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During the last few years a considerable amount of work has been de-
voled to the analysis of nonlinear electromagnetic (EM) wave propagation
in electron-positron {e-p) plasmas [1]. Electron- positrom pairs are thought
to be a major constituent of the plasma emanating both from the pulsars
and from inner region of the accretion disks surrounding the central black
holes in the active galactic nuclei (AGN) [2]. The process of ¢-p pair creation
occurs in reativistic plasma at high ternperatures, when the temperature of
the plasma exceeds the rest tmass of electrons. 1t is also obvious that different
types of such plasmas will be the essential constituents of the early universe
[3}. Intense relativistic e-p plasmas could also exist in the vicinity of cosmic
defects like superconducting cosmic strings [4]. Collective processes in e-p
plasmas are of considerable interest. The processes of wave selfanodulation
of EM waves and soliton [ormation have attracted a great deal of attention.
Stable lacalized solution may be a potential mechanism for the production
of micro-pulses in AGN and pulsars [5]. In the early universe stable localized
EM waves could create inhomogeneities necessary Lo understand She observed
structure of the visible universe,

In the recent paper of Berezhiani and Mahajan {6} the nonlinear propa-
gation of relativistically strong EM radiation in a hot «-p plasma has been
considered. It has been shown that e-p plasma supports the propagation of
nondiffracting and nondispersive EM pulses {light bullets) with Jarge den-
sity bunching. However, the authors concentrated in the case of transparent

plasma and consequently the group velocity of the pulses is clase to the ve-



locity of light c. In the present paper we consider the propagation of strong
EM radiation in a hol e-p unmagnetized plasma aiming Lo find the localized
stationary soliton-type solutions.

To describe the EM wave propagation in e-p plasma we use Maxwell

equations, in which the fields are expressed in terms of the potentials, i.e,

E=—--"=—-Vp , B=VxA (1)

where the coulomb gauge V- A =0 is fulfilled. Accordingly the field equa-

tions take the lorm:

. ,
aa: —~*AA + c%(Vg‘o) —4rcy =0 : (2)

and '
A,,g = —drp (3)

Here, p and J are the charge and rurrent densities given by

p= Ze"”‘" J= Zennaun {4}

where « indicates the patticle species e (= e, p lor electrons and positrons,
respectively); e, and n, are the charge and density of the corresponding par-
ticle a. We consider the case in which the equilibrium state is characterized
by ng. = ngp = ng, where ny, is the equilibrium density of the particle a.
Belore writing the hydrodynamic equations of relativistic plasma it is

necessary to defing what relativistic means. In fact, we have two types of



relativistic regimes in plasma: in a strong EM field the plasina particles may
obtain relativistic velocities. In space, the EM radiation of objects (nuclei
of galaxies, radic-galaxies, quasars, pulsars, etc.) may serve as a source of
such strong fields, The case when the thermal energy of the plasma particles
is of the order of, or larger than, the energy at rest, it is the other type of
relativistic regitne. in this case the thermal velocities of the particies hecome
of the order of the light speed. Certainly, in both cases the deeisive role
belongs to relativistic effects in plasma, but the character of its manifestation
is different. Both relativistic effects can play an important role in the e-p
plasma. Let us assuine Lhat Lhie velocity distribution of the particles of species
o is locally a relativistic Maxwellian. Then, according to Rel.[6, 7], the set

of relativistic hydrodynamic equations of motion ean be writlen as:

d 2 1 @

i v -~ 2P —eu.E

dt(mu“(,.'yoc ) 31 eall {5)
L paGa) + — VP, = cuE + Z(uq x B) (6)
di(pn ta)t e a = ta e a

The continuity equation for the particle o is

dn,
ot

+ Vinglla) =0 N

Here po = YaMgolle is the hydrodynamic momentum, P, = n,T,/v, is
the relalivistic particle pressure, u, is the hydrodynamic velocity of the fluid,
Yo = (1—u2/e*)=1/2 is the relativistic factor, mg, and T, are the particles in-

variant rest mass, and temperalure respectively, d,/dt = 8/t +u,V is the



comoving derivative., The role of the particle-mass is now played by the quan-
tity M.y = moaGalzs) , where Ga(z.) = Hal2.)/H2(za) . Here Ki(za)
and M2(z,) are respectively the Mac-Donald functions of the second and
third order (2o = mg.c?/T,) . The effective mass of the particles Al.y; de-
pends on the temperature. For nonrelativistic temperatures (T, € nigac?)
M.;; = moa(1 + 5T, /2ime.c?) , while for ultrarelativistic high temperatires
(T 3 myac®) the effective mass becomes Myyp = 4T, /c? | and the (luid
inertia is primary provided by random thermal motion of the particles. In
this case, the rest-mass is negligibly small and the e-p gas behaves like phe-
tons. Using simple manipulation, from the Eqs. (5) and (6), we obtain the

adiabatic equation which reads

NoZa
701\'2(30)
In the nonrelativisiic limit (z, 3 1), Eq. (8) yields the result for a

erpl—z2aGalza}) = const. (8)

mono atonmic ideal gas (110/(1,,’1',:,"'2] = consl.) , and in the ultrarclativistic
limit (2, < 1) we have the adiabatic law {or the "photon” gas (n./(1.15) =
const.).

We are looking for a localized one-dimensional solution of this system of
equations for a circularly polarized EM wave, where the veclor potential A

can be expressed as:

Ay = %(i +iF)A(z, thexp(—iwet) + c.c ®)

where A(z,t) is a slowly varying function of ¢, wp is mean frequency , % and

© § are the unit vectors, The transverse component of equation of motion (6)



is immediately integrated to give (for details sce Ref. [6]):

porGa = —fcﬁAl (10)

where the conslant of integration is set equal to zero, since the particle hy-
drodynamic momentum is assiwmed to be zero at infinity where the ticlds
vanish.

Beiore writing the equations for the longitudinal motion we wonld like
to mention that this motien of the plasma is driven by the ponderomotive
pressure (~ p2 ) of high-frequency EM flelds and it docs not depend on
the particle charge sign. [n what follows we assume that in equilibrivtn the
tetnperatures of electrons and positrons are equal, i.e. Tp. = Ty, = Ty, Since
the effective mass of the electrons and positrons are equal {G. = G, = G},
the radiation pressure gives equal longitudital momenta to botli the electrons
and positrons (p.. = pp; = p.) and aflects concentration without producing
the charge separation. Consequently n, = n, = n and ¢ = 0. [t is also
evident that due to symmetry between clectron and positron fluids their
temperatures remain equal (1, =T, = T').

IL is now convenient Lo introdice the following dimensionless quaniities:

- \ T e|A .
= P , n:l' T= 7 A= ]] 7 ]‘:E-]‘, = w.l (11)
Mge g M€ MgeC c

where w, = (4me?*ng/mo.)'/? is the electron Langmuir frequency.
The longitudinal motion of the plasma is determined entirely by the set

consisting of the z component of the equation of motion (6),



d a 1 8nT 1 g|A® o
(3+u' )sz na*—_— 29G 8z (12)

and the "encrgy” conservation equation (5),

: Gy = amr— = :
o tu ) A at v 296G o (13)

where 1, = p./y. The relativistic factor 4 does not depend on the "fast”

(a a), 19nT _ 1 AP

time (wy') and can be written as:

| |2 1/2
¥ = [1 + —= Gz + N ] (14)
Substituling {9} and (10) into Eq.(2), then for a slowly varying amplitude

of EM wave A(z,1) we obtain the following equation:

d/l %A
bl ') X

2i o

+A-A42fA=0 (15)

where
nGo(To)
=]
F=1 e

and A = «? — 2. lor convenience we redefined the electron rest mass
1]

(16)

Eq.(11) as mg. — mp.Go{Th). In dimensional units A ~ «? — 2%w?, where
= (dxetnpfimg, Go{ To))} 2.
We are looking for the stationary localized solutions (vanishing at infinily)
described by Eqs. (8), (12)-(16). Assuming that |A] depends only on the
special coordinatle =, and integrating Eqs. (12) and (13), we get the following

integral of motion



G(T)yy = Go(To) (17)

where 4 = (1 + JA?/G")Y/? (p. = 0). From Eq. (17) we get:

o MF /2
G_Go(l— GS) (18)

It follows from LEq.(18) that the present hydrodynamical theory, which

describes the nonlinear waves in e-p plasma, is valid lor |A)2,./GE < 1.
When the latter is violated, then the electromagnetic waves are overturned
and they will cause multi-stream motion ol the plasma. In such a situation,
one must resort to kinetic deseription for studying the nonlinear wave motion,
This invesligalion is, however, heyond ithe scope of the present paper.
Using Eqs. (17)-(18) we get f = 1 —n. Now we should obtain a rcla-
tionship between n and |A|% For Lhis, one can use the adiabatic equation
{8). Unfortunately it is impossible to solve this problem analytically for the
arbitrary temperature case. [n the nonrelativistic case (I, Ty <2 1} Eq. (B)
gives n = 4{T[Tp? and using Bqs. (17)-{18) along with the asymptotic

expression for G {= 1 4+ 37") for the plasina density we obtain:

32
n= (1 - léﬁ) {19

5T
In the ultrarelativistic case (7,75 3 1) lrom Eq. (8) we have n = 4{T'/Ta)?

and using the asymptotic expression for 7 (= 4T} we get:

_ 4P
16T

n=1

(20)



The expressions {19) and (20) show that the total density of plasma can be-
come zero at | AP = 1A% (where |A]% = 5T, for the nonrelativistic case and
IA[E,_ = 1673 for the ulira-rclativistic case). This phenomenon can be called
"electron-positron cavitation” and for the ultrarelativistic case has heen dis-
covered in Ref. {8]. It should be noted that the upper hound limitation of the
amplitude of the vecior potential is caused by the fact that we consider liere
the stationary case, and consequently the inertial terins in Egs.(12)-(13) have
been neglected. In Lhe ease when [Af2 > [4]2, a gas-dynamie pressure force
cannol compensate the ponderomotive one and a stationary distribution of
fields does not exist.
1n Lhe ullrarelativistic case, [ = VA2/16TY and Fq. {15) takes the form
“of the well known nonlinear Schrédinger equation. The staiionary soliton
“solution of this equalion (which corresponds to nonlinear frequency shift

A=-AL[I6T) is

Am
A = A,sech (47,0 ) {21)

were A,, 15 amplitude of soliton. Note that amplitude of the soliton A, can
be relativistically strong (A 2 1). The only restriction is that A, < A, =
4Ts. If A,y — A then the cavitation of plasma occurs aed all particles are
rejected from the contral part of soliton.

Now let us consider the nonrelativistic case. Using Eq. (19} f can be

_ lAl-; 3f2
f_1u<1——5ﬁ) (22)

substituting Eq.(22) into Eq.(15) we get the nonlinear Schrédinger equation

written as

with a saturating nonlinearity. For the stationary soliton sclution we should



solve Lo following equatian:

i E
<7~ ME+2E - (1 - B =0 (23)
where £ = |A}/(5To1? < 1 and A = — ). The Eq.(23) has a soliton solution
provided that nonlinear frequency shift salisfies the following "dispersion™

relation:

41 1 _ 2 \5/2
A_z_oﬂz (1~ (1 — EL)%/2) (24)

where £, is the amplitude of the seiiton. In the Fig.1 we plot A? versus £2.
—+ 1 {which

= 1.2,

One can see that A* monotonically grows with EZ and when £2

™

corresponds to cavitation) obtains its maximal allowed value A%,
Uanfortunately the general analytical solutions of Eq.(23) can not be expressed
in terms of elementary functions. We would like to mention that in the case
of small amplitude salitons ( £,, < 1) the soliton represents a soliton solution

of the cubic nonlinear Schrédinger equation and can be written as:

3\ 172
E = E, sech [(—)) E,,.z] (25)

HER — 1{A* = 1.2) the top part of the soliton is well described by a cosine

function and can be approxiniated as
E = Eqcos{(2 ~ X)) (26)

The general shape of the soliton is displayed in Fig.2 where £, = 0.99
{A? = 1.19). Dashed line corresponds to analytical approximation given by

Eq.{26).
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Using the well-known stability criterion of Vakhitov and Kolokolov {9], it
can be shown that the above described soliton-type solution is stable against
small perturbations.

In conclusion, we have considered the possibility of high-frequency EM
wave Jocalization in hot wmmagnetized clectron-positron plasinas. In our
analysis, we included not only the relativistic effects in the hydrodynamic
motion of the plasia, but also the eficets which result from the relativis-
tic electron velocity distribution. We lhave shown that in such plasmas it
is possible te have localized stable soliton-like structures. It is also shown
that cavitation of plasma can occur hoth in the nonrelativistic and ultrarel-
ativistic cases. The present result should Le useful for the understanding of
the nonlinear photon motion in cosmical plasinas such as those found in the

early universe and AGN.
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Figure Captions

Fig.l Nonlinear dispersion relations: the frequency shift A? as a function

of 12

[N

Fig.2 Solution & as a funclion of the space coordinate =, (£, = 0.99).

The dashed fine correspouds 1o analytical approximation given by Eq.(26).
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