises. The reason 

is the formation of bound states that decouple from the Hilbert space by taking away 
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negative energy [10, 11]. One finds that whenever the ratio of the energy at rest to the 

electromagnetic energy satisfies an inequality 

^ < X ( a , 5 m ) , (57) 

the total energy of the field and matter together goes to - c o as R —> 0, where R is the 

radius of the flux tube. The flux tube has been regularized by a homogeneous magnetic 

field B(r) . Note that the homogeneous magnetic field optimizes the energy functional 

E = f B2{r)epT (58) 

subject to the constraint (12). The function X(a,gm) is determined by the solutions xj 

of the matching equation, 

X(*,gm) = ^ £*?(*,</„,) > 0. (59) 

The relativistic treatment shows that the instability is in fact a nonrelativistic artefact. 

9 Gravitational vortex 

It is illustrative to check our calculations in the AB potential for the case of a gravitational 

vortex [29]. A localized massive particle of mass M in a 2+1 dimensional space-time 

induces a conical geometry with a deficit angle Sip = 2w(l — 7) = 8irGM, where G is 

Newton's constant. Solutions of the Dirac equation in this case are given essentially by 

(22-23) provided etu = ei(l + a) is replaced by u = |Z|/-y [29]. Since 

0 < 7 < 1, (60) 

it is impossible to find a nontrivial self-adjoint extension because one of the components 

of the Dirac spinor is always given by a Bessel function of order v > 1. Hence, the phase 

shift for all I has the conventional form, 

5? = 5f = 6, = i* | J | ( l - 7"1) (61) 

(see (24) or [29]) and no phase-shift flip occurs. By using the Krein-Friedel formula, the 

change of the DOS is given by 

Ap7(i5) = - - L ( l _ 7-1) [5(E - m) + 6(E + m ) ] , (62) 

and the spectral asymmetry &i{E) = 0. Hence, there is no induced charge in this case in 

accord with [30]. 
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10 The Klein-Gordon equation 

Let us consider the Klein-Gordon Hamiltonian with the minimal and an additional non-

minimal Pauli coupling, 

J " [eAM - (l/2)5A-2£MV/<rF^] , (63) 

with A an arbitrary scale parameter. Tt is peculiar to 2 + 1 dimensions t. at the Pauli 

coupling exits without any reference to the spin [31]. The first term couples the current 

to the gauge potential while the second, nonrninimal terms, couples the current directly 

to the magnetic field and as such it is an analogue of the magnetic moment coupling in 

the Pauli Ham i l tonian [31]. By using separation of variables in polar coordinates one then 

arrives exactly at Hf [see (21)]. The latter is nothing but the radial part of the Pauli 

Hamiltonian [10,11,17] with only one change: the dispersion bas the reJativistic form, k = 

y/E2 — rn2- In. contrast to the Dirac equation the wave function of a scattering s'ente has 

a s ingle component which is given in terms of Bessel functions of order |/ + a\. Therefore, 

the equivalent results for the Klein-Gordon equation are obtained by substituting the 

relativistic dispersion into nonrelativistic results given in [10, 11]. Bound states can occur 

in two channels, / = —n and I = —n — 1. The parameter m in these channel is then 

determined by [10, 11,22] 

co t^_ n = -A-n = -(fc/K-n)2", 

COt/i_„-l = -i4_n_x = -(fc/fC-n-O2*1-»), (64) 

where «j = ym2 — Ef is as above, with 23j, 0 < E\ < m, being the binding energy either 

in the I = —n or in the I = —n— 1 channel. The corresponding change of the conventional 

phase shift (24) (the latter is the same as in the case of the Schrodinger and the Dirac 

equations) i s then 

( sinflf + alir) \ 
A , = arctan " ' }._, . 65 

\cos(|Z + a|7r) - Al
 XJ 

For 0 < r) < 1/2 the resonance appears in the I = —nth channel, 

m2 — E2 

& m* = H ^ - > 0 . (66) 
[cOsfrTT)]17" V ' 
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The phase shift S-n{E) changes by tr [see (65)] in the direction of increasing energy and 

the change ot the integrated density of states, 

1 , , . 1 , / sinfmr) \ 1 / sin(777r) \ 
&Na(E) = -XT? 1 - 77 -f - arctan ^ ;

 t - - arctan " ' , 
2 ' 7T V C 0 S ( » F ) - ^ - n / *" \COS{7]7r) + A_„_i J 

(67) 

has a sharp increase by one. For 1/2 < 77 < 1 the resonance is then shifted to the 

I = — (n+ ijfcb. channel. 

11 Discussion of the results 

Closed analytical results have been obtained for the density of states pa{E) and the 

spectral asymmetry cra(£) of the 2d Dirac Hamiltonian induced by the Aharonov-Bohm 

potential, and consequently for the one-loop contribution E\jf to the effective energy, the 

induced charge Q, and the axial ano.naly A of the Dirac operator. These quantities havo 

been calculated for different self-adjoint extensions when generically, a bound state is 

present in the spectrum. Physically this corresponds to the situation when an attractive 

^-function potential lVc(r)|ii^o (51) is put on top of the AB potential. In the case of the 

"magnetic" AB potential, a repulsive interaction is induced for the spin up component of 

the Dirac spinor and hence, the attractive potential may be easier to realize in the AB 

potential of non-magnetic origin, such as in the field of a cosmic string. A nontrivial self-

adjoint extension manifests itself hy an asymmetric differential scattering cross section 

which has been calculated here. Our result (54) for Q gives another example where a 

transcendental charge is induced (cf. [32]). Our result for the axial anomaly A [see (4) 

and (55)] gives an answer to [33] where an attempt to find its analytical form was made. 

In a particular case when the bound state is absent, our result for &pa(E) are consistent 

with an earlier calculations of the spectral asymmetry o-a(£), Q, and A [14]. 

The Aharonov-Casher and index theorems have been corrected for singular field con­

figurations. One has to check for square integrability of solutions at the position of a 

singularity» too. There are neither threshold nor zero modes in the AB potential and the 

index of rnassless 2d Euclidean operator is zero. The index is discontinuous in the limit 

R -)• 0 since for any R ^ 0 the Aharonov-Casher and index theorems hold. The relevance 

of the phase-shift flip for the axial anomaly in a general finite-flux field has been discussed 
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in [34]. Their treatment, however, differs from ours since they considered a complemen­

tary situation of a regular field configuration and the limit k —> 0. We do not find any 

instability of minimally-coupled relativistic mat ter in 2 + 1 dimensions (cf. [35] when the 

Abelian Chern-Simons term is present). Due to the symmetry of the spectrum of the 3d 

Dirac Hamiltonian any question about the instability is pointless (cf. the suggestion of 

[36] for a 'flux spaghetti' vacuum in the spirit of [37] as a mechanism for avoiding the 

divergence of perturbative QED). 

The formal technical similarity between scattering in the AB potential and scattering 

in the field of a cosmic string [2, 3] enables us to make the conclusion that as in the former 

case a persistent current [38] will also occur in the field of a cosmic string. A persistent 

current is essentially due to the momentum that electrons acquire in the AB potential. 

According to the formulae in [11, 39, 40] the scattering-state contribution to ihe persistent 

current is directly related to the change ANa(E) of the integrated DOS (IDOS), 

dI{E, a) = da[ANa{E)]dE, (68) 

where dI(E, a) is the differential contribution to the persistent current at energy E. 

Because (68) involves only the IDOS, in an ideal situation measurements of a persistent 

current can test the above theoretical results. The persistent current is defined with 

respect to a point. It is given by the total current through a line that extends from that 

point to infinity, in the absence of currents through the external leads [39]. A similar 

scenario can also occur in the field of a gravitational vortex. A self-adjoint extension is 

actually the R —> 0 limit, where R is the radius of a flux tube. Experimentally, infinitely 

thin means nothing but that the radius of the flux tube is negligibly small when compared 

to any other length, such as a wavelength of particles, in the system. Therefore, this is the 

regime in which our results can be applied. The parameter A_„ of a particular self-adjoint 

extension is then determined by a bound state energy in the I = —n channel. 

Note that one has the unitary equivalence between a spin 1/2 charged particle in a 2d 

magnetic field and a spin 1/2 neutral particle with an anomalous magnetic moment in a 

2d electric field [41] and our results apply to the this case as well. 

I should like to thank A. Comtet, Y. Georgelin, M. Knecht, S. Ouvry, and J. Stern 

for many useful and stimulating discussions, and R. C. Jones for careful reading of the 

manuscript. 
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