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ABSTRACT

The dynamics of relativistically strong electromagnetic (EM) wave propagation in hot
electron-positron plasma is investigated. The possibility of finding localized stationary
structures of EM waves is explored. It is shown that under certain conditions the EM
wave forms a stable localized soliton-like structures where plasma is completely expelled
from the region of EM field location.
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During the last few years a considerable amount of work has been de-

voted to the analysis of nonlinear electromagnetic (EM) wave propagation

in electron-positron (e-p) plasmas [I]. Electron- positron pairs are thought

to be a major constituent of the plasma emanating both from the pulsars

and from inner region of the accretion disks surrounding the central black

holes in the active galactic nuclei (AGN) [2]. The process of e-p pair creation

occurs in relativistic plasma at high temperatures, when the temperature of

the plasma exceeds the rest mass of electrons. It is also obvious that different

types of such plasmas will be the essential constituents of the early universe

[3]. Intense relativistic e-p plasmas could also exist in the vicinity of cosmic

defects like superconducting cosmic strings [4]. Collective processes in e-p

plasmas are of considerable interest. The processes of wave self-modulation

of EM waves and solitoli formation have attracted a great deal of attention.

Stable localized solution may be a potential mechanism for the; production

of micro-pulses in AGN and pulsars [5]. In the early universe stable localized

EM waves could create inhomogeneities necessary to understand the observed

structure of the visible universe.

In the recent paper of Berezhiani and Mahajan [6] the nonlinear propa-

gation of relativistically strong EM radiation in a hot e;-p plasma has been

considered. It has been shown that e-p plasma supports the propagation of

nondiffracting and nondispersive EM pulses (light bullets) with large den-

sity bunching. However, the authors concentrated in the case of transparent

plasma and consequently the group velocity of the pulses is close to the ve-



locity of light c. In the present paper we consider the propagation of strong

EM radiation in a hot e-p unmagnetized plasma aiming to find the localized

stationary soliton-type solutions.

To describe the EM wave propagation in e-p plasma we use Maxwell

equations, in which the fields are expressed in terms of the potentials, i.e,

1 <9A
E = - - - ^ - - V < ^ , B = V x A (1)

where the coulomb gauge V - A = O is fulfilled. Accordingly the field equa-

tions take the form:

: O • (2)

and

Aip = -'lir/> (3)

Here, p and J are the charge and current densities given by

a o

where Q indicates the particle species o (= e,;> for electrons and positrons,

respectively); eo and no are the charge and density of the corresponding par-

ticle a . We consider the case in which the equilibrium state is characterized

by 7JQJ = ?iop = "o, where rioo is the equilibrium density of the particle a.

Before writing the hydrodynamic equations of relativistic plasma it is

necessary to define what relativistic means. In fact, we have two types of



relativistic regimes in plasma: in a strong EM field the plasma particles may

obtain relativistic velocities. In space, the EM radiation of objects (nuclei

of galaxies, radio-galaxies, quasars, pulsars, etc.) may serve as a source of

such strong fields. The case when the thermal energy of the plasma particles

is of the order of, or larger than, the energy at rest, it is the other type of

relativistic regime. In this case the thermal velocities of the particles become

of the order of the light speed. Certainly, in both cases llx; decisive role

belongs to relativistic effects in plasma, but the character of its manifestation

is different. Both relativistic effects can piay an important role in the e-p

plasma. Let us assume that the velocity distribution of the particles of species

o is locally a relativistic Maxwclliaii. Then, according to Ref.[6, 7], the set

of relativistic hydrodynamic equations of motion can be written as:

-rAm0aGn~,oc
2) —P0 = e o u o E (5)

at Dn Ot

^Ap0G0) + - VP0 = C0E + ^ ( U 0 X B ) (6)
at no c

The continuity equation for the particle a is

^ - + V(nauo) = 0 (7)

Here p o = 70nio0u0 is the hydrodynamic momentum, P0 = naTa/fo is

the relativistic particle pressure, uo is the hydrodynamic velocity of the fluid,

7O = (1 — u^/c2)"1/2 is the relativistic factor, mOa and T0 are the particles in-

variant rest mass, and temperature respectively, da/dt = djdt + \xaS/ is the



comoving derivative. The role of the particle-mass is now played by the quan-

tity Me{! = J)ioaGa(2a) , where Ga(za) = A'3(*Q)/A'i(zo) • Here A'3(zo)

and Aj(S0) are respectively the Mac-Donald functions of the second and

third order (zo = "ioac
2/T0) . The effective mass of the particles Mcfj de-

pends on the temperature. For nonrelativistic temperatures (7^ <S m0ac
2)

Mcjj = n'oo(l + 5T0/2monf
2) , while for tiltrarelativistirjiigh temperatures

(T0 ~3> ni0oc
2) the effective mass becomes A/ey/ = ATnJc1 , and the fluid

inertia is primary provided by random thermal motion of the particles. In

this case, the rest-mass is negligibly small and the e-p gas behaves like pho-

tons. Using simple manipulation, from the Eqs. (5) and (6), we obtain the

adiabatic equation which reads

°*a exp(-zaGo(2a)) = const. (S)

In the nonrelativistic limit (::„>• 1) , Eq. (8) yields the result for a

mono atomic ideal gas (Tift/("y,->To ) = const.) , and in the ultrarelativistic

limit (:„ < 1) we have the adiabatic law for the "photon" gas (na/(~faTa) =

const.).

We are looking for a localized one-dimensional solution of this system of

equations for a circularly polarized EM wave, where the vector potential A

can be expressed as:

A x = i (x + iy)A{z, t)exp{-iuot) + c.c (9)

where A{z, t) is a slowly varying function of t, u?o is mean frequency , x and

y are the unit vectors. The transverse component of equation of motion (6)
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is immediately integrated to give (for details see Ref. [6]):

PalGo = - ^ A 1 (10)

where the constant of integration is set equal to zero, since the particle hy-

drodynamic momentum is assumed to be zero at infinity WIKTC the fields

vanish.

Before writing the equations for the longitudinal motion we would like

to mention that this motion of the plasma is driven by the ponderomotive

pressure (~ p£x) of high-frequency EM fields and it docs not depend on

the particle charge sign. In what follows we assume that in equilibrium the

temperatures of electrons and positrons are equal, i.e. 7oc = 7óp = 7ò. Since

the effective mass of the electrons and positrons are equal (Gr = Gp = G),

the radiation pressure gives equal longitudinal momenta to both the electrons

and positrons [ptz = ppz = />2) and affects concentration without producing

the charge separation. Consequently ?if = np = n and (j> — 0. It is also

evident that due to symmetry between electron and positron fluids their

temperatures remain equal (Tc = Tv = 7').

It is now convenient to introduce the following dimensionlcss quantities:

(11)
"?0e JIo 11i0cc TtlQcC C

where LJC = (47re27io/nioe)'̂ 2 is the electron Langmuir frequency.

The longitudinal motion of the plasma is determined entirely by the set

consisting of the z component of the equation of motion (6),



d a , , . „ j . _ _
n dz ~f 2~/G dz

and the "energy" conservation equation (5),

where U1 = Ps/l- The relativistic factor 7 does not depend on the "fast"

time (w^1) and can be written as:

? + j£ + AA + 2fA=0 (15)

. Substituting (9) and (10) into Eq.(2), then for a slowly varying amplitude

of EM wave A(z,t) we obtain the following equation:

where

and A = u>g — 2. For convenience we redefined the electron rest mass in

Eq.(I]) as 7»or —• ino,00(Ta). In dimensional units A ~ U.-Q — 2w ,̂ where

uv = (4*e'f.o/HioeCo(rD))1'1.

We are looking for the stationary localized solutions (vanishing at infinity)

described by Eqs. (S), (12)-(16). Assuming that |i4| depends only on the

special coordinate z, and integrating Eqs. (12) and (13), we get the following

integral of motion



= G0(T0) (17)

where 7 = (1 + \A\2/G2y'7 (pz = 0). From Eq. (17) we get:

It follows from Eq.(18) that the present hydrodyiiamical theory, which

describes the nonlinear waves in e-p plasma, is valid for \A\?,ÌIIT/GQ < 1.

When the latter is violated, then the electromagnetic waves an; overturned

and they will cause multi-stream motion of the plasma. In such a situation,

one must resort to kinetic description for studying the nonlinear wave motion.

This investigation is, however, beyond the scope of the present paper.

Using Eqs. (17)-(18) we get / = 1 — ». Now we should obtain a rela-

tionship between »1 and \A\2. For this, one can use the adiabatic equation

(8). Unfortunately it is impossible to solve this problem analytically for the

arbitrary temperature case. In the nonrelativistic case (T,Tg < 1) Eq. (8)

gives n = 7(T/7'o)3^2 and using Eqs. ( 17)-( 18) along with the? asymptotic

expression for G (= 1 + §T) for the plasma density we obtain:

In the ultrarelativistic case (T1T0 » 1) from Eq. (8) we have 7? = -y(7'/T0)
3

and using the asymptotic expression for G (= 4T) we get:

( 2 0 )



The expressions (19) and (20) show that the total density of plasma can be-

come zero at \A\2 = |/l|j?r (where \A\^r = 5T0 for the nonrelativistic case and

IA]I1. = 167^ for the ultra-relativistic case). This phenomenon can be called

"electron-positron cavitation" and for the ultrarelativistic case has been dis-

covered in Ref. [8]. It should be noted that the upper hound limitation of the

amplitude of the vector potential is caused by the fact that we consider here

the stationary case, and consequently the inertial terms in Eqs.( l2)-( 13) have

been neglected. In the case when |/4|2 > [Afa, a gas-dynamic pressure force

cannot compensate the ponderomotive one and a stationary distribution of

fields does not exist.

In the ultrarelativistic case, / = \A]2I 16TQ and Eq. (15) takes the form

of the well known nonlinear Schrodinger equation. The stationary soli ton

solution of this equation (which corresponds to nonlinear frequency shift

A = -A2JlGT2) is
A = A">*ecb {w:

were Am is amplitude of solitoli. Note that, amplitude of the solitoli An, can

be relativistically strong (Am » 1). The only restriction is that. /In, < ACT =

471O. If Am —» Arr then the cavitai ion of plasma occurs and all particles arc

rejected from the centrai part of solitoli.

Now let, us consider the nonrelativislic case. Using Eq. (19) / can be

written as r
substituting Eq.(22) into Eq.(15) we get the nonlinear Schrodinger equation

with a saturating nonlinearity. For the stationary soliton solution we should



solve to following equation:

^ l - A2£ + 2E[I - (1 - E2)3'2} = 0 (23)
dzi

where E = \A\H5To)1'2 < 1 and A = -A2. The Eq.(23) lias asoliton solution

provided that nonlinear frequency shift satisfies the following "dispersion"

relation:

A2 = 2-iji-(l-(l-lOs") (24)

where Em is the amplitude of the soliton. In the Fig.l we plot A2 versus Efn.

One can see that A2 monotonically grows with Ef1 and when E2,, —• 1 (which

corresponds to cavilation) obtains its maximal allowed value A2
nnj. = 1.2.

Unfortunately the general analytical solutions of Eq.(23) cari not be expressed

in terms of elementary functions. VVe would like to mention that in the case

of small amplitude solitons (Em <S 1) the soliton represents a soliton solution

of the cubic nonlinear Schrodinger equation and can be written as:

m"2

)
1

Emz\ (25)

If Em —» 1 (A2 —> 1.2) the top part of the .solitoti is well described by a cosine

function ami can be approximated as

E=Emcos\[2-X2f2z] (26)

The general shape of the soliton is displayed in Fig.2 where Em = 0.99

(A2 = 1.19). Dashed line corresponds to analytical approximation given by

Eq.(26).
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Using the well-known stability criterion of Vakhitov and Kolokolov [9], it

can be shown that the above described soliton-type solution is stable against

small perturbations.

In conclusion, we have considered the possibility of high-frequency EM

wave localization in hot unmagnetized electron-positron plasmas. In our

analysis, we included not only the relativisti effects in the hydrodynamic

motion of the plasma, but also the effects which result from the relativis-

tic electron velocity distribution. Wc have shown that in such plasmas it

is possible to have localized stable soliton-like structures. It is also shown

that cavitation of plasma can occur both in the nonrelativistic and ultrarel-

ativistic cases. The present result should be useful for the understanding of

the nonlinear photon motion in costnical plasmas such as those found in the

early universe and AGN.
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Figure Captions

r'ig.l Nonlinear dispersion relations: the frequency shift A2 as a function

of El.

I''ig.2 Solution E as a function of the space coordinate c, (E,,, = 0.99).

The dashed line corresponds Io analytical approximation given by Kq.(26).
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