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Abstract 

Error fields (i.e. small non-axisymmetric perturbations of the magnetic field due 

to coil misalignments, etc.) are a fact of life in magnetic fusion experiments. What 

effects do error fields have on plasma confinement? How can any detrimental effects 

be alleviated? These, and other, questions are explored in detail in this lecture using 

simple resistive magnetohydrodynamical (resistive MHD) arguments. Although the 

lecture concentrates on one particular type of magnetic fusion device, namely, the 

tokamak, the analysis is fairly general and could also be used to examine the effects of 

error fields on other types of device (e.g. Reversed Field Pinches, Stellerators, etc.). 
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toroidal magnetic field lines 

• toroidal field coil 

Figure 1: Schematic top view of a tokamak showing the toroidal magnetic field and its 
generating field coils 

1 Introduction 

Thermonuclear fusion requires plasma temperatures in excess of 10 keV (about 108 degrees 

kelvin). Obviously, this precludes containment of the plasma by solid walls. A "tokamak" 

is designed to confine a thermonuclear plasma on a set of nested toroidal magnetic flux 

surfaces. The magnetic field strength must be sufficiently high (i.e. B £ 1 tesla) that the 

Lamor radii of 3.5 M eV fusion product alpha particles are small compared to the dimensions 

of the device. The dominant magnetic field in a tokamak is toroidal and is generated by 

poloidal currents flowing around a set of (24 is a typical number) equally spaced field coils 

(see Fig. 1). 

A toroidal magnetic field cannot by itself confine a plasma. Confinement is only possible 

if field lines rotate helically as they flow around the device in the toroidal direction. Thus, 

if a field line is chosen at random and followed for very many toroidal transits it ought 

to map out a closed toroidal surface (a pure toroidal field would only map out a closed 

toroidal line). Field lines in tokamaks are made to rotate helically via a comparatively small 

poloidal magnetic field which is induced by a toroidal current flowing through the plasma 

itself. The toroidal plasma current (which is typically a few mega-amps) is produced by 

transformer action. The plasma acts as a single turn secondary winding which is energized 



primary winding 

Figure 2: Schematic poloidal cross section of a tokamak showing the primary winding 

Figure 3: Schematic poloidal cross section of a tokamak showing the vertical field coils 

by the changing magnetic flux generated by a multi-turn primary winding situated in the 

centre of the torus (see Fig. 2). 

A set of toroidal field coils, a primary winding, and a hot conducting plasma are sufficient 

to produce a set of toroidal magnetic flux surfaces. However, there is no guarantee that the 

plasma confined on these surfaces is in force balance. In fact, a toroidal plasma has a 

natural tendency to expand outward to ever larger major radius. In tokamaks this tendency 

is counteracted by an inward force due to the cross product of the plasma current with a 

"vertical" magnetic field produced by two poloidal coils situated above and below the plane 

of the torus. A judicious choice of the current which flows in these coils can maintain the 

plasma in force balance at a given major radius (see Fig. 3). 
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Figure 4: Schematic poloidal cross section of a tokamak show how two pairs of shaping coils 
can be used to produce plasma elongation 

A basic tokamak can be built using a set of toroidal field coils, a primary winding, and 

a pair of vertical field coils. However, modern tokamaks are generally more complicated 

than this. For a given toroidal magnetic field strength the toroidal current which flows 

through the plasma is limited by magnetohydodynamical (MHD) stability considerations. 

This limit (the so-called Shafranov limit) is alleviated somewhat if the plasma flux surfaces 

are vertically elongated. Thus, a plasma with flux surfaces of elliptical cross section can carry 

more current than one with flux surfaces of circular cross section. Since plasma performance 

increases with increasing plasma current it is generally considered desirable to elongate the 

flux surfaces. Unfortunately, elongated plasmas are unstable to rigid shifts in the vertical 

direction. The ability of the vertical field coil system to feedback stabilize these modes sets 

a limit on how elongated the plasma can become. Plasmas whose flux surface cross sections 

are somewhat triangular tend to be more stable to MHD instabiUties than non-triangular 

plasmas. Triangular flux surfaces also reduce the electromagnetic stresses acting on the 

toroidal field coils. Plasmas can be made elongated and triangular by using additional pairs 

of poloidal field coils to push and pull the equilibrium at various different poloidal locations 

(see Fig. 4). 

It is clear that very many magnetic field coils are required to support the plasma equilib-
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rium of a modern tokamak. Ideally, all of these coils are perfectly aligned, so that they gen­

erate a toroidally symmetric magnetic field (apart from the inevitable ripple in the toroidal 

field due to the finite number of toroidal field coils: this effect is negligible provided there 

are sufficient (i.e. 18+) coils). In practice, perfectly alignment of the coils is impossible to 

achieve. Coils are often slightly shifted from their proper positions; they can also be tilted, 

or they can even be not quite circular. A set of slightly misaligned field coils generate the 

required nested toroidal flux surfaces plus a low amplitude helical magnetic perturbation. 

This perturbation is known as the "error field." The leads which feed current to and from 

the field coils can also contribute to the error field if they are not properly designed. The 

error field is conventionally specified in terms of its Fourier amplitudes in the toroidal (<j>) 

and poloidal (6) angles around the tokamak. In present day tokamaks the low mode number 

Fourier amplitudes of the error field inside the plasma are typically a few gauss (i.e. about 

10~4 of the equilibrium toroidal magnetic field strength). It is difficult to envisage building a 

tokamak with a significantly smaller error field than this because it is impossible to position 

field coils to an accuracy of much less than a few milli-meters in a device whose dimensions 

are a few tens of meters. Since error fields are clearly unavoidable in tokamaks it is impor­

tant to understand what effects they have on the confinement properties of the equilibrium 

magnetic flux surfaces. 

2 Phasing in Induction Motors 
2.1 Introduction 

The physics which governs the response of a tokamak plasma to an error field is very similar 

to that which governs the behaviour of a conventional induction motor. Consider a very 

simple induction motor consisting of a freely rotating, thin, hollow, cylindrical, conducting 

shaft surrounded by a set of rotating magnetic field coils. The idea of an induction motor 

is that the eddy currents induced in the shaft, crossed with the magnetic field due to the 

6 



rotating coils, force the shaft to (almost) co-rotate with the coils. In a real motor the rotating 

shaft is used to drive machinery. In Fig. 5 the load on the motor is conveniently represented 

as a viscous coupling to a stationary non-conducting core. 

2.2 Preliminary Analysis 

Conventional cylindrical polar coordinates (r, 6, z) are adopted in the following analysis. 

The system is assumed to be symmetric in the z-direction. The magnetic field can be written 

in terms of a flux function, 

6B = VrpAz, (1) 

where 

fio Sj = V A <5B = - V V » - (2) 

For the sake of simplicity, the magnetic field is assumed to be dominated by a single Fourier 

harmonic in the angle 9, so that 

V»(r, 9) = V»(r) exp(i (TO6 - uc t)), (3) 

where uc is the constant angular "rotation" frequency of the coils.1 In the example shown in 

Fig. 5 the field is likely to be dominated by the m = 6 harmonic. The, as yet undetermined, 

angular "rotation" frequency of the shaft is denoted u/w. The "slip frequency, u = uw — uc, is 

the difference in "rotation" frequency between the shaft and the coils. It is helpful to define 

the "time constant" of the shaft, 

TW = Mocrwrw5w, (4) 

where <JW, r w , and 6W are the shaft conductivity, radius, and thickness, respectively. The 

radial extent of the shaft is from r = r w — Sw to r = r w . In the "thin shell" limit, which 

corresponds to 

^ « Mrw < rf, (5) 

Actually, it is the angular rotation frequency divided by m. 
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routing field coil non-conducting nitiomry core 

fluid 
freely routing boliow conducting ibaft 

Figure 5: Schematic diagram of a simple induction motor 

the skin depth in the material which makes up the shaft is much less than its radius but 

much greater than its thickness. In this regime there is negligible radial variation of the 

magnetic flux function tp(r) across the shaft. In addition, Ohm's law and Faraday's law 

integrated across the shaft yield 

d£ 
dr = ia ; r w * w , (6) 

J r-wSw 

where \PW = ip(rw) is the magnetic flux which penetrates into the shaft. 

Outside the shell there are no currents, so V 2 ^ = 0. The most general solution is 

i>(r) = *w ( _r_\m 

for r <rw — 6W, and 

*r) = * (£)" + <*•-*•>(£)' 

(7) 

(8) 

for r w < r < rc, where r c is the radius of the rotating field coils. It is convenient to 

parameterize the amplitude of the magnetic field generated by the coils in terms of #„, 

the flux which would penetrate into the shaft in the absence of any induced eddy currents. 

Equations (6)-(8) yield 

# w = 1 +\wTw/2m' (9) 

8 



According to the above relation, if the slip frequency is much less than 2m/r w then the eddy 

currents induced in the shaft are weak and the flux | ^ w | which penetrates into the shaft 

attains its maximum amplitude |\P„|. However, if the slip frequency is much greater than 

2m/Tw then the eddy currents induced by the relative rotation of the shaft and the field coils 

are strong enough to exclude magnetic flux from the shaft, so that |\&w| <: \VV\. 

2.3 Electromagnetic Torques 

The integrated electromagnetic torque per unit length acting on the shaft is given by 

TeEu = r IT6jz6Br rdOdr = - — Im( r ^ 

Equations (6) and (9) yield 

*w*) • (10) 

irm2\*v\2 2(u;Tw/2m) 
J*EM = TT~7 To—\2- \ i L ) 

The electromagnetic torque always acts to reduce the slip frequency and thereby make 

the shaft rotate with the coils. The torque has a very characteristic non-monotonic variation 

with the slip frequency (see Fig. 6). If the slip frequency is zero (i.e. if the shaft co-rotates 

exactly with the coils) then there is zero torque because no eddy currents are induced in the 

shaft. The torque initially increases linearly with the slip frequency because the eddy current 

strength per unit magnetic flux scales linearly with the slip frequency. However, as the slip 

frequency approaches the critical value 2m/r w the eddy currents start to exclude magnetic 

flux from the shaft and the rate of increase of the torque begins to level off (because there is 

less magnetic field in the shaft to cross with the eddy currents and thereby produce a torque). 

The torque attains its maximum value, — irm2]^]2/^, at the critical frequency. For slip 

frequencies higher than the critical frequency the exclusion of magnetic flux from the shaft 

becomes more complete and the torque starts to decrease with increasing slip frequency. At 

slip frequencies much higher than the critical value the torque is inversely proportional to 

the slip frequency. 



normalized slip frequency •> 

Figure 6: Schematic graph of the variation of the normalized electromagnetic torque, 
TOEM/{—nm2 \^v\2/fMi), with the normalized slip frequency, wrw/2m 

2.4 Torque Balance 

The rotation of the shaft is transmitted to the viscous fluid (see Fig. 5), which exerts a 

slowing down torque on the shaft. Suppose that the spacing, d, between the inside of the 

shaft and the non-rotating core is much less than the radius of the shaft. In this limit, the 

viscous torque per unit length acting on the shaft is 

md • W w , (12) 

where \i is the coefficient of viscosity of the fluid. 

In steady-state the electromagnetic and viscous torques acting on the shaft must balance, 

so 

TSEM + T$vs = 0. (13) 

The torque balance equation can be written 

m?Twd\tyv\2 
UJ 

= \UC\ ~ U, (14) 
2/xoJ*rw

3 1 + (wrw/2m) 2 

where the coil "rotation" frequency o/c is taken to be negative for convenience (this ensures 

that the slip frequency is always positive). It is easily demonstrated that there is a critical 
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"rotation" frequency of the coils, 

(^c)crit — 
6V5 TO 

T w 

(15) 

If the magnitude of the coil "rotation" frequency is much less than the critical value then 

the slip frequency never gets sufficiently large to exclude magnetic flux from the shaft and 

the variation of the slip frequency with the coil field strength is consequently quite smooth, 

i.e. 

a, ~ !__J (16) 

where _______ 

(17) ¥ . i = 
f2/ioAtfv 

TO2TW_ 

On the other hand, if the magnitude of the coil rotation frequency is much greater than 

the critical value then there are two different branches of solutions to the torque balance 

equation. The "high slip" branch satisfies 

M 
ijj ca 1 + _.___!! 

V l*»2|J 
1 -

where 

The "low slip" branch satisfies 

i*j_!i^__i*. 
4m • I 

(18) 

(19) 

W T W l*.| J _ _ _ l _ l 
2m " | * „ 3 | 2 \ |_*|« ' 

where 

I * 
\U, 

t>3 
T w 

m 
l*.i | . 

(20) 

(21) 

In the "high slip" branch of solutions the slip frequency is sufficient to exclude magnetic flux 

from the shaft to a large extent. As the field strength of the coils is gradually increased the slip 

frequency gradually reduces until at a critical field strength, corresponding to |\&t,i = ( ^ l * 
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the solution bifurcates to the "low slip" branch. In the "low slip" branch of solutions the slip 

frequency is low enough to permit magnetic flux to penetrate the shaft. As the field strength 

of the coils is gradually reduced the slip frequency gradually increases until at a critical field 

strength, corresponding to \tyv\ = |\P»3|, the solution bifurcates to the "high slip" branch. 

2.5 Phasing 

The relationship between the two branches of solutions is sketched in Fig. 7. Note that the 

"high slip" to "low slip" bifurcation takes place at u = |u;c|/2; i.e. when the slip frequency 

is reduced to one half of its initial value (at zero coil field strength). The "low slip" to "high 

slip" bifurcation takes place at u; = 2m/rw; i.e. at the peak of the electromagnetic torque 

curve sketched in Fig. 6. Note also that there is a strong hysterises effect because the critical 

field strength for the upward (in slip frequency) bifurcation is much less than that for the 

downward bifurcation. Thus, if the coil field strength is just sufficient to cause a bifurcation 

to the "low slip" branch of solutions, and so allow magnetic flux to penetrate the shaft, then 

it must be reduced significantly before the flux is expelled from the shaft and a bifurcation 

back to the "high slip" branch takes place. 

The origin of the bifurcations can easily be traced back to the non-monotonic variation 

of the electromagnetic torque with slip frequency which is sketched in Fig. 6. The "low slip" 

solutions he on the low frequency side of the peak of the torque curve whereas the "high 

slip" solutions lie on the high frequency side. The two sets of solutions are separated by a 

"forbidden region" (which extends from the peak of the torque curve to a slip frequency of 

half the magnitude of the coil rotation frequency) in which there are no stable steady state 

solutions. 

Conventional induction motors always operate in the regime where the coil "rotation" 

frequency is much greater than the critical value given by Eq. (15). In other words, the coils 

always rotate fast enough to expel magnetic flux from the drive shaft when it is stationary. 
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high slip branch 

nonnalized coil field atiength -> 

Figure 7: Schematic graph of the two branches of the torque balance equation plotted in 
normalized slip frequency, u/\uic\, versus normalized coil field strength, j^lVl^ttfl 2* space 

(Actually, the coils in an induction motor are stationary but are energized by phased oscil­

latory currents. This arrangement mimics the fields generated by a set of rotating coils.) 

An induction motor is designed to operate on the "low slip" branch of solutions where the 

drive shaft almost co-rotates with the coils. However, if too great a load is applied to the 

motor then it bifurcates to the "high slip" branch where there is very little effective coupling 

between the drive shaft and the coils. If the load is gradually reduced then a reverse transi­

tion eventually takes place. This switching between the two different branches of solutions 

is known as "phasing" in electrical engineering. 

3 Driven Reconnection in Tokamaks 
3.1 The Plasma Equilibrium 

Consider a tokamak plasma equilibrium in which the "aspect ratio" (that is, the ratio of the 

major radius of the magnetic axis, RQ, to the minor radius of the plasma, a) is large. This 

implies that e = a/i?o ^ 1- Suppose that 

(22) 

where po is the plasma pressure on the magnetic axis, and B<j, is the approximately constant 

toroidal magnetic field strength. In the large aspect ratio, low-/3, limit the equilibrium 

f-est-oft. 
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magnetic flux surfaces are of circular cross section (in the absence of external shaping coils) 

and are almost concentric. Thus, in this limit the equilibrium is well approximated as a 

cylindrical plasma which is periodic in the axial direction with periodicity length 2irRo. 

Conventional cylindrical polar coordinates are adopted in the following analysis. However, 

it is convenient to define a simulated toroidal angle <f> = Z/RQ. 

The equilibrium magnetic field is written B = (0, Bg(r), B^). The associated equilibrium 

plasma current takes the form j = (0,0,jV(r) )> where 

Equilibrium magnetic field lines satisfy the differential equation 

where the "safety factor" 

«<0 = ITS- (25) 

parameterizes the helical pitch of the field lines. In a conventional tokamak plasma the 

safely factor is a monotonically increasing function of the flux surface radius r. Furthermore, 

<7~0(1). 

3.2 Ideal MHD 

Consider the response of a large aspect ratio, low-/?, tokamak equilibrium to a helical error 

field with m periods in the poloidal direction and n periods in the toroidal direction. It is 

convenient to represent the perturbed magnetic field and the perturbed plasma current in 

terms of a flux function rp (see Eqs. (1) and (2)). In the cylindrical limit it is reasonable to 

suppose that the plasma response possesses the same helicity as the error field. The error 

field is static in the laboratory frame (since it is generated by stationary field coils), so it is 

also reasonable to suppose that the plasma response is non time varying. Thus, 

ip(r, $, <f>, t) = if(r) exp(i (m0 -n<f>)). (26) 
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To a first approximation, the response of a conventional tokamak plasma to an external 

magnetic perturbation, such as an error field, is determined by the equations of ideal magne-

tohydodynamics (ideal MHD). These equations assume that the plasma acts like a perfectly 

conducting, inviscid, massless, fluid. In ideal MHD the linearized perturbed force balance 

equation takes the form 

- V8p + 6j A B + j A <5B = 0, (27) 

where Sp is the perturbed plasma pressure. The curl of the above relation yields the "cylin­

drical tearing mode equation," 

^ ^ ^ - i ) * - ^ ( 2 8 ) 

where jf£ = dj^/dr, and 
_ 2 . 1 d ( dip\ m2 . / n n . 

in the large aspect ratio limit. 

In an induction motor an "error field" produced by a set of rotating field coils is able to 

exert a torque on a stationary conducting shaft by inducing eddy currents in the shaft. In 

a tokamak plasma the error field is stationary but, in general, the plasma is rotating. For 

instance, all tokamak plasmas are observed to possess a radial electric field, Er, which when 

crossed with the equilibrium magnetic field gives rise to bulk plasma rotation. Furthermore, 

conventional plasma instabilities (such as tearing modes), which are locked into the frame of 

the plasma, are observed to propagate in the laboratory frame due to the plasma rotation. 

It appears likely, by analogy with an induction motor, that a stationary error field can exert 

a torque on a rotating tokamak plasma by inducing eddy currents in the plasma. 

3.3 Electromagnetic Torques - I 

Consider the flux surface averaged torque acting in the poloidal direction. This is given by 

T$Eu{r) = f<fr9-(j + 5j)A(B + SB)rd9Rod</> 
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= ffr 83*SBr rffl Rod(f> (30) 

2n2mBo 
Im(rVVV'*)» 

where use has been made of Eqs. (1), (2), and (26). Note that the torque is non-linear (i.e. it 

is proportional to the product of two perturbed quantities) and is, therefore, relatively small. 

According to the cylindrical tearing mode equation, 
,7 

Thus, Im(rV 2 ^^*) = 0 and, therefore, 7*EM = 0. Clearly, no torque can be exerted on 

flux surfaces located in a region of the plasma which is governed by the equations of ideal 

MHD. This is hardly a surprising result. A tokamak plasma differs from the drive shaft of 

an induction motor in one very important respect; namely, a tokamak plasma is non rigid. 

A force exerted inside a non-rigid body is likely to cause a local displacement of the body. 

Such a displacement is opposed by inertia and viscosity. However, inertia and viscosity do 

not figure in the equations of ideal MHD (since they are regarded as being negligibly small). 

Thus, any force exerted inside an ideal plasma can be expected to cause the plasma to 

displace in such a manner that the force is set to zero. (Likewise, an electric field occurring 

inside a stationary perfect conductor causes currents to flow which rapidly redistribute charge 

in such a manner that the field is set to zero.) 

3.4 T h e Breakdown of Ideal M H D 

In ideal MHD the perturbed magnetic field is related to the plasma displacement, £, via 

6B = VA($AB). (32) 

This equation is easily obtained by taking the curl of Ohm's law, linearizing, and then 

integrating with respect to time. The radial component of the above equation yields 
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where £(r) exp( i (mO — n<f>)) is the radial plasma displacement. To lowest order the plasma 

is incompressible (since the strong toroidal magnetic field resists compression), so V-£ = 0, 

which enables the poloidal plasma displacement to be calculated from the radial displacement 

(the toroidal displacement is negligible in the large aspect ratio limit). Equation (33) specifies 

how a tokamak plasma can displace in response to an external magnetic perturbation in such 

a manner that no eddy currents are induced and, therefore, no torque is exerted inside the 

plasma. 

According to Eq. (33) the plasma displacement required to prevent eddy currents becomes 

infinite on any flux surface characterized by q{ra) = m/n. Such a surface is called a "rational" 

flux surface, since on it the magnetic winding number q takes the rational value m/n. On 

a rational surface the helical pitch of the equilibrium magnetic field exactly matches that 

of the phase of the externally applied magnetic perturbation. It is-clear from Eq. (28) that 

the cylindrical tearing mode equation becomes singular when q = m/n, indicating that ideal 

MHD is invalid in the immediate vicinity of a rational surface. It is, therefore, possible for 

an error field to exert a torque on the plasma in such a region. 

Ideal MHD breaks down in the immediate vicinity of a rational flux surface because the 

extremely large displacement of the plasma required by Eq. (33) to suppress eddy currents 

is prevented by plasma inertia and viscosity. Suppose that plasma inertia and viscosity 

invalidate Eq. (33) in a thin layer of thickness Ss centred on the rational surface, radius r. 

Thus, the plasma displacement inside the layer is insufficient to prevent eddy currents from 

flowing. Clearly, the plasma in the layer acts very much as if it were rigid. By analogy with 

Eq. (4), it is helpful to define a "time constant" of the layer, 

T , = Lk>a(rt)ra6a, (34) 

where cr(r) is the plasma electrical conductivity. There is an equivalent limit to the "thin 

shell" limit, described in Eq. (5), in which there is negligible radial variation of the magnetic 
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flux function ip{r) across the layer. This limit is usually called the "constant-^" limit, and 

is valid provided that (cf. Eq. (5)) 

^ « Mr, « T' ^ 
ra oa 

The slip frequency u; (which is defined in an analogous manner to the slip frequency in 

Section 2) is minus the oscillation frequency of the helical error field in the rotating frame 

of the plasma at the rational surface. Thus, 

uj = m Qg(rs) — nQ^(ra)} (36) 

where ffo(r) and $V(r) are the poloidal and toroidal angular rotation frequencies of the 

plasma, respectively. By analogy with Eq. (6), 

dr 

where ¥ , s ip(ra). 

3.5 Magnetic Reconnection 

The quantity ^a has a special significance which can easily be appreciated by mapping out 

the magnetic field lines in the immediate vicinity of the rational surface. Figure 8 shows the 

field lines plotted as functions of the helical angle £ = m9 — n<t> and X = (r — ra)/Wa, where 

= iuraVa, (37) 
U-6./2 

W. = 4, m*|«.| ( 3 8 ) 

y\ nB+s ' 

and s — (d]nq/dlnr)rB. It can be seen that magnetic reconnection has taken place in Fig. 8, 

giving rise to a chain of magnetic islands whose full width Wa is proportional to the square 

root of 1 ,̂1. In fact, \?, is the reconnected magnetic flux at the rational surface. The 

magnetic island chain is stationary in the laboratory frame since it is "locked" to the non 

rotating error field. 
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,Separatrix 

-1(2 lf2 X-> 

Figure 8: Reconnected magnetic field lines in the vicinity of the rational flux surface, plotted 
as a function of £ = md - ruj> and X = (r - r„)/Wa 

Magnetic reconnection, and the consequent formation of magnetic islands, has a delete­

rious effect on the confinement properties of a tokamak plasma equilibrium. This is because 

particles are able to travel radially from one side of an island to the other by flowing along 

field lines, which is a relatively fast process, instead of diffusing across flux surfaces, which 

is a relatively slow process. 

3.6 Linear Layer Theory 

Linear layer analysis, employing single fluid equations which take into account the effects of 

plasma inertia, viscosity, and resistivity, shows that Eqs. (34)-(37) are essentially correct, 

and that the layer width is given by 

£i = 2.104 ( - 2 M , (39) 
r, \TRTVJ 

where rg = (RQ/B^) JfJ^p(ra)fns is the hydromagnetic timescale, TR = /ior 4

2a(r s) the re­

sistive diffusion timescale, and ry = rt

2p(rt)/n(rs) the viscous diffusion timescale. Here, 

p(r) is the plasma mass density, and /x(r) the cross flux surface viscosity. Equation (39) is 

only valid when ry <ti TR. In a conventional tokamak plasma the hydromagnetic timescale 

is about 10 - 7 seconds; the resistive timescale is anything from five to eight orders of mag­

nitude greater than the hydromagnetic timescale (the resistive timescale is longer in larger. 
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hotter devices); the viscous timescale is usually an order of magnitude less than the resistive 

timescale. It follows that the layer width given in Eq. (39) is a small fraction of the plasma 

minor radius. Linear layer theory is only valid if the island width Wa is much less than 

the linear layer width 6a. Thus, linear theory only holds prior to any substantial magnetic 

reconnection. 

3.7 Asymptotic Matching 

In the ideal region (i.e. everywhere apart from the singular layer and the external coils 

which maintain the error field) the flux function ip(r) satisfies the cylindrical tearing mode 

equation, (28). It is convenient to assume that there is negligible plasma current outside 

the rational surface (i.e. j ^ = 0 for r > ra). This approximation is only valid if the rational 

surface lies in the outer regions of the plasma (i.e. ra/a ^ 0.6). Thus, for r > ra the flux 

function is "vacuum like" and is therefore made up of a linear combination of r+m and r~m 

type solutions. 

The most general ideal solution is written 

il)(r) = ^ p l a s m a W + T/».hlekl(r). (40) 

The plasma solution ^piasma(r) satisfies physical boundary conditions at r = 0 and r —• 

oo (in the absence of any error field) and is normalized to unity at the rational surface 

(i.e. p̂iaama(r$) = 1). In general, the plasma solution has a gradient discontinuity at the 

rational surface. It is helpful to define 

A' = (41) 
dr 

This quantity is know as the "tearing stability index." According to conventional tearing 

mode theory, if A' > 0 then the plasma spontaneously reconnects at the rational surface to 

form a magnetic island. Note that such an island is locked into the frame of the plasma at 
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Figure 9: A schematic diagram showing typical plasma and shielded solutions 

the rational surface and, therefore, rotates in the laboratory frame. The oscillation frequency 

of the magnetic field associated with a spontaneously created magnetic island is 

L>o = m Q*0(ra) - n£^0(r,), (42) 

where 0,0 o and Q+o are the poloidal and toroidal angular rotation velocities of the plasma in 

the absence of an error field. In the following, it is assumed that A' < 0, so that the plasma 

is intrinsially tearing stable. In this situation any magnetic reconnection which takes place 

inside the plasma is due solely to the externally applied error field. Such reconnection is 

known as "driven reconnection." 

The shielded solution V'sMewO") satisfies physical boundary conditions in the presence of 

the error field, with zero reconnection inside the plasma (i.e. Shield (ra) = 0). The error field 

is such that in the absence of plasma the flux at radius r, is V?v. This quantity is termed 

the "vacuum flux" and affords a convenient means to parameterize the strength of the error 

field. It is easily demonstrated that VsMeid = 0 inside the rational surface, and that 

for rc> T > rt, where rc > a is the radius of the coils which maintain the error field. The 

plasma and shielded solutions are sketched in Fig. 9. 
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Ideal MHD in the region outside the layer gives 

r - ^ = A'Va + 2mVv, (44) 
dr , 

j r,— 

where use has been made of Eqs. (40), (41), and (43). Resistive MHD inside the layer yields 

Eq. (37). These two relations can be combined to give 
2J71 ,. / J „ . 

* « = —r,—: * • • ( 4 5 ) 

Note the similarity between this formula and Eq. (9). 

According to Eq. (45), if the slip frequency u (i.e. minus the oscillation frequency of the 

error field in the rotating frame of the plasma; see Eq.(36)) is zero then the reconnected flux 

ty, attains its maximum value 

* . = * « = ( ^ ) * . . (46) 

This is usually termed the "fully reconnected flux." In general, — A' < 2m in tearing stable 

plasmas. It follows that 1̂ ,1 > I**!. In other words, the plasma amplifies the error field so 

that the flux at the rational surface exceeds that obtained at the same radius in the absence 

of plasma. 

Equation (45) also implies that if the slip frequency greatly exceeds the critical value 

(—A')/r, then the eddy currents which are induced in the resistive layer centred on the 

rational surface effectively suppress magnetic reconnection, so that 1̂ ,1 becomes much less 

than its fully reconnected value |̂ fuu|- This is a very significant result since it implies that 

the application of a helical error field to a rotating tokamak plasma does not necessarily 

give rise to significant magnetic reconnection inside the plasma. Instead, it is possible for 

strong eddy currents to be excited in the vicinity of the rational surface which prevent any 

reconnection. 
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3.8 Electromagnetic Torques - II 

According to Eqs. (30), (37), and (45) the net poloidal electromagnetic torque acting in the 

vicinity of the rational surface is given by 

a>»=rrt,fr—fr*"'* "• ,,|*X (47) 
Jr- HO ( " A ' ) 2 + (UJT,)2 

Note the similarity between the above equation and Eq. (11). The torque exhibits the 

same non monotonic variation with slip frequency as that shown in Fig. 6 for the case of 

an induction motor. If the slip frequency is zero then the torque is zero because there is 

no differential rotation between the plasma and the error field and so no eddy currents are 

excited. The torque initially increases with increasing slip frequency because of the increasing 

strength of induced eddy currents. However, above a critical value of the slip frequency the 

torque starts to decrease with increasing slip frequency because the eddy currents become 

strong enough to suppress magnetic reconnection (so there is no magnetic field to cross with 

the eddy currents and produce a torque). This critical value of the slip frequency is (-A')/rs; 

i.e. about the same as the growth rate of a naturally unstable tearing mode. 

Consider a torus made up of a completely rigid material such as metal. It is clear 

that the torus is free to rotate toroidally. However, poloidal rotation is impossible because 

such rotation requires compression of the material as it moves from the outboard to the 

inboard side of the torus. A tokamak plasma is not a rigid body, but it does possess strong 

parallel (to the magnetic field) viscosity which opposes the plasma compression associated 

with poloidal rotation. In fact, in conventional tokamak plasmas this viscosity is sufficiently 

large to prevent any poloidal rotation. Thus, in practice, the plasma does not respond 

to the poloidal component of the electromagnetic torque exerted on it by the error field. 

However, the plasma is free to respond to the toroidal component of the electromagnetic 

torque (by changing its toroidal rotation). In the constant-^ approximation the net poloidal 

and toroidal electromagnetic torques acting on the resistive layer centred on the rational 
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surface are given by 

STe EM = j j r IJl 6 Br rd9 i*o#, (48) (a) 

«VEM = -ffRoWo6Brrd9 Rodcj), (48)(b) 

where 
tr.+ 

6jo,*= / 6je,*dr. (49) 
Jr,-

Radial integration of V-5j = 0 across the layer yields 

7w$-lk*J* = 0' ( 5 0 ) 

Thus, 
xr - n AT _ 87r2nm2i?o q;r, | 2 

5 T , E M - - - ^ E M — ( _ A / ) 2 + ( w 7 . ) a 1**1 , (51) 
where use has been made of Eq. (47). 

3.9 Viscous Torques 

Suppose that the change in the toroidal angular rotation profile of the plasma induced by the 

error field is Afi^(r). It is assumed that perpendicular viscosity acts to relax the rotation 

profile back to that of the unperturbed plasma (i.e. it tries to make ACl^ zero). It follows 

that 

Tr\T>i—)=0 ( 5 2 ) 

in a steady state, except in the immediate vicinity of the rational surface where the electro­

magnetic torque acts. Here, fi(r) is the perpendicular (to the magnetic field) viscosity of the 

plasma. The boundary condition at the edge of the plasma r = a is 

Afy(a) = 0. (53) 

In other words, the plasma rotation is clamped at the edge and is not substantially modified 

by the error field. It is easy to demonstrate theoretically that this is a reasonable assumption. 
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There is also good experimental evidence that the edge plasma rotation is unaffected by error 

fields. 

The localized toroidal electromagnetic torque acting in the vicinity of the rational surface 

gives rise to a localized viscous torque: 

8T4VS = 47T RQ 

Note that this formula implies an effective discontinuity in the radial gradient of the toroidal 

rotation profile across the rational surface. 

The most general solution of Eq. (52), subject to the boundary condition (53), is 

AQ*(r) = AM*, (55) 

for r < rs, and 

A ^ ( r ) = A J v f - / f - (56) 
JT rfX J Jr. Til 

for ra < r < a. Note that the modification to the toroidal rotation profile of the plasma 

induced by an error field is constant inside the rational surface and highly sheared outside the 

rational surface. Equations (54)-(56) yield the following expression for the viscous torque: 

«Vvs = ~^2Ro3 Afy, / r •— • (57) 
/ Jr. r/z 

The above expression is calculated on the assumption that the velocity profile has suf­

ficient time to relax across the whole plasma cross section under the influence of viscosity. 

This assumption is reasonable because the viscous relaxation timescale in tokamak plasmas 

is generally an order of magnitude less than the magnetic reconnection timescale. Thus, 

the velocity profile always has time to relax during the formation of an error field driven 

magnetic island. 

The error field induced change in the toroidal rotation of the plasma gives rise to a 

modification of the slip frequency (i.e. minus the oscillation frequency of the error field seen 
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dAQd 

dr 

»•»+ 
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in the rotating frame of the plasma at the rational surface). According to Eqs. (36) and (42) 

(assuming that poloidal flow is strongly damped) 

u — UJQ — nAQ^s, (58) 

where a^ is the oscillation frequency of a naturally unstable (i.e. A' > 0) m/n tearing mode 

in the unperturbed plasma. This frequency is termed the "natural frequency." 

3.10 Torque Balance 

In a steady state the electromagnetic and viscous torques acting on the plasma in the vicinity 

of the rational surface must balance. Thus, 

£ r* E M + WWs = 0. (59) 

Equations (51), (57), and (58) yield 

2n 2 m 2 T,(£dr/r /z) |¥ v | 2 u 
UQ — W. (60) 

/ioi2o2(-A')2 1 + ( U ; T , / ( - A ' ) ) 2 

This equation is analogous to Eq. (14) which governs the behaviour of an induction motor. 

It is easily demonstrated that there is a critical natural frequency for the m/n tearing 

mode; namely, 

Merit = " • (61) 

If the natural frequency is much less than this critical value then the slip frequency never 

gets sufficiently large to suppress magnetic reconnection inside the plasma. Consequently, 

Va ~ #ft,ii. In other words, full reconnection is always achieved. On the other hand, if the 

natural frequency is much greater than the critical value then there are two quite different 

branches of solutions to the torque balance equation. The "unreconnected" branch satisfies 

2 l i + r i$ l - ^ T a l . ( 6 2 ) 
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where 
OJQRQ 

, *" 1 , ~ 2nm\j2(£dr/r»y ( 6 3 ) 

On this branch |^, | <C l̂ fuiil, so very little magnetic reconnection takes place within the 

plasma. The "fully reconnected" branch satisfies 

<J *vl* ~ 1, (64) (-A')~|<M2 \\*„\ 

where 
i* i - /HEM'i® i - A I W*HV) /«, 

On this branch |\Pfi,ii| > |^«| > l^fuiil/v^, so almost full reconnection is achieved within the 

plasma. 

3.11 Formation of Locked Islands 

The relationship between the two branches of solutions is similar to that sketched in Fig. 7 for 

an induction motor (the "high slip" branch is equivalent to the "unreconnected" branch, the 

"low slip" branch is equivalent to the "fully reconnected" branch, and the coil field strength 

is equivalent to the error field strength). 

Suppose that a low amplitude error field is applied to a tokamak plasma and the error 

field strength is then gradually ramped up. According to the previous analysis, there is 

initially almost no driven reconnection inside the plasma. In other words, the error field 

does not give rise to the formation of a magnetic island. Instead, strong eddy currents are 

excited in the vicinity of the rational surface which effectively shield the error field from the 

interior of the plasma (i.e. the region r < rs). This effect is a direct consequence of the 

rotation of the plasma with respect to the stationary error field. 

The eddy currents induced in the plasma by the error field give rise to a localized elec­

tromagnetic torque which acts to slow down the plasma rotation. According to Eqs. (36) 
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and (62), 

0*(r.) = !Wr.) |"i + i 1-TI4|. (66) 2 2\ \*vl\ 

where Q^(ra) is the plasma toroidal angular rotation velocity at the rational surface, and 

^o(ra) is the corresponding velocity in the absence of an error field. Note that \^v\ is related 

to, feP, the m/n harmonic of the radial error field at the rational surface in the absence of 

plasma, via br = m\Vv\/rt. It is assumed that any poloidal rotation of the plasma is rapidly 

damped by parallel plasma viscosity. According to Eq. (66), the plasma rotation at the 

rational surface gradually slows down as the error field amplitude is ramped up until the 

rotation is reduced to one half of its original value, at which point there is a bifurcation to 

the fully reconnected branch of solutions. The critical value of br required to trigger such a 

bifurcation is 

w-^vW°>/^r (67) 

In the fully reconnected branch of solutions the error field induced electromagnetic torque 

is sufficiently large to effectively arrest the rotation of the plasma at the rational surface, 

so that £2^(r,) <C £l</>o(ra). The weak differential rotation between the plasma and the error 

field leads to eddy currents which are too feeble to suppress magnetic reconnection. In this 

situation, a stationary magnetic island forms inside the plasma. If the error field strength 

greatly exceeds the critical value given in Eq. (67) then the driven island width attains its 

fully reconnected value, 

WMi = 4, 
\ 

2mraR«br ( 6 g ) 

nB+s(-A')' 
Note that, in this case, the driven island has the same phase as the "vacuum island" obtained 

by adding the vacuum error field to the equilibrium magnetic field and then tracing field 

lines. Once a stationary, or "locked," magnetic island has formed inside the plasma the error 

field strength must be reduced significantly below the critical value given in Eq. (67) before 

the island heals and the strong eddy currents which prevent further magnetic reconnection 
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reform in the vicinity of the rational surface. The critical value of br below which a bifurcation 

to the unreconnected branch of solutions is triggered is 

Just prior to the bifurcation the locked island is phase shifted with respect to the vacuum 

island by 45° and its width is Wfuii/21/4. 

3.12 Non Linear Effects 

The results described in the previous subsection are dependent on linear layer theory, which 

is only valid if the width of the stationary error field driven magnetic island (see Eq. (38)) 

is much less than the width of a linear layer (see Eq. (39)). This is a reasonable assumption 

for the unreconnected branch of solutions, on which the strong eddy currents induced in the 

vicinity of the rational surface suppress magnetic reconnection and prevent the formation 

of a magnetic island. However, linear layer theory is likely to break down for the fully 

reconnected branch of solutions, on which the eddy currents are too weak to prevent the 

formation of an error field driven magnetic island. This suggest that Eq. (67), which gives 

the critical radial error field to induce a stationary magnetic island in a rotating tokamak 

plasma, is valid but Eq. (69), which gives the critical radial error field for the expulsion of 

a stationary magnetic island from a rotating plasma, may be inaccurate. In fact, non linear 

analysis shows that the correct form for the critical error field below which a stationary 

magnetic island is expelled from a rotating plasma is 

, (2m\l'*B« *><* (-*-> (70) 
K-A'J nr.\(£dr/rn)' 

which only differs slightly from the expression given in Eq. (69). In non linear theory, as in 

linear theory, just prior to expulsion the stationary island is phase shifted with respect to 

the vacuum island by 45° and its width is Wm/21^-
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Suppose that on the unreconnected branch of solutions the suppression of magnetic re-

connection is not sufficient to make the non linear island width less than the linear layer 

width. This situation may arise in large hot tokamak plasmas, where the linear layers be­

come extremely narrow. A stationary magnetic island can only form if the electromagnetic 

torque exerted in the vicinity of the rational surface is sufficiently large to arrest the local 

plasma rotation, because plasma cannot flow across the island separatrix. If the torque is 

too small then the island is "suppressed" and a highly non linear structure, whose width 

is similar to the linear layer width, forms in the vicinity of the rational surface. Care­

ful numerical simulations of the suppressed island state by R.D. Parker indicate that its 

behaviour is not too dissimilar to that of a linear layer. For instance, Parker finds numeri­

cally that fcrtock c< vorR*rH'2r lrv'67 whereas the scaling predicted by linear layer theory is 

6riock oc uJor^Tjj1-16/^0-58 (see Eqs. (34), (39), and (67)). 

3.13 Conclusions 

The basic question posed in the introduction was "What effect does an error field have on 

the nested equilibrium magnetic flux surfaces of a tokamak plasma?". This question can 

now be answered. 

The fact that tokamak plasmas rotate in the laboratory frame affords them some measure 

of protection against error field driven magnetic reconnection. Low amplitude error fields 

are shielded from the interior of the plasma by eddy currents localized in the vicinity of the 

rational surfaces. These eddy currents prevent the formation of magnetic islands and any 

associated degradation of the confinement properties of the plasma equilibrium. The eddy 

currents also give rise to a torque acting on the plasma which slows down the rotation. As 

the error field amplitude is gradually ramped up the plasma gradually slows down, with 

little or no driven reconnection, until a critical error field amplitude is reached. At the 

critical amplitude the plasma rotation is suddenly arrested and driven magnetic reconnection 
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is enabled, giving rise to the formation of stationary magnetic islands with an associated 

degradation of the plasma confinement. The error field strength must be reduced significantly 

below the critical value before the stationary islands are expelled from the plasma and the 

undegraded plasma confinement is again achieved. 

Tokamak plasmas rotate for many diffenent reasons. Many tokamaks are heated by un­

balanced neutral beam injection (NBI), in which high energy (e.g. 75 keV) neutral particles 

are injected into the plasma preferentially in one toroidal direction. Although this is pri­

marily a heating scheme it can give rise to bulk toroidal plasma rotation with velocities in 

excess of 10 km/s. Such large velocities invariably lead to the break down of the constant-^ 

approximation, which requires the inequality (35) to be satisfied, so a more sophisticated 

analysis than that given above is generally required. In this situation the torque exerted on 

the plasma by the error field can be thought of as due to the absorption of slow Alfven waves 

traveling preferentially in one direction (this is how the error field appears to the rotating 

plasma). 

In ohmically heated tokamaks the plasma appears to rotate at the electron diamagnetic 

velocity,2 

v.«3*4?, (71) 
because of two fluid effects (i.e. the fact that the plasma is actually made up of free electrons 

and ions). Here, pe is the electron pressure, and ne is the number density of electrons. 

Since the diamagnetic rotation is apparant, rather than real, it is not subject to poloidal 

flow damping. The diamagnetic velocity is much less than a typical neutral beam induced 

velocity but it is nevertheless sufficient to prevent driven reconnection by low amplitude 

error fields (i.e. u>0 is much greater than the critical value given in Eq. (61)). Fortunately, 

this velocity is generally not large enough to invalidate the constant-^ approximation. The 
2 This is a gross oversimplification of a rather complicated phenomenon. 
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natural frequency of tearing modes in an ohmically heated plasma is of order 

m mr.(r.)(tfc, + yrj 
rt * eB+r* OJQ ~ — v*$ ~ p _ 2 , (72; 

where Te is the electron temperature, 7foe = (d\nne/d]nr)rt, and 7fcre = (dlnr e /dlnr) r , . 

Note that uo oc Te/B^a2 for similar plasma discharges on different devices. This suggests 

that the natural frequencies of tearing modes in an ohmically heated tokamak are strongly 

decreasing functions of the dimensions of the device (the variation of Te/B^, with machine 

size is relatively weak). According to Eq. (67), large ohmically heated plasmas are likely to 

be far more susceptible to error field driven reconnection, and the associated degradation 

of plasma confinement, than small plasmas. Clearly, accurate positioning of field coils and 

proper design of coil feeds is far more important in large tokamaks than in small tokamaks. 

In very large (i.e. a > 1 m) ohmically heated tokamaks the critical error field strength 

needed to induce a locked island, given by Eq. (67), falls below a gauss, which is about the 

lowest level to which an error field can practically be reduced by accurate positioning of field 

coils. Thus, in very large tokamaks active measures may be required to cancel out the error 

field. Note that only those m/n harmonics of the error field which possess rational surfaces 

lying within the plasma need to be eliminated. It is relatively straightforward to design a 

set of correction coils to achieve this. 

4 Experimental Results 

Figure 10 shows data obtained from the COMPASS-C tokamak (a small tokamak). In this 

discharge an artificial m = 2/n = 1 error field is applied to the plasma with the aid of 

external saddle coils (the intrinsic error field is negligibly small). The first trace shows the 

current flowing in the saddle coils. The current is first ramped up to an flattop level for 

which the associated error field strength lies below the locking threshold. The current is 

then increased such that the locking threshold is exceeded at about time (a). The second 
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trace shows the central soft x-ray emission. Prior to time (a) the emission is high, indicating 

good plasma energy confinement. However, the emission collapses after time (a), implying 

a severe degradation in confinement. The fifth trace shows the n = 1 component of the 

radial magnetic field at the edge of the plasma measured relative to that obtained when the 

saddle coils are pulsed in the absence of plasma. Prior to time (a) the signal is negative. 

This indicates that reconnection has not taken place inside the plasma. Instead, strong eddy 

currents flowing in the vicinity of the rational surface shield the error field from the plasma 

interior (and also reduce the radial field at the edge of the plasma relative to that obtained in 

the absence of plasma). After time (a) the signal becomes positive. This indicates the decay 

of the eddy currents and the formation of a locked magnetic island (this tends to increase 

the radial field at the plasma edge relative to that obtained in vacuum). The final trace 

shows the ion impurity toroidal rotation velocity. This is related to the "plasma" rotation 

velocity (which, in this case, really means the rotation velocity of the electron fluid) by a 

simple offset. There is a slight reduction in the rotation prior to time (a) (which is difficult 

to see in the figure) and a much more dramatic reduction at time (a). The error field is 

suddenly switched off at time (b). The data indicates that the stationary magnetic island 

gradually decays away. The island is also forced to rotate as the plasma rotation is gradually 

re-established. Note that the confinement impoves as soon as the island has disappeared. 

Although it is difficult to see in the figure, the critical error field strength at which the 

island "unlocks" (i.e. starts to rotate and simultaneously decay away) is far smaller than 

that required at time (a) to produce a locked island from scratch. 

It can be seen that all of the major predictions of Section 3 are borne out experimentally. 

The critical error field amplitude required to induce a locked island lies within a factor two 

of that predicted by formula (67). Error field experiments have also been performed on 

the DIII-D tokamak (a medium sized tokamak) and the JET tokamak (a large tokamak). 

The data obtained from these experiments is also in accordance with the theory outlined in 
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Figure 10: Data obtained from the COMPASS-C tokamak. Figure 2 reproduced from Nucl. 
Fusion 32, 2091 (1992). 

Section 3. 

5 Summary 

A rotating tokamak plasma can exist in one of two possible states in the presence of an 

error field. In the "unreconnected" state the plasma rotates, strong eddy currents shield the 

plasma interior from the error field, and there is little induced magnetic reconnection. In 

the "fully reconnected" state the plasma rotation is arrested, the eddy currents are weak, 

and a stationary magnetic island is introduced into the plasma. The plasma can "jump" 

between these two states at certain critical values of the error field strength. This behaviour 

is analagous to the well known phenomenon of "phasing" in induction motors. The origin 

of the "jumps" lies in the highly non monotonic variation of the electromagnetic braking 

torque acting on the plasma with the plasma rotation velocity. 

The effects of error fields on tokamak plasmas have been investigated extensively on 

three different devices; COMPASS-C (a small tokamak), DIII-D (a medium sized tokamak), 
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and JET (a large tokamak). By and large, the predictions of Section 3 are borne out 

experimentally. In all three tokamaks there is a critical error field strength above which the 

plasma rotation suddenly collapses across the whole cross section and a stationary magnetic 

island is introduced into the plasma giving rise to a degradation of confinement. The observed 

critical error field strength for the creation of a locked island lies within a factor two of the 

theoretical prediction (67). The critical field strength is observed to increase with increasing 

plasma density, which is explicable if high density plasmas are more viscous than low density 

plasmas (see Eq. (67)). The critical field strength is also observed to decrease markedly with 

increasing machine size, as expected. This suggests that error fields may pose a particular 

problem for next generation tokamaks which are likely to be significantly larger than present 

day devices. 
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