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Abstract

Some basic topics in Light-Front (LF) quantized field theory are
reviewed. Poincarè algebra and the LF Spin operator are discussed.
The local scalar field theory of the conventional framework is shown
to correspond to a non-local Hamiltonian theory on the LF in view of
the constraint equations on the phase space, which relate the bosonic
condensates to the non-zero modes. This new ingredient is useful to
describe the spontaneous symmetry breaking on the LF. The instability of
the symmetric phase in two dimensional scalar theory when the coupling
constant grows is shown in the LF theory renormalized to one loop
order. Chern-Simons gauge theory, regarded to describe excitations with
fractional statistics, is quantized in the light-cone gauge and a simple
LF Hamiltonian obtained which may allow us to construct renormalized
theory of anyons.
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1 Introduction

Dirac1 in 1949 pointed out the advantage of studying the relativistic quantum

dynamics of physical system on the hyperplanes of the LF: x° + x3 = const., front form.

Seven out of the ten Poincaré generators are here kinematical while in the conventional

formulation on the hyperplanes x° = const., instant form, only six have this property.

Latter in 1966 the LF field theory was rediscovered by Weinberg2 in his Feynman rules

adapted for infinite momentum frame. Kogut e Soper3 demonstrated in 1970 that the

rules correspond to the quantization on the LF.

The LF vacuum is simpler than the conventional theory vacuum and in many cases

the interacting theory vacuum may coincide with the perturbation theory one. This

results from the fact that momentum four-vector is now given by (k~,k+, k-1) where

k^ = (fc°±A;3)/\/2. Here k~ is the LF energy while k1- and k+ indicate the transverse

and the longitudinal components of the momentum. For a massive particle on the mass

shell k^ are positive definite and the conservation of the total longitudinal momentum

does not permit the excitation of these quanta by the LF vacuum. The recent revival4'5'6

of the interest in LF quantization owes to the difficulties encountered in the computation

of nonperturbative effects, say, in the instant form QCD. In the conventional framework

QCD vacuum state is quite complex due to the infrared slavery and it contains also

gluonic and fermionic condensates. There seems to exist contradiction between the

Standard Quark Model and the QCD containing quark and and gluon fields. Also in the

Lattice gauge theory there is the well known difficulty in handling light fermions. LF

quantization may throw some light to clarify this and other issues. In the context of the

String theories it has been used, for example, in the case of the heterotic strings7.

LF coordinates corresponding to (x°,x1 ,x2, x3) are defined by (x+ ,x~,x±) where

x^ = ( i o ±x 3 ) / \ / 2 = Xzç. and x^ = x : (x1 = —x\, x2 = —X2). We will treat x+ = r

as the LF time coordinate and x~ = x as the longitudinal spatial coordinate. The LF

components of any four-vector or any tensor are similarly defined. The metric tensor

for the indices /J. = (+ , - , 1 , 2 ) is g++ = g = g12 = g21 = 0; g+~ — g~+ = -g11 =



- 3 - CBPF-NF-045/96

—g22 = 1. The transformation from the conventional to LF coordinates is seen not to

be a Lorentz transformation.

Any two non-coincident points on the hyperplane x° = const, have a spacelike

separation: (x — y)2\xo=yo = — (x — y)2 < 0 and it becomes lightlike when the points

coincide. The points on the LF hyperplane x+ = const, also have a spacelike separation:

(x — y)2\x+=y+ = —(x1 - yL)2 < 0 which reduces to lightlike when x x = y1, but with

the important difference that now the points need not be necessarily coincident since

(x~ — y~) may take arbitrary value. Admitting also the validity of the microscopic

causality principle it can be shown that the appearence of nonlocality in the LF field

theory along the longitudinal direction x~ is not necessarily unexpected. Consider, for

example, the commutator [A(x+,x~,xL), B(0,0, Ox)]z+=o °f two scalar observables A

and B. The microcausality would require it to vanish for x1- ^ 0 when x2\x+=0 is

spacelike. Consequently it is proportional to 62(x) and its derivatives which implies

locality in a;1; however, no restriction on the x~ dependence follows. Similar arguments

in the equal-time case lead to the locality in all the three space coordinates. We note

also that in view of the microcausality both [A(x),B(0]x4.-0 and [A(x),B(0)]xo=0 may

be nonvanishing only on the light cone x2 = 0.

It is interesting to consider the Lehman spectral representation8 for the scalar field

= / da2p(a2)A(x;a2), A(x;cr2)= / -—e(k°)6(k2 - o2) e~ik-x

JO J-oo K^S

Here the spectral function p(cr2) is Lorentz invariant and positive definite and A(x; a2)

is the vacuum expectation value (v.e.v.) of the commutator of the free field and

e(y) = —e(-y) = 9{y) — 0(-y) = 1 for y > 0. For the field theory with a local

Lagrangian it can be shown in the equal-time framework that Jo da2 p(o~2) = 1. On

the LF, d4k = d2kdk+dk-, k2 = 2k+k~ - kx2, k.x = k+x~ + k~x+ - k^.xL, and

(2\k+\)6(k2-a2) = 6(k--{k2+o-2}/(2k+)). Hence we show that A(x+,x~,x; a2)|r+=0 =

— ±62(x)e(x~) and it follows that on the LF [<?!'(X+,I~,X),(/I(0)]| I :+=O = — ^62(x)e(x~)

where v.e.v. of the expression is understood. In contrast to the equal-time case the
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equal-r commutator is not vanishing and it has a nonlocal dependence o n i " , The same

result will be shown to follow also in the canonical quantization on the LF when we use

the Dirac procedure9 in order to construct the Hamiltonian framework. We remind that

any field theory written in terms of the LF coordinates describes necessarily a constrained

dynamical system with a singular Lagrangian.

We remark that in the LF quantization we (time) order with respect to x+

rather than a;0. The microcausality, however, ensures that the retarded commutators

[A(x),B(0)]6(x°) and [A(x),B{0)]6(x+) do not lead to disagreement in the two

formulations. In fact in the regions x° > 0, x+ < 0 and x° < 0, x+ > 0, where the

commutators appear to give different values the x2 is spacelike and consequently both

of them vanish. Such (retarded) commutators in fact appear in the S-matrix elements

when we use the Lehmann, Symanzik and Zimmerman (LSZ)10 reduction formulae.

2. Poincare Generators on the LF

The Poincaré generators in coordinate system (x0 ,^1 ,^2 ,^3), satisfy [M^^P^] =

-i(Pfig^ - Pvgvia) and [M^^Mpa] = ({M^g^ + M^g^p - Mvpg^a - M^gyp) where

the metric is g^ = diag (1, —1, —1, —1), \i = (0,1,2,3) and we take 60123 = £-+12 = 1-

If we define 3{ = -(l/2)eiklM
kl and Ki = Moi, where i, j , Jfc, I = 1,2,3, we find [Ju Fj] =

ieijkFk for Ft = JhPi or Kt while [Ki.Kj] = -ieijkJk, [K^Pi] = ~iPoguf[Ki,Po} =

iPi, and [Ji,P0] = 0.

The LF generators are P+,P-.,PUP2, M12 = - J 3 , M+_ = -A'3, Mi_ = -(K1 +

J2)/y/2 s - S i , M2_ = -{K2 - Ji)/V2 = -B2, M1+ = -(A'j - J2)/y/2 = -Su and

M2+ = ~(K2 + Ji)/V2 = -S2. We find [BUB2] = 0,[£a, J3] = -ieabBbi[Ba,K3] =

iBa,[J3,K3] = OjSi ,^] = 0,(^,73] = -ieabSb,[Sa,K3] - -iSa where a,6 = 1,2 and

ei2 = -621 = 1. Also [B1,P1] = [B2,P2] = iP+,[BuP2] = [B2,Pl] = 0,[5a,P~] =

iPa,[Ba,P+] = OjSi.Pi] = [S2,P2} = iP-,[SltP2] = [S2,P1] = 0,[Sa,P+] =

iPa,[Sa,P-] = 0,(^,52] = -[B2,S2] = - iJ3 , [Si,5i] = [B2,S2] = -il<3. For

PM = id^ and M^v -* L^ = {{x^d» - Xyd») we find Ba = (x+Pa - x°P+),5a =

(x~Pa - a;ap-),Jf3 = (x"P+ - x+P-) and J3 = (xaP2 - x2PJ). Under the
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conventional parity operation V: ( x^ <-> x*,x1'2 —* —x1'2) and (p* <-» p^,;?1'2 —»

—p ' ), we find J —> J, K —> —A", 5 a —> —Sa etc.. The six generators P/, M*/

leave x° = 0 hyperplane invariant and are called1 kinematical while the remaining

Poi Mok the dynamical ones. On the LF there are seven kinematical generators :

P + , P1, P2, Bi, B2, J3 and ÍÍ3 which leave the LF hyperplane, x° +x3 =. 0, invariant and

the three dynamical ones Si, £2 and P~~ form a mutually commuting set. We note that

each of the set {Bi,B2, J3} and {Si, S2, J3} generates an £2 — SO(2)®T2 algebra; this

will be shown below to be relevant for defining the spin for massless particle. Including

Kz in each set we find two subalgebras each with four elements. Some useful identities

are eiuKa P± e~iuKa = e±u P*, eiuKa PL
 e~

iuI<3 = P1, e™-Ê P~ <T™-B = P~ + v.P +

lv2P+,eiij-ê P+e-iij-B = P+,eifi-B P±e~ii'-B = P 1 + vLP+, eiu-'s P+ e~iu-B = P+ +

Ü.P+±ü2P-,eiü-sp-e-iü-S = p-,eiü-BP±e-iü-B = Px + uJ-P~ where P-x = P =

(Pl,P2), vx = v = (vuv2) and (u-KP-1-) = (v.P) = ujP1 + u2P2 etc. Analogous

expressions with- PP -replaced by X*1 can be obtained if we use [P^,XU} = [id^,xv] — ih^ .

3. LF Spin Operator. Hadrons in LF Fock Basis

The Casimir generators of the Poincaré group are : P 2 = P^P^ and W2,

where W^ — (—l/2)e\pvilM
XpP'/ defines the Pauli-Lubanski pseudovector.- It follows

from [W^W,,] = ielluxpW
xPp, [W^Pp] = 0 and W.P = 0 that in a

representation charactarized by particualr eigenvalues of the two Casimir operators we

may simultaneously diagonalize PM along with just one component of W*. We have

W+ = -{hP+ + £ iP 2 - B2P1}, W- = J3P~ + SiP2 - S2P\Wl = K3P
2 + B2P~ -

S2P
+, and W2 - -[K3P

1+B1P~-SlP
+] and it shows that W+ has a special place since

it contains only the kinematical generators. On the LF we define Jz — —W+/P+ as the

spin operator11. It may be shown to commute with Pll,Bi,B2,Jzi and K3. For m ^ O

we may use the parametrizations p^ : (p~ = (m2 + p^ )/(2p+),p+ = (m/\/2)eü ',p1 =

—vip+,p2 = — U2P+) and p'L : (1,1,0,0)(m/\/2) in the rest frame. We have P2(p) = m2l

and W(p)2 = W(p)2 = -m2[J2 + J2 + «/|] = —m2s(s +1)1 where s assumes half-integer
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values. Starting from the rest state \p; m, s, A,..) with J3 |p; m, s, A,..) = A |p; m, s, A,..)

we may build an arbitrary eigenstate of P+, P1-, Jz (and P~ ) on the LF by

\p+,pL; m, s, A,..) = «.«•(••*>,.-*'*. \p- m , s, A,..) (1)

If we make use of the following identity for the spin operator

JÁP) = h + viB2- v2B, = e'C-0) J3 e'^-V (2)

we find Jz Ip+jp^jm^, A,..) = A \p+,p±;m,s, A,..). Introducing also J7a = — {JzPa +

W a ) /y 'P ' i P / i , a = 1,2, which contain dynamical generators we verify that [Ji,Jj\ =

For m = 0 case when p + / 0 a convenient parametrization is pM : (p~ =

p+v±2/2, p+y = - u l P + , p 2 = -u2p+) and p : (O.p+.O-1). We have W2{p) = -(5X
2 +

5|)p+2 and [W1,W2)(p) = 0, [W+,Wi](p) = -ip+W2(p), [^+,W2](p) = ip+Wi(p)

showing that W\, W2 and W+ generate the algebra 50(2) ® T2. The eigenvalues of W2

are hence not quantized and they vary continuously. This is contrary to the experience

so we impose that the physical states satisfy in addition Wii21 Pi m — 0,..} = 0. Hence
:-Wn = — \Py. and the invariant parameter A is taken to define as the spin of the massless

particle. From —W+(p)/p+ — 3% we conclude that A assumes half-integer values as

well. We note that W^W,, = X2PfiP,l = 0 and that on the LF the definition of the spin

operator appears unified for massless and massive particles. A parallel discussion based

on p~ 7̂  0 may also be given.

• As an illustration consider the three particle state on the LF with the total

eigenvalues p + , A and p^. In the standard frame with p1- = 0 it may be written

as (|x1p
+,A;1-

L;A1)|x2p
+,fc2

J-;A2)|x3P+,fc3±;A3) ) with ^ = 1 Xi = 1, E L I ki~ = °> and

A = È?=i Ai. Aplying e-Hf-B)lp+
 o n it we obtain (\xlP

+,ki- + xlp
L\\1)\x2p+,k^ +

X2PL', ̂ 2)|^3P+,^3" + xzP^~;X3) ) now with p1- ^ 0. The i,- and fc-1 indicate relative

(invariant) parameters and do not depend upon the reference frame. The X{ is the

fraction of the total longitudinal momentum carried by the ith partida while kf- its
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transverse momentum: The state of a pion with momentum (p*,? 1 ) , for example, may

be expressed as an expansion over the LF Fock states constituted by the different number

of partons

|TT : p+,p±) = J2n A / Si ^ - 1 6 7 r 3 \n • Xip+,xip
± + k-Li,\i)Tpn/n(x1,k

±
1,\1;x2,...)

(3)

where the summation is over all the Fock states n and spin projections A,-, with

Ridxi = Tlidxi 6(^XÍ - 1), and ILiCpkj- = TLidkj- ̂ ( E ^ ) . T h e w a v e function of

the parton ?/)n/7r(a;, kx) indicates the probability amplitue for finding inside the pion the

partons in the Fock state n carrying the 3-momenta (xip+,Xip± + k^-). The Fock state

of the pion is also off the energy shell : ]T k~ > p~.

The discrete symmetry transformations may also be defined on the LF Fock

states. For example, under the conventional parity V the spin operator J3 is not left

invariant. We may rectify this by defining LF Parity operation by Vlf = e~**JlV.

We find then Bx -+ -BUB2 -» B2,P
± -> P±,Pl -> -P\P2 -» P2 etc. such

that Vl^\p+ jp^'jm^s, A,..) ~ |p+ , — p1,p2;m,s, —A,..). Similar considerations apply for

charge conjugation and time inversion. For example, it is straightforward to construct

the free LF Dirac spinor x(p) = [>/2p+A+ + (m — japa) A ]x/\/v2p+?72 which is also

an eigenstate os Ji with eigenvalues ±1/2. Here A^ = 7°7 ± / \ /2 = -f^j^/2 = (A*)*,

(A^)2 = A± , and x(p) = X w ^ h 7°x = X- The conventional (equal-time) spinor can

also be constructed by the procedure analogous to that followed for the LF spinor and it

has the well known form Xcon(p) = ( m + 7.p)x/\/2m(p0 + m). Under the conventional

parity operation V : x'(p') = C7°x(p) ( sinte we must require 7^ = L / í
v S(L)juS~1(L)

etc. ). We find x'(p) = c[y/2p~A~ + (m - 7apa) A+] x/y/y/2p-m. For p ^ p it is not

proportional to x(p) i n contrast to the result in the case of the usual spinor where

7°XCon(p°,-p) = Xcon(p) for E > 0 (and ^r)con{p\-p) = -f?con(p) for E < 0).

However, applying parity operator twice we do show x"(p) = °2x(p) hence leading

to the usual result c2 = ±1 . The LF parity operator over spin 1/2 Dirac spinor is
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= c (2J\) 70 and the corresponding transform of x is shown to be an eigenstate of

4. Spontaneous Symmetry Breaking (SSB) Mechanism. Continuum Limit

of Discretized LF Quantized Theory. Nonlocality of'LF Hamiltonian

The quantization of scalar theory in equal-time framework is found in the text

books but the existence of the continuum limit of the Discretized Light Cone Quantized

(DLCQ)12 theory, the nonlocal nature of the LF Hamiltonian, and the description of the

SSB on the LF were clarified only recently.

Consider first the two dimensional case with C = [^><f>1 — V(cf))]. Here r = x+ =

(x° + x1)/^, x = x- = (x° - x J ) / \ / 2 , drcj) = j>,dx<j> = <}>', and d2x = drdx. The

eq. of motion, <j>' = (—l/2)<5V(</>)/6^>, shows that <f> = const, is a possible solution. We

write13
 <J)(X,T) = UI{T) + <p(x,r) where w(r) corresponds to the bosonic condensate

and </?(r, x) describes (quantum) fluctuations above it. The value of u;(= (0|<?i>|0)) will be

seen to characterize the corresponding vacuum state. The translational invariance of the

ground state requires that w be a constant so that £ = tpip' — V((j)). Dirac procedure9

is applied now to construct Hamiltonian theory which would permit1 us to to construct

a quantized relativistic field theory. We may avoid using distribuitions if we restrict x

to a finite interval from — L/2 to L/2. The physical limit to the continuum- (L —* ooj,

however, must be taken latter to remove the spurious finite volume effects. Expanding <p

by Fourier series we obtain <f>(r, x) = u; + ^(r, x) = w+~7^9o(T) + 77j S'n^o 9"(r) e~lknX

where kn = n(27r/X), n = 0, ±1 , ±2,.. . and the discretized theory Lagrangian becomes

i^2n knq-n ?n — / d x V((j)). The momenta conjugate to qn are pn = iknq-n and

the canonical LF Hamiltonian is found to be J dx V(u + i^(r, x)). The primary

constraints are thus po ~ 0 a n d ^n = Pn — iknq-n « 0 for n ^ 0. We

follow14 the standard Dirac procedure9 and find three weak constraints9 po « 0,

0 = f dx V'{({>) ~ 0, and $„ ~ 0 for n / 0 on the phase space and they are shown to

be second class9. We find (n,m ^ 0) {$n,Po} = 0, { $ n , $ m } = — 2ifcn<5m+n)o ,
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{po,P} = -{l/y/L)Jdx V"(<f>) = -a/y/L, {po,Po} = {/?,/?} = 0. Implement

first the pair of constraints p0 ~ 0, /? « 0 by modifying the Poisson brackets to the

star bracket {}* defined by {f,g}* = {f,g} -[{f,p0} {P,g} - (p0 <-> /?)] ( « / / L ) " 1 .

We may then set p0 = 0 and /? = 0 as strong relations9. We find by inspection

that the brackets {}* of the remaining variables coincide with the standard Poisson

brackets except for the ones involving q0 and pn (n ^ 0): {<7o,i>n}* = {<Zo>$n}* =

- ( a - 1 ^ ) . For example, if V(<j>) = (A/4)(çi2 - m2/\f , A > 0,m ^ 0 we

find {ço,Pn}* [{3\(io + q0/VL)2 -m2}L + 6\(u + qo/y/Z)f dx<p + 3\ j dxip2} =

- 3A [2(w + go/\ / I) \ / I i - n + / dx <̂>2 e"1"*-1 ].

We next implement the constraints $„ ~ 0 ( n ^ O ) . WehaveCn m = {$n)^m}* =

—2ifcn5n+Tn,o and its inverse is given by C~1
nm = (l/2zfcn)6n+m,o • The final Dirac

bracket which taking care of all the constraints is then given by

,9}D = {f,9}* - £ ' B ^ - { / , *„}* {*-«, fir}*- (4)

where we may now in addition write pn = iknq-n . It is easily shown that {90,90)0 =

0, {C0,Pn}D = {CO, iknq-n}D = 2 {?0,Pn}*, {qn,Pm}D — ^nm-

The limit to the continuum14, L —> 00 is taken as usual: A = 2{irjL) —»

dÂ;,Â;n = nA -> k,\fZq-.n -> ^ m i _ o o / _ ^ 2 dz</?(z)elfcnz = J^ dx<p(x)e'kx =

for all n, y/2n<p(x) = / ^ dfĉ (jfc) e"'*11 , and (qo/\/L) -> 0. From

/ig-n}D = L8nm/(2ikn) following from {gn,Pm}D for n ,m 7̂  0 we derive, on

using £ 5 n m -> / ^ dxe1"^-*')* = 2TT(5(A; - Jfe'), that {̂ (Jfe), ̂ (-Jfc')}o = <5(̂  - A:')/(2iAr)

where fc, A;' ^ 0. If we use the integral representation of the sgn function the well

known LF Dirac bracket {(/?(i,r),t,o(y,r)}£) = — \t{x — y) is obtained. The expressions

of {qo,Pn}D (or {ÇOJV'}!») show that the DLCQ is harder to work with here. The

continuum limit of /? = 0 is
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/ im L _oo 7 / dx V (</>) =
^ JL/2

u(Xu>2 — m2) + Um.L-.ooT I dx (3Aa;2 — m2)ip + \(3utp2 + <p3) = 0
L J-LI2 L JL/2

while that for the LF Hamiltonian is (P~ = HL^)

P- = f dx [LJ(\ÜJ2 - m2)? + ^(3Aw2 - m2)<p2 + Xuip3 + ^ 4 ] (6)

These results follow immediately if we worked directly in the continuum formulation13;

we do have to handle generalized functions now. In the LF Hamiltonian theory we have

an additional new ingredient in the form of the constraint equation (5). Elimination of a»

using it would lead to a nonlocal LF Hamiltonian1'1 in contrast to the corresponding local

one in the equal-time formulation. At the tree level the integrals appearing in (5) are

convergent from the theory of Fourier transform. When L —> oo, it results in V'{ui) = 0,

which in the equal-time theory is essentially added to it as an external constraint. In

the renormalized theory15 the constraint equation describes the high order quantum

corrections to the tree level value of the condensate.

The quantization is performed via the correspondence i{f,g}o —* [fig]- Hence

tp(x,r) = (l/y/2ir)fdk 6{k) [a(k,r) e~ikx + J{k,T)eikx]/(y/2k), were a(k,r) and

a*(k,r) satisfy the canonical equal-r commutation relations, [a(fc,r),a(fc',r)'] = 6(k —

k') etc.. The vacuum state is defined by a(k,r)\vac) = 0, k > 0 and the tree level

description of the SSB is given as follows. The values of UJ = {|</>|)uac obtained

from V'(u>) = 0 characterize the different vacua in the theory. Distinct Fock spaces

corresponding to different values of w are built as usual by applying the creation operators

on the corresponding vacuum state. The UJ = 0 corresponds to a symmetric phase since

the hamiltonian is then symmetric under ip —• —tp. For OJ ̂  0 this symmetry is violated

and the system is in a broken or asymmetric phase.

The self-consistency9 may also be checked. Hamilton's eq. gives C/?(X,T) =

—Í[(P(X,T),H1'^'(T)] — — J dy e(x — y)V'(cj)(y,T))/4: and we recover the Lagrange
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eq. </?'(x,r) = -V'((J)(X,T))/2. If we substitute the value of V'(^) obtained from

the latter in the former we find after an integration by parts </?(x,r) = <p(x,r) —

kó(oo,r)e(oo - x) — tp(—oo,r)e(—oo — x) \/2. For finite values of x this leads to

0(oo, r ) + <p(—00, r) = 0. On the other hand, if we integrate the momentum space

expansion of y ' (x,r) given above we may show that y>(oo,r) — tp(—oo, r ) = 0. Hence

we are ied to 5 ry(±co,r) = 0 as a self-consistency condition. This is analogous to the

condition dty>{xl = ±00, t) = 0 which in contrast is aided to the equal-time theory upon

invoking physical considerations. The constraint eq. is then seen to follow also upon

a space integration of the Lagrange eq.. A self-consistent Hamiltonian formulation can

thus be built in the continuum which can also describe the SSB.

The extension14 to 3 + 1 dimensions and to global continuous symmetry is

straightforward. Consider real scalar fields (j>a(a = 1,2, ..JV) which form an isovector of

global internal symmetry group O(N). We now write </ia(x,x,r) = ua + y a (x ,x , r ) and

the Lagrangian density is C = [(paíp'a — (l/'l)í(\ipa)(dnpa) — V(<j>)], where i = 1,2 indicate

the transverse space directions. The Taylor series expansion of the constraint equations

Pa = 0 gives a set of coupled eqs. IVB'(w) + Va"6(w) / dxpb + Va"6'c(w) / dx<pb<pc/2 +

... = 0. Its discussion at the tree level leads to the conventional theory results.

The LF symmetry generators are found to be Ga(r) = —ijd2xdx<p'c(ta)cdfd

= / d2k dk 6(k)ac{k,k)}(ta)cdad(k,k) where a,/3 = 1,2,..,N(N - l ) / 2 , are the group

indices, tQ are hermitian and antisymmetric generators of O(N), and ac(k, ky (ac(k, k))

is creation ( destruction) operator contained in the momentum space expansion of ipc.

These are to be contrasted with the generators in the equal-time theory, Qa(x°) =

J d3xj° = — i J d3x(doipa)(ta)ab<Pb — i(ia^)a J d3x(dipa/dxo). Thus the generators on

the LF always annihilate the LF vacuum and the SSB is now seen in the broken symmetry

of the quantized theory Hamiltonian. The criterian for the counting of the number of

Goldstone bosons on the LF follows to be the same as in the conventional theory. On

the other hand, the first term on the right hand side of QQ(x°) does annihilate the

conventional theory vacuum but the second term gives now non-vanishing contributions



- 12 - CBPF-NF-045/96

for some of the (broken) generators. The symmetry of the vacuum is thereby broken

while the quantum Hamiltonian remains invariant. The physical content of SSB in

the instant form and the front form, however, is the same though achieved by differnt

descriptions. Alternative proofs14 on the LF, in two dimensions, can be given of the

Coleman's theorem related to the absence of Goldstone bosons and of the pathological

nature of massless scalar theory; we are unable to implement the second class constraints

over the phase space.

We ren.ark that the simplicity of the LF vacuum is in a sense compensated by

the involved nonlocal Hamiltonian. The latter, however, may be treatable using advance

computational techniques. In a recent work15 it was also shown that renormalized theory

may be constructed without the need of first solving the constraint eq. for u. Instead we

perform renormalization and obtain a renormalized constraint equation. For (<j>4)2 theory

this along with the equation expressing mass renormalization condition are sufficient to

describe the phase transition in the theory. It was found to be of the second order,

which agrees with the conjecture of Simon and Griffiths16, in contrast to the first order

transition found if we follow the variational methods.

5. Chern-Simons (CS) Gauge Theory

LF quantization may turn out to be useful for nonperturbative computations in

QCD and in the study of relativistic bound states of light fermions. To elucidate some

general features in gauge theory quantized on the LF we consider17 the CS theory

described by the singular Lagrangian C = (X"i</»)(I)
ii^*) + (K/47r)e'1I/pA/t9vAp, which

is known to be relevant for the theory of anyons- excitations with fractional statistics.

Here V^ = (c^ + ieA^), Vfi = (d^ — ieA^), and the theory a has a conserved and gauge

invariant four-vector current j M = ie^V-^ — ^V1^*). Its contravariant vector property

must remain intact if the Hamiltonian theory constructed is relativistic.

On the LF the light cone gauge (Leg.), A- = 0, is clearly accessible in the Lagangian

formulation. It will be shown to be so also on the phase space. Before applying the

Dirac method to construct an Hamiltonian we must consider the boundary conditions
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(bcs) on the fields involved in our non-covariant gauge. The self-consistency9 requires

that the Hamiltonian theory must not contradict the Lagrangian theory and we may

thus examine first the Lagrange eqs. in Leg.. We find an expression of the electric

charge Q on integrating (one of) the eq. of motion 2ad-A\ = j + , where K = Ana:

Q = Jd2xj+ = 2aJdx1[A1(x~ = oo.a;1) - Ax(x~ = -oo .z 1 ) ] . It follows that if

the charge is nonvanishing A\ can not satisfy the periodic or the vanishing bcs at

infinity along x~. We will assume the anti-periodic bcs for the gauge fields along

x~ and the vanishing ones along x1. For the scalar fields similar arguments allow

us to assume vanishing bcs at infinity. The canonical Hamiltonian, after integration

by parts using these bcs, may then be written as Hc = J d2x[(Vi(j))('Di(f)*) — A+Q]

where Í) = ie(-K(f> — ir*<f)*) + ae+1WiAj + d^1 and i = —, 1. From this as the starting

point17 we apply the Dirac procedure9 to construct a self-consistent Hamiltonian theory

corresponding to the singular CS Lagrangian. We find two first class constraints

TT+ w 0 and Cl « O which generate gauge transformations and four second class

ones, T = 7T - V-<t>* « 0, T* = n* - V-<j> * 0, and T* = n{ - ae+i>Aj w 0.

The extended Hamiltonian is H' = Hc + JdPx^uT + u*T* + u,T l + U+TT+] where

u,u*,u1,u+, (and A+) are Lagrange multiplier fields. The eqs. of motion are obtained

from df(x,r)/dr = {/(a;,r), H'(T)} + df/dr and from them we conclude that a set

of multipliers may be chosen such that A- ~ 0 and dA-./dr « 0. The' local l.c.g.

A_ w 0 is thus also accessible on the phase space. We add in the theory this gauge-fixing

constraints so that now the set of second class constraints becomes T m , m = 1,2..6:

Ti = T~,T 2 = T 1 ,T 3 = T,T4 = T*,T5 = A_,T 6 = Í2 while TT+ W 0 stays first

class. The initial Poisson brackets are now modified to define the Dirac brackets {/, g}o

such that the second class constraints may be written as strong equalities9 Tm = 0 and

df(x,T)/dr = {f(x,T),H'(r)}D + df/dr. The Dirac brackets are constructed17 to be

U,9)D = {f,9}- f d2ud2v{f,Tm{u)}C^n{u,v){Tn{v),g) (7)

where C~1(x,y) is given by
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It is the inverse of the constraint matrix with the elements Cmn = {Tm ,Tn} and

K{x — y) — —(l/4)e(x~ — y~)6(x1 - y1). We find that A+ which is already absent

in Tm , drops out also from Hc since ft = 0. The ir+ « 0 stays first class even with

respect to the Dirac brackets and the multiplier u+ is left undetermined. The variable

TT+ decouples and we may choose u+ = 0 so that TT+ and A+ are eliminated. The LF

Hamiltonian then simplifies to

There is still a U(l) global gauge symmetry generated by Q. The scalar fields transform

under this symmetry but they are left invariant under the local gauge transformations

since, {£l,f}D = 0. The only independent variables left are (f> and <j>* which satisfy the

well known equal-r LF Dirac brackets

D = #(*,y) (10)

We remark that we could alternatively eliminate 7r+ by introducing another local

gauge-fixing weak condition A+ ~ 0 (and dA+/dr m 0) which is easily shown to be

accessible. The additional modification of brackets does not alter the Dirac brackets of

the scalar field already obtained. There is thus no inconsistency in choosing the two

local and weak gauge-fixing conditions A± « 0 on the phase space at one fixed time r

in the CS gauge theory; that they are accessibile follows from the Hamilton's eqs. of

motion.
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We check now the self-consistency. From the Hamilton's eq. for <f> we derive (e = 1,

n*=d-(f>): d-d+<j>(x,T) = {K*(X,T),H(T)}D = \VxV^-iA+d-<$>-{{d-A+)$ where

—2ad-A+ — j 1 = —ie(<f>*T>i<j> — cj)V\(j)*). On comparing this with the corresponding

Lagrange eq. d+d-<f> = ^UiVi<j> — iA+d-<f> — %(d-A+)</> in the Leg. it is suggested for

convenience to rename the expression A+ on the phase space by (the above eliminated

) A+. We thus obtain agreement also with the other Lagrange eq. — 2ad-A+ =

j = —ie^Vicj) — (f>V\(j)*). The Gauss' law eq. is seen to correspond to 0, = 0 and

the remaining Lagrange eq. is also shown to be recovered. The Hamiltonian theory in

the Leg. constructed here is thus shown self-consistent. The variable A+ has reappeared

on the phase space and we have effectively A- = 0 (and not A± = 0). Similar discussion

can be made in the Coulomb gauge in relation to A0 and there is no inconsistency on

using the non-covariant local gauges for the CS system. That only the nonlocal gauges18

may describe consistently the excitations with fractional statistics in the CS system

does not agree with our conclusions. We find that it should also arise in the quantum

dynamics of the simpler Hamiltonian theory described by (9) and (10) on the LF in

the local Leg., which possibly may be used to construct renormalized theory of anyons,

or in the local Coulomb gauge in the conventional framework. In the latter case or

in the nonlocal gauges the Hamiltonian is complicated and renormalized theory seems

difficult to construct. A dual description17'19 may also be constructed on the LF. We

can rewrite the Hamiltonian density as 7i = (d\4>)(d\<j)*) if we use A\ = d\K where

SaKix-.x1) = Jd2ye(x- -y~)e(a;1 - y J ) i + (y) and define ^ = e'A<£, j>* = e~iA(j>* .

The field <j> clearly does not have the vanishing Dirac bracket (or commutator) with itself

and leads to manifest fractional statistics.

The relativistic invariance of the theory above is shown17 by checking the Poincaré

algebra of the field theory space time symmetry generators. We also come to the

conclusion that the anyonicity seems not to be related to the unusual (not unexpected17

in non-covariant gauges) behavior under space rotations (sometimes referred to as

rotational anomaly20'19) of the scalar or the gauge field but rather to the (renormalized)
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quantum dynamics of CS system, for example, described by (9) and (10).

6. Conclusions

The LF quantization seems useful and complementary to the conventional one and

may be used with some advantage in the context of gauge theories like QCD and CS

systems among others for stdying nonperturbative effects. The description of the physical

observation (like the SSB, Higgs mechanism, Anyonicity, Phase transition etc.) on the LF

may be somewhat different. The self-consistency conditions contained in the constrained

dynamical system on the LF (phase space) seem to correspond to (at least some of) the

external constraints we generally add in the conventional quantization on the basis of

physical considerations. The local non-covariant gauges21 which have been successfully

used in Yang-Mills gauge theories may be used consistently also in the case of CS gauge

theory.
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