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1 Introduction

For a f inite hot syslrin like an i i l o i n i r nucleus the iiuinhcr of part icles in the
system is fixed find any s(; i l i s l . ic; i l c a l c u l a t i o n s of properties of the system
should be performed in ( l ie ranoi i ic i i l ensemble. Since-il is often simpler
to do these c;ileiil;ilions w i t h i ! i < - p a r t i t i o n function of the «;rand canonical
ensemble, this way is used in practice as a rule. So the results of the calcu-
lations are disturbed by thermal fluct.iiat.ions of the number of particles. ЛИ
standard approaches treat ing heated nuclear systems • the thermal Hartree
- Fock or thermal Hartree - Fuck .- Bogoliuhov methods, the thermal Bardeen
- Cooper - Schrieffer method, the thcnnal ПРЛ sillier from this shortcoming
[1]. Less popular approaches have t h i s s l iort coming as well. For example
in the thermo field approach [2] t h e r m a l f l u c t u a t i o n s appear through the
thermal Bogoliuhov transformation.

Moreover, some methods of t rea t ing pairing correlations ( I3CS or HF13
methods) introduce quanta ! f l u c t u a t i o n s of the part ic le number in the f inite
system . The.sc fluctuations arc especially dangerous if pairing is weak, e.g.,
near the point of the phase transition from superconducting to normal phase.

That is why so many attempt к were made to construct exact or approxi-
mate projection methods [4. 5] to suppress these f luctuations.

In the present work, we formulate a new approximate particle number
projection method for hot f ini te systems based on the ideas of a quite old al-
though famous Lipkin •- Nogami method |G-9]. Unti l now the Lipkin - Nogami
approximation has widely been used for approximate number projection in
superconducting cold nuclei. To extend this method to f inite temperature,
we use the formalism of the Ihermo fi"ld dynamics [2].

2 The thermo' field dynamics formalism

Let us assume that a hot nuclear system in the thermal equilibrium is de-
scribed by the partition function of'a g ia i id canonical ensemble. The main
idea behind the T'FD [2] is to define a thermal vacuum |0(T)) such that the
thermal expectation value of any operator

«A*=JbmTr{Arxv(-Um}

equals the expectation value with respect, to the thermal vacuum skate



For this aim the TFD requires a. doubling of the field degrees of freedom.
The new Hilbert space of states is defined through tilde congugation rules for
linear operators and by means of the appropriate choice of the wave function
of the- thermal ground state. A tilde conjugate operator A is associated with
any operator A acting in the ordinary space through the tilde conjugation
rules

(AB) = AB ; ( c i A + о2ВГ = с] A + c'2B ,

where Л and 13 stand for any operators and C] and fy are c-numbers. The as-
terisk denotes the complex conjugation. The tilde operation commutes with
the hermitian conjugation operation and any tilde and non-tilde operators
are assumed to commute or anticommute with each other. For any system
governed by the Hamiltonian H the whole Hubert, space is now spanned by
the direct product of the dgenstates of H and those of the tilde Hamiltonian
// having the same eigenvalues. The time - translation operator is not the en-
ergy operator H but the thermal Hainiltonian ft = H — H. This means that
the properties of the system excitations arc obtained by the diagonalizalion
of ft.

It. is easy to see that, with the doubling of the Hilbcrt space: the temper-
ature dependent vacuum |0(T)) h;is to be defined as follows:

where Hok = Ekok and Hok = Ek6k.
The Heisenberg equation, equal-time commutation relations, the tilde-

conjugation rules and the temperature dependent thermal vacuum form the
basic relations of the TFD.

3 TFD for the particle number projection

The wave function of the thermal ground state represents the mixture of the
state with a different number of particles:

|0(t)) = £CU» ® |m> = £C ..... \nm).
tun nm

The expectation value over the thermal vacuum corresponds to the averaging
within the grand canonical ensemble. Since in atomic nuclei the number of



particles is fixed, any statistical studies of their properties should be per-
formed in the canonical ensemble. In the TFD this means that- one- lias to
work only with the eigenfunction of the particle number operator N charac-
terizing a certain eigenvalue n. instead of averaging over wave function in the
whole Hilbert space.

A'j/i/V) — n\nn)

N\nn) -• n\iui.)

To separate the needed states the projection operator, that "cuts" the
wave function with given number of particles from the whole Ililbert space.
should be constructed.

•2" 2-
Pn = — j exp(f<?(jV - n))do <8> — / exp(u6(JV - n)}do

£TT J in J
о и

NPMT)} = »Л,|0(Г)>

Л-Р„|0(Т)) - i»P,,|0(T)>

With this projector one can obtain a canonical averaging value of any
operator in the following form:

<o(T)|p.|o(T))
The elaboration of an approximate particle number projection method seems
natural since the exact projection is a very hard task already, in cold nuclei
[11]. This approximate particle number projection method should be simple
enough for practical realization as well as noticeably suppress the influence
of the particle number fluctuation on calculated variables. To formulate the
method, we closely followed the idea of the Lipkin-Nogami approximation
[6-9] well-known in the theory of cold superfluid nuclei.

Let us consider any operator Q defined in the initial Hilbert. space of
nuclear system. After placing our system into the thermal bath this operator
have to be rewritten as Q — Q ® /, where / is the unit operator in the space
of tilde states. One can consider a matrix element (rim|Q|7t77i) as a function
q(n) of number of particles and write the following power expansion for it:

(п7Й|С?|нт7|) = (n]Q\n) - q(ny = £ №,i* , (1)



Then we obtain t l i a i

1.-Ц

Usiiip; ibc last equation one can rewrite (1) in the form:

(,,ii\Q\m,) = (Q(T)\Q\Q(T}) - (O(T)I E Ч***|<Ц Л) + £
A-=l) *=(!

*•=! i-=l

The important point is t h a t the above manipulat ion yields the expec-
tation value of the operator Q with respect to the projected states \nfi) in
I.erms of the thermal vacuum. The use1 of formula (2) allows one to obtain a
canonical average value ( ; / f i | (^j / ; i i ) wi thout explicit involvin» |'""i). 13ut the
c.oeiHcients гд. are si ill unknown. To (hid them let us introduce the operator

The following relation takes ]>lace for the operator Q and any arbi trary
function of the particle nuinher operator /(A:):

The above-mentioned (vmation is satisfied for any arhi l rary funct ion /(.V)
then and only then if the following set of equations is valid:

((}(T)\QN'*\()(T)) =

One can-rewrite this set of equations in the form of a linear system by
ing from t.h<4 ojx-rator Q to Q.



- (C?)(.v)

= л

( </. \

4т

(3)

\ / \
The element Л,; of the mat.rix .-1 has the form /!,_, -- (.V1+J) - (A''')(.VJ).
where (...) means averaging over the thermal vacuum j()(T)).

So far our considerations were exact. But lor practical calculations one
has to T r u n c a t e expansion ( 1 ) by reta ining the f i r s t 3 terms (the usual Lipkin-
Nogiinii approximation |G-Oj). In this case, one can derive for the coefficients
I'll and <ii the following expressions:

(Ir-.t(A)

('0

4-i = т

where

tlr.i(A)

ilc.t(A) =

Noteworthy that there is anot.lier inel.Iiod of determining the coefficients
qk, which is more ])roper to the project, operator Q of complicated structure.
The use of expansion (1 j al'o^vs one to gel for <[k f he following relation:

4k = dnk (5)



4 The degenerate single j-shell model

Let us consider the case of n imdeons with the DCS Hamiltonian on the single
/— shell. There is no essential ditterence between this and more general case
whore there are several degenerate; j—levels with different, j's. Place the
energy E, = 0. In this case; the Hamiltonian is

я—£ (6)'

Following the prescriptions of TFD we introduce temperature. The Hainil-
tonian of a hot, system is the: thermal Hamiltonian "H = H — H. It is possible
to diagonalixe the thermal Hamiltonian by means of the so-called thcrmoficld
transformation [12. 13]. This transformation is constructed as two successive
Bogoliubov transformations: the st.andiird canonical {u.v} transformation
and the thermal {т/и.. \/l —11} one.

A =
и

—V

With the thermofield transformation оно gets the I crnperaturc dependent
ground state |0(T)) as a vacuum for thermal quasiparticles /3 and /?:

The matrix element over thermal vacuum |0(T)} equals its grand canon-
ical average.

To choose the coefficients u,w,n, we use the conditions for nuclei to be
in the thermal equilibrium. It means that we have to find minimum of the
grand thcrinodynainic potential F = (0(Т)|Я - АЛГ|0(Т)) - T5. For u,v,n
the following standard FT DCS relations arc valid:

1
n =

I + cxp(e/T)



In its turn the correlation function Д and chemical potential A arc found
from FT DCS equations. In this case, we have both quanta! and statistical
fluctuations, the quantal one being more important at low temperature and
the statistical ones at higher temperature.

As an illustrative example we find the projected ground slate energy E.,r.
To this aim. we assume that the thermal ground state is a vacuum for the
thermal quasiparlicles $,/? and use formula (2), where we place Haniiltonian
H instead of the operator Q

E]IT = -СП н2н + va(l - n)\ - G [Нни(1

-2A2_Q {[uv(l - 2n)]a + (u2n -I- ua( 1 -n))(u'(l - 11)

The coefficient A^ = j at Т < TCT ( T,:r is the critical temperature when
the phase transition from superfhud to normal nuclei takes place), and A^ = '
-2(2»-!) at Т > TCT. 2U is the degeneration of the j- level.

In the table we display the projected energy E,,r and I3CS energy Еца;
(in arbitrary units) as the functions of the temperature Т (also in arbitrary
units). The calculations have been performed for j — 13/2 and the constant
G is adjusted in such a way, that. Д = 1 at Т = 0.

At Т < 0.5 not only the thermal but also the quantal number llur.t.uat.ions
are suppressed by the projection. Both the functions E.,r(T) and Ец(;.ч(Т) in-
crease rapidly with temperature because the correlation function Д decreases
with T. At, Т ~ 0.5 the correlation function vanishes (the system isn't any
more superconducting) and both functions change their behaviour sharply.
At this point the quantal fluctuations disappear and only the thermal ones
exist.

5 Conclusion

The above formulated approximate number projection method for hot finite
systems is of the "projection after variation" type. It. means that, at the
first stage we solve a variational problem with a "nonperfect" trial funcr.ion
and only then the number projection of matrix elements of some operator is
performed. One hopes that because of its relative simplicity the method can
be widely applied in the studies of hot nuclear systems. Noteworthy that- the
method can be used in the framework of other approaches not only within
the thermo field dynamics. One can calculate the ensemble average; of the



operators Л""' and Q by any convenient method and then use formulas (-1)
for the <j coellicieuts.

I t is qui te easy to extend I lie method to angular momentum projection in
hot nuclei or projection of m a t r i x elements of operator given in both ordinary
and t i lde spaces. The last example is especially inlerotmg for studying the
giant ilipo!r iv.io:i;i:;r<- •• <!;vay i:i !:о: nuclei.

But our ним hod can not be explored to study the phase transi t ions in hot
nuclei. To t h i s end one has to use the "projection before variat ion" method
like it has been done w i t h i n the s t a t i c pa th approximation [4] or to make
directly a projection between s t a t i s t i c a l ensembles [14]. A method of this
type can be formulated w i t h i n the thermolicld dynamics too but on th i s way
one has to resolve a longstanding problem how to project the operator of
nit ropy.

This work is partly supported by the International Science Foundation
(grants NGNO(H) and NCN300) and by grant 9й-(У2-()Г>7()1 of the RFFI.

Table 1

The total projected energy /£,„• and the FTBCS ground state energy

as a function of the temperature. T. E,lr. К не* i'1 arbitrary units .

Т
0
0.1
0.2
0.3
(!.l
0.5
0.6
0.7
oo

EUCS
-3.8-10

-3.839

-3.744

-3.241

-2.151

-0,119

-0.371

-0.371

-0.371

l^jir

-4.335

-4.334

-4.233

-3.094

-2.25G

,0.670

-0.333

-0.333

-0.333
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Косов Д.С., Вдовиц Л.И. Е4-95-355
Приближённое проектирование по числу частиц л нагретых ялрах

Нагретые системы конечной) чист частиц, каковыми являются ялра. следует описывать
функцией распределения каноническою алсамбля. Но из-за ICXIIIIMUCKIIX ooAHocieii для лот чаше
используют большой канонический ансамбль, к результате чего возникают ншреншостм. связанные
с тепловыми флукзуанкями числа части. В ядрах со спариванием к ним добавляются кпантопые
флумуацни числа части, шюснмые приближенными методами inna БКШ. Т.к. зичиое про-
ектнропание по числу частиц трудоёмкая залача. с помошмо формализма тсрмополслоп динамики
разработана техника приближенного проектирования по числу частиц при Т^О, обобщающая
известный метол Лппкнна—Ногами. Получены урапнспия ;пя коэффициентов рагзожсння пронз-
иолыюго оператора по степеням оператора числа частиц и найдены их решения и следующем после
ПКШ приближении. Метол относится к разряду так насыпаемых метолои проектпроиания после
варьирования. I) качестве примера н его рамках исслслопана модель одного имрожлсшюго уровня.

1'абота выполнена D Лаборазорин теоретнческо!) физики им.Н.Н.Боголюбова ОИЯИ.

Препринт Об1>елнненного ннстит>та ялерных iiccjiejioiiaiiiiii. Д\-бпа.

Kosov U.S.. Vdovin A.I. E4-95-355
Approximate Particle Number Projection in Hot Nuclei

Healed finite systems like, e.g., hot atomic nuclei have lo he described by the canonical partition
function. But this is a quite difficult technical problem and, as a rule, the grand canonical partition
function is used in (he studies. As a result, some shortcomings of the theoretical description appear
because of the thermal fluctuations of (he number of particles. Moreover, in nuclei with pairing
correlations (he quanta! number fluctuations are introduced by some approximate methods
(e.g., by the standard BCS method). The exact particle number projection is very cumbersome
and an approximate number projection method for '/'*() basing on the formalism oftlicnnoficld dynamics
is proposed. The idea of the Lipkin—Noganii method lo perform any operator as a series in the number
operator powers is used. The system of equations for the coefficients of this expansion is written
anil the solution of the system in the next approximation after the DCS one is oblained. The method
which is of (he «projection after variation» type is applied lo a degenerate single j-shell model.

The investigation has been performed at (he Rogoliuhov Laboratory of Theoretical Physics. JINR.
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