The understanding of the nature of low energy fission dynamics remains an outstanding problem. In this context, the amplitude of proton odd-even effect δp for an even nuclear charge Z_F fissioning nucleus and its variation with Z_F is the most relevant observable. The experimental data allow one to construct the correlated yield surface $Y(A_L, Z_L, E_L)$ for the light fragment group; here A_L, Z_L and E_L are, respectively, the light fragment mass, its nuclear charge and its kinetic energy. Apart from the mean value of δp, one can study the differential quantities $\delta p(I_i)$, where $I_0 = E_L$; $I_1 = E_K$, the total fission kinetic energy; $I_2 = \langle Q \rangle (A_L) - E_K$, where $\langle Q \rangle$ is the mean reaction energy for A_L; and $I_3 = (Q(A_L, Z_L) - E_K)$. In this communication, we present the $232U(n_{th}, f)$ data obtained with the Cosi fan tutte spectrometer installed at the Grenoble high flux reactor [1,2]. The differential $\delta p(I_i)$ values for $i = 0,1,2$ behave in a similar way: the proton odd-even effect goes up as I_0, I_1 increase and I_2 decreases; but the behaviour of $\delta p(I_3)$ is quite different and opposite to that of the others. We show that this behaviour of $\delta p(I_3)$ results from a biasing against the even Z yields, when this parameter is used. However, the average value δp is, as it should be, the same and independent of the choice of the parameter. We show also that the δp and its amplitude stem from the dynamics of the process and not from the reaction energy Q-line. Finally, we discuss the nature of this dynamics that englobes both the binary [3] and the light-particle- accompanied ternary fission [4] processes.

References

* At present visitor at the ILL, Grenoble, France