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1 Introduction

For a finite hot system like an atomic nueleus the number of particles in the
system is fixed and any statistical calenlations of properties of the systemn
should be performed in the canonical ensemble. Since-it is offen simpler
to do these calculations with the partition funetion of the grand canonical
ensemble, this way is used in practice as a rule. So the results of the caleu-
lations are disturbed by thermal fluctuations of the munber of particles. All
standard approaches treating heated melear systeins - the thermal Hartree
- Fock or thermal Hartree - Fock - Bogoliuhov methods, the therninal Bardeen
- Cooper - Schiriefler method, the thermal RPA safler from this sho:tcoming
[1]. Less popular approaches have this shorteoming as well. For example
in the thermo ficld approach {2} thermal fluctuations appear through the
thermal Bogoliubov transformation.

Moreover, some ethods of treating pairing correlations ( BCS or HFB
methods) introduce quantal fluctuations of the particle nmnber i the finite
system . These fluctuations are especially dangerous if pairing is weak, e.g.,
near the poiut of the phase Lransition from superconducting to nonnal phase.

That is why so many attempts were made to constriet exact or approxi-
mate projection methods {4, 5 to suppress these fluctuations.

In the present work, we formulat¢ a new approximate particle munber
projection method for Lot {inite systeins based on the ideas of a quite old al-
though famous Lipkin - Nogami method [6-9). Until now the Lipkin — Nogami
approximation has widely been used for approximate mumber projection in
superconducting cold nuclet. To extend this method to finite temperature,
we use the formalism of the thermo field dynamies [2). '

2 The thermo field dynamics formalism

Let us assume that a hot nuclear system in the thermal equilibrium is de-
seribed by the partition function ofa grand canonical ensemble. The main
idea behind the TFD (2] is to define a thermal vacunm [0(T')) such that the
thermal expectation value of any operator
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cquals the expectation value with respect to the thermal vacuum shkate
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For this aim the TFD requires a doubling of the ficld degrees of freedoin.
The new Hilbert space of states is defined through tilde congugation rules for
linear operators and by incans of the appropriate choice of the wave function
of the thermal ground state. A tilde conjugate operator A is associated with
any operator A acting in the ordinary space through the tilde conjugation
rules

(AB)= AB ; (c1d + &B)" = A+ 3B,

where A and B stand for any operators and ¢; and ¢ are e-numbers. The as-
terisk denotes the complex conjugation. The tilde operation commnutes with
the hermitian conjugation operation and any tilde and non-tilde operators
are assurned to commute or anticomnmute with each other. For any system
governed by the Hamiltouian H the whole Hilbert space is now spanned by
the direet product of the eigenstates of H and those of the tilde Hamiltonian
H having the same cigenvalues. The time - translation operator is not the en-
ergy operator H bui the thermal Hamiltonian H = H — H. This means that
the praperties of the system excitations are obtained by the diagonalization
of H.

It is casy to sce that with the doubling of the Hilbert space the temper-
ature dependent vacuum [0(T')) has to be defined as follows:

o) =
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where H ¢y = Eyédy and Héy = Eidy.

The Heiseuberg equation, equal-tiine commutation relations, the tilde-
conjugation rules and the temperature dependent thermal vacuum form the
basic relations of the TI'D. '

3 TFD for the particle number projection

The wave functiou of the thermal ground state represents the mixture of the
state with a different number of particles:

(1)) = 3 Cruln) ® 1) = S Cpon ).
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The expectation value over the thermal vacumn corresponds to the averaging
within the grand canonical ensemble. Since in atomic nuclei the number of



particles is fixed, any statistical studies of their properties should be per-
formed in the canonical ensemble. Tn the TFD this means that one has to
work only with the cigenfunction of the parficle number operator & charae-
terizing a certain cigenvalue o instead of averaging over wave fun(.hon in the
whole Hilberl space.

Ninn) = njnn)
Nni) = n|ni)

To separate the needed states the projection operator. that “cuts” the
wave function with given number of particles {from the whole Hilbert space,
should be coustructed.
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NP.JO(T)) = nP|0(T))
FP.IO(T)) = nP.JO(T))

With this projector onc can obtain a eanonical averaging value of any
operator in the following form:

(O(T)| P APJO(T)) -
(O(THP.JO(T))

(nit|Ajni) =

The elaboration of an approximate particle munber projection method seems
natural since the exacl projection is a very hard task already in cold nuclel
. [11). This approxiinate particle number projection method should be simple
enough for practical realization as well as noticeably suppress the influence
of the particle number fluctuation on calculated variables. To formulate the
method, we closely followed the idea of the Lipkin-Nogamni approximation
[6-9] well-known in the theory of cold superfluid nuclei.

Let us consider any operator @ defined in the initial Hilbert space of
nuclear system. After placing our system into the thermal bath this operator
have to be rewritten as Q = Q & I, where I is the unit operator in the space
of tilde states. One can consider a matrix clement (nm|Q|nrm) as a function
g(n) of rumber of particles and write the following power expansion for it:

(nin|Qlnm) = (n|Qln) = g(n)y =3 g, (1)

k=0



Then we obtain that

N

ODIQITYY = ((THY . N¥0(T))
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Usiug the last équation one ean rewrite (1) in the form:

(nA|Q|ni) = (1) |Q,0(T) |L(1A\ 0T+ Y qen® = (2)
A=0 k=0

= (0(TNQ = 3 e N* TN + 3 g

k=1 k=1
The important point is that the above manipulation yields the expee-
tation value of the operntor @ with vespeet fo the projected states 1nn) in
terms of the thermal vacuum. The use of formula (2) allows one to obrain a
canonical average vatlue (0i{Qfnn) without explicit involving [n7). Bt the
cocflicients g are stll unknown. To find them let us introduee the operator

Q=0Q-3% gt

k=1

The f()“()\\'i;l}', relation takes place for the operator @ and any arbitrary
function of the particle munber operator f(V):

(OUQ T = QCDQIOTNOTIFNT)

The above-mentioned equation is satisfied for any arbitrary function f(\\7)
thien and only then if the following set of equations is valid:

O(T)ONIO(TY = ((TQIO(TWO(TIN|0(T))
O(TNQN?I0(T)) = (OO T NZO(T)

(OINQN™[O(T)) = (0(DQIO(TN(O(THLN™[0(T))

Oune can rewrite this set of cquations in the form of a linear system by
returning from the operator Q to ().



(QN) —(Q)N} 0

(QN%) = (@)Y "
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The element A, of the matrix A has the form o, = (N'"™) = (V) (N),
where (...} means averaging over the thermal vacuum [0(T)).

So far our considerations were exact. But for practical ealeulations one
has to truncate expausion (1) by retaining the first 3 terms (the usnal Lipkin-
Nogaui approximation {6-9]). In this ease. one can derive for the coeflicients
¢y and ¢y the following expressions:

(QN) = (QUN) (V) = (V2(N) ;
"= Tit_hu (QNF) = (N)(Q) (N) = (V)W)
| (1)
1 | (N2) — (N)(¥)  {(QN) = (Q)(N)
B Ay | (V) — (NI(N) QN — (Q)(N?)

where

| (V%) = (N)N) (V) = (V2)(N) |

(/(:t(.‘l) = (_-'\":‘) _ (‘__.\.'2)(.,\:‘) (_,-\"") — (1\"2)(1'\"2)

Noteworthy that there is another method of determining the coefficients
qx, whielt is more proper to the project operator Q of complicated structure,
The use of expansion (1) allows one to get for ¢, the following relution:

1 d*q(n)
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4  The degenerate single j-shell model

Let us cousider the case of n nueleons with the BCS Harmniltonian on the single
J— shell. There is no essential difference between this and more general ease
where there are several degenerate j—levels with different j’s. Place the
energy ), = 0. In this case the Haniiltonian is

H = --—f— Z ot aia—a,, (6)

mm
Following the preseriptions of TED we introduce temperature. The Hainil-
tonian of a hot system is the thermal Hamiltonian H = H — H. Tt is possible
to diagonalize the thermal Hamiltonian by means of the so-called thermofield
transformation [12, 13]. This transformation is constructed as {wo successive
Bogoliubov transformations: the standard canonical {u,v} transformation

and the thermal {y/n. /1 ~n} one.

y, ﬁ m
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-V u -V U

With the thermofield transformation one gets the temperature dependent
ground state [0(T)) as a vacuum for thermal quasiparticles 8 and 5
AI0(T)) =0
Blo(r)) = 0.
The matrix clement over thermal vacuum |0(T)) equals its grand canon-
ical average. .
To choose the coefficients w,v,n, we use the conditions for nuclei to be
in the thermal equilibrivin. It means that we have to find minimum of the

grand thermodynamic potential F' = (0(T)|H — AN|0(T)) —= TS. For u,v,n
the following standard FT BCS relations are valid:

, 1 A , 1 A
2—_ _—— 2=_ —
W= (1 E) y V=3 (1+5)

1
= 2 2 = —
¢ AEAR, w 1+ exp(e/T)



In its turn the correlation function A and chiemical potential A are found
from FT BCS cquations. In this case, we have both quantal and statistical
fluctuations, the quantal one being nore important at low temperature and
the statistical ones at higher temperature.

As an illustrative example we find the projected ground state energy E,.
To this aimn. we assume that the thermal ground state is a vacuum for the
thermal quasiparticles 3, 8 and use formula (2), where we place Hamiltonian
H instead of the operator ()

E,. =-GQ [uzn + 231 - n.)]z - G [Quv(1 - 2n)}
~2X,Q {[uv(l —2n)}* + (uPn 4+ 0¥ 1 =n))(u*(1 —n) + u"n.)}

The cocefficient Ay = % at T < T, ( T, is the critical temperature when
the phase transition from superfluid to normal nuclei takes place), and Ay = -
—2—(,27(;_—1) at T > Ti,. 29 is the degeneration of the j— level.

In the table we display the projected energy Ep. and BCS energy Epes
(in arbitrary units) as the functions of the temperature T (also in arbitrary
units). The calculations have been performed for j = 13/2 aud the constant
G is adjusted in such a way, that A =1 at T'=0.

At T < 0.5 not only the thermal but also the quantal number fluctuations
are suppressed by the projection. Both the functions E,,,(T7) and E,;(;_q(T) in-
crease rapidly with temperature because the correlation function A decreases
with . At T ~ 0.5 the correlation function vanishes (the system isn’t any
more superconducting) and both functions change their behaviour sharply.
At this point the quantal fluctnations disappear and only the thermal ones
exist.

5 Conclusion

The above formulated approximate number projection method for hot finite
systemns is of the "projection after variation” type. It means that at the
first stage we solve a variational problem with a "nonperfect” trial function
and only then the number projection of matrix eleinents of some operator is
performed. One hopes that because of its relative siimplicity the method can
be widely applied in the studies of hot nuclear systemns. Noteworthy that the
method can be used in the framework of other approaches not only within
the thermo field dynamies. One can calenlate the ensemble average of the



operators V¥ and @ by any convenient method and then use formulas (4)
for the ¢* cocflicients.

It is quite easy to extend the method to angular momentin projection in
hot uielel or projection of matrix elemwents of operator given in both ordinary
and rilde spaces. The last exinple is espeelaliy interesting for studying the
sl Jdipole resozmiiee 5 decay ot meled.

But ourmethod can not be explored 1o study the phase transitions in hot
muclei. To this end one has to use the “projection before variation™ method
like it has been done within the statie path approximation [4] or to malke
direetly a projection hetween statistical ensembles [14]. A method of this
type can be formulated witinn the thermoficld dynamies too but on this way
one has to resolve a longstanding problemn how 1o projeet the operator of
cntropy.

This work is partly supported by the hiternational Seience Foundation
(granis NONOOO and NGN300) and by prant 95-02-05701 of the RFFL

Table 1

The total projected energy E,, and the FTBCS pround state energy Egyes

as a function of the temperature, T, E, Eges Inarbitrary units,

T | Epcs | B

0 |-3.840 | -4.335
0.11-3.839 | -1.331
0.2 1-3.744 | -4.233
0.3 | -3.241 | -3.694
0.1]-2.151]-2.256
0.5 [ -0.419 ] -0.670
0.6 | -0.371 { -0.333
0.71-0.371 | -0.333
oo |-0.3711-0.333
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Kocos I.C., Biiosin AH. E4-95-355
OpuG:mxénnoe NPOCKTHPOBAIHE 10 MICAY MACTHIL B RAIPETHIX HAPAX

Harpersie cleTeMbl KOHCHHOID 'HICIA WACTHU, KAKOGLIME SARTAKITCH SIPA. CICIYeT OIMCHIBATDL
dyukititeit pacnpetesicHHg Kanonnieckoro ireasifis. Ho 1-3a reXuiyeckBX crosiociedl ;s 31010 datie
nenaawsyrT GobOoN KaHoHIeck 1ii ANcam0Ih, B PeIYIbTATC YeI'0 BOMKKAKT HOIPEIUHOCTH, CBN3IHHEIE
€ TIOBLIMH (hAYKTYMHAMH YIiCia 4acTiiL. B sipax co cnapusaiies K UM 106aRISKITCH KBANTOBbLIC
UIYNT VG YHCTE SUCEHIL, BIOCHMBIC TIPHO.UGKCHNBMME MeToaMi 1 BRIM. Tk, aesnoe npo-
CKTHPOBAHKE 110 YHCTY HACTHIL TPYAOEMKAR HLLaud, € NOMOUILIO OPMATIIIMA TEPMOTIOICA0I AMHAMHKY
pispaboTana Texuika nprbIHXCHIONO UpOCKTHPOBAHIL o uneay wactiu npi T 0, ofoluanntas
wneeTHbd MeTo Jlnnkuna—Horamu. Moayuenst ypasienss 18 KodhHUBEHTOB PAYTOXCHBS NPOH3-
BOZILHOO OFICPATOPA (O CTCIEHAM OREPATOP: MHCT MACTHL I HATLICHLI X PEIUICHHA B CICAYKMILEM NOCae
BKIU npuGasacnins. MeTo;t OTHOCHTEY K pAipsily TAK HATBIBICMLIX METOOB IPOCKTHPOBANHR HOC:Ie
BApLHPOBRANNA. I3 KAMECTIE NIPUMEDR B €10 PAMKIAX HCCHEIORINA MO OIHOI0 BRIPOXACHIOIO YPOBHS.

PaGoTa sunonueira o JJaGopaiopun Teopetiueckoii usnkn wm.H.H.BoromoGosa OUSAH.
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Kosov D.S., Vdovin AL E4-95-355
Approximate Particle Number Projection in Hot Nuclei

Heated finite systems like, e.g.. hot atomic nuclei have to be described by the canonical partition
function. But this is a quite difficult technical problem and, as a rule, the grand canonical partition
function is uscd in the studies. As a result, some shortecontings of the theoretical description appear
because of the thermal fluctuations of the number of particles. Moreover, in nuclei with pairing
correlations  the  quantal number fluctuations  are introduced by some  approximate  methods
(c.g., by the standard BCS method). The exact particle number projection is very cumbersome
and an approximate number projection method for T'# 0 basing on the formalism of thermofield dynamics
is proposed. The idea of the Lipkin——Nogami method to perfonn any operator as a series in the number
operator powers is used. The system of equations for the coefficients of this expansion is written
and the solution of the system in the next approximation after the BCS one is obtained. The cthod
which is of the «projection after variations type is applied to a degenerate single j-shell model.

The investigation has been performed at the Bogolinhov Laboratory of Theoretical Physics, JINR.
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