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Introduction

The problem of the numerical reconstruction of potential by scat-
tering data is well known and important from the mathematical point
of view and for such physical applications as the analysis of a nuclear
interaction potential by experimental data. The main approaches
for theoretical investigations of the problem are well-known Gelfand-
Levitan, Marchenko and Krein methods ([1], [2], [3], [4], [5]). At the
same time the development of the corresponding numerical methods
is sufficiently complicated by the reason of the ill-posedness of the
mentioned inverse problems.

In this paper we consider a new statement of the inverse prob-
lem of the Quantum Scattering Theory and suggest the numerical
method for its solving. To this end we describe the Newtonian Iter-
ative Scheme with Simultaneous Iterations of the Inverse Derivative
and formulate the theorem establishing its convergence. Then we use
the method for the inverse problem of the reconstruction of iterac-
- tion potential by a phase shift given on a set of closed intervals in
(1, k)-plane, satisfying certain geometrical ”Staircase Condition”.

1. Statement of the Problem

The following Cauchy problem for the radial Schrodinger equation
is considered:

9? I(l+1
éﬁqS(l, k,r)+ (k2 _X r2 )) ¢l k,r)=V(r)o(l, k,T) (1)
lim(20 + )= "1g(L k,r) =1 . (2)
It is well-known that for the potentials satisfying the condition
/ r|V(r)|dr < oo 3)
0

the wave function has the following asymptotic behaviour:

#(l, k,r) ~ ngﬂk)I sin(kr — ll +6(l,k)) r— o0, (4)




where F(l, k) is the Jost Function.

The Inverse Problem of the Quantum Scattering Theory is the
problem of the reconstruction of an unknown potential V(r) by some
given information about phase shift 6(1, k).

Note.For details and complete bibliography we refer to [5], [6],
{71, (8], [9}.

A potential in (1) is a function of one variable r so it is naturally
to reconstruct a potential by a phase shift given on a certain one-
dimensional submanifold of (I, k)-plane. The problem is well known
and investigated in two important special cases: for the potentials
given for fixed orbital momentum I (§(k) = 6;(k)) and for the poten-
tials given for fixed energy (f.i. 6(I) = 8/(1)). Geometrically these
cases correspond to rays issuing from origin of the (/, k)-plane and
parallel to the axes. At the same time there are very few results con-
cerning the potential reconstruction by phase shifts given on another
one-dimensional manifolds and all of them are obtained in the frame-
work of the WKB or generalized WKB approaches ([10], [11], [12],
[5]). The theoretical analysis of the problem is very difficult because
there are no generalization of the Gelfand-Levitan-Marchenko-Krein
Theory for such situations.

Our approach to the numerical investigation of these problems is

based on the following Variable Phase Equation ([13], [14]):

Q‘S“B’rﬂ = =k~ (r)[cos(8(L, k, r))ju(kr)—
- —sin(8(0, k,r)m(kn)]?, (5)
where
5(1,k,0)=0, lim 8(,k,r) = (1, k), (6)
and
ilz) = /() mu(=) = \[5 Viapal2) ™

are Bessel-Ricatti functions.




Let us denote by ® the nonlinear operator associating to a poten-
tial V(r) corresponding phase shift §(!, k). Then the inverse problem
can be considered as a nonlinear equation

o(V)=46 (8)
with respect to' the unknown potential V(r).

2. Continuous Analogy of Newton Method (CANM )
First we describe the Continuous Analogy of Newton Method

(18], [16], [17]).

Let H be a real or complex Hilbert space, L(H) - the space of
linear operators in H, ¢ : H — H - a nonlinear operator. The
following nonlinear equation is considered:

p(z) =0 . (9)

Denote by zp an initial approximation to the solution of the (9), by
¢@'(z) - the Frechét derivative of the operator ¢ and by ¢”(z) - the
Gateaux derivative of the operator ¢’(z), i.e. ¢”(z) for fixed z is a
linear operator from H to L(H), such that

¢'(z +&) — ¢'(z) = ¢"(2)¢ +n, and ||n]|||¢||™ €0, for £ -0 .

Now let us consider the following Cauchy problems in H:

(1) = —¢' " (2())e(z(t), 2(0) =0 . (10)

For the problem the following convergense theorem holds.

Theorem 1. ([15)) If there ezists a positive number r such that
the operators ©'(z), ¢'~'(z) and ¢"(z) ezist in any point of the ball
B = {z;]|lz — zo|| < r|lp(z0)||}, ¢"(z) is bounded in a neighborhood
of every point of B, and for every x € B

-1
Il @)l < .

Then fort € [0,400) there exists a solution z(t) of the problem (10),
z(t) € B for all t € [0,+00),

“leifgo z(t) ==z (11)




and z* i3 the solution of the problem (9).

3. The Fréchet Derivative Operator ¢'(V)

So the principal point for solving (8) by means of CANM is the
inversion of the operator ®'(V). The last one can be simply obtained:

@WK = [ K,k e (12)
Where
K(l,k,t) = —B(,k, t)exp[]oV(s)A(l, k, s)ds] , | (13)

A(l k,r) = k™ sin(26(1, k, 7)) (53 (kr) — n?(kr))+

+ cos(26(1, k,7))ji(kr)n(kr)] (14)

B(l, k,r) = k™ [cos(6(1, k, 7))ji(kr) — sin(6(, k,r))ny(kr))* . (15)

The inversion of the operator (12) is in fact a problem of solving the
Fredholm integral equation of first kind. The last one is an ill-posed
problem and needs some regularization. In ([18]) the algorithm using
Tikhonov regularization at every step of the Newtonian iterations was
constructed in the particular case of the problem, when phase shift
is given for zero orbital momentum (see also [19]). However such
algorithm is unstable and has low accuracy.
Note.For another applications of CANM we refer to [21], [20].

4. Continuous Analogy of Newton Method with the
Simultaneous Inversion of the Fréchet Derivative

Now our aim is to consider a continuous Newton method with the
simultaneous calculation of reciprocal to the operator ¢'(z). Let us
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consider the following system:

p(z) =0
{wwW—E=o, (16)

where Y € L(H) and E is the identity operator. Let Y, be some
approximation to ¢’(z¢)~! and p is a positive number.
Let us consider the following Cauchy problem:

(1) = —Y (H)p(a(t)
{wm=—ﬁmmmwwumwm+ ()
FY ()¢ (2(O) (@ (2(0))") + 20 (D))"

z(0) = zo, Y(0) =Y, .

Let us assume that the following condition holds.

Condition A. There exist r > 0 and € > 0 such that

1) Frechét derivative ¢'(z) and Gateaur derivative o"(x) erist in
B = B(zo,r||¢(z0)||), moreover

ll¢"|lr =sup sup ||(¢"(x)€llmy < o0,
z€B ¢eH, ||¢ll=1

2) for any = € B the operator (p'*(z)) is invertible and
.—l = -—
lle" ™ llr = sup |l(¢"(2)) 7| < o0,
z€B

8) the following inequality holds

max{||Yall, ll¢" " |I+}
0 < < 7r. 18
1 — max{||¢’(z0)Yo — E||, €} ()
- Denote
llellr = sup |le(x)|]
r€B
p.— - "I+ ||+
po = max{||Yoll, [l¢" " [I-} ¢’ |l w I.IZC I (19)

The following theorem establishes the convergense of the method.
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Theorem 2. ([22]) If the Condition A holds, then for every

P > Po
1) the solution (z(t), Y(t)) of the problem (17) ezists for t €

[0, +00) and
z(t) € B(zo, rlle(zo)ll) , - (20)

I @)Y (&) - Bll < max{ll¢'(so)Yo— Bll,} 5 (21)

2) there ezists

tg_{rgo z(t) = z°

‘and z* s the solution of the problem (9).

5. An Inversion of the Operator ®'(0)

So for the numerical solving of the inverse problem by means
of the described method we must invert ®’(V) only in the initial
approximation point Vp(r). As an initial approximation we use zero
potential: Vy(r) = 0. So we have to solve the following Fredholm

equation of first kind:

@O F) = —¢ [ ke = olhk) . (22)

In the case = 0, ¢ = g(k), k € [0,00) the operator ®(0) is very

simple:

o0

(@ (0))(k) =~ [ int ke (23)

and can be easy inversed by means of the Fourier sin-trasformation:

(8'(0) g)(r) = 2r / cos(2kr)g(k)kdk . (24)
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Now our goal is to inverse ®'(0) for g(I,k) given on more general
subset. Let us denote

(k) = /sin(kr)ﬁ(r)rdr :

From the recursion formulas for the Bessel-Ricatty functions |

204+1
T

a
5;21(:0) = z(z) = z1(z) 1=1,2,...,

l
ZI.H(QI) = 21_1(22) - ;Zz(x) l = 1,2, NN

we get the following relations:

Selkg(0,K)] = =n(2k) (25)

%[kg(l, k)] + %g(l, k) =2 IE—S(—I)T(ZI —2m—-1)g(l —m —1,k)+

m=0
+2(-1)"*g(0, k) + (-1)*n(2k) 1=1,2,... .

Therefore

SEIR(G( )+ (L1, B -aulk(g(l, KyHo(1+1,K)] = (Bmeu)g(1+1,)

%[k(g(l, k)+g(l+1, k)] - Bilk(g(l, k) +9(I1+1, k)] = (ai—Br)g(l, k) ,

where

_ (4 1)@-1) a2
| ag =2, oq=2 7 , Bo=-2, Bi= 0D
So we obtain the following recursions:
g(, k) = a'~[g(l,a) + g(I + 1,a)]k" "+
.
+(B — a)ker? [ 511+ 1,5)ds — g(1 + L,K) (26)




g(1+1,k) = a'P[g(l,a) + g(1 + 1,a)]K* +

k
+aw = BRP [ sPrg(l, s)ds — g(1,) - (27)

Now let the two finite sequences of nonnegative numbers be given:
the first one {l;,13,...,In} consists of integers, and the second one
{ao, a1,a3,...,an-1} of real numbers, where ag = 0. Denote by Iy a
finite set of closed intervals on the (I, k)-plane:

N-1
In=U{(Lksl=1a;0 <k<a;}

‘1

U{(n, k);an-1 < k < o0} . (28)

Definition 1. We say that the system Iy satisfies a "Staircase
Condition” if there exist integers 0 = ny; <ny < ... < n, < N such
that for every t from 1 to m the following conditions hold

a) |imi=l|=1forj=n;+1,n;+2,...,ni41 -1,

b) no less than one from the numbers 1., ln,41,...,ln,_,—1 equal
to zero.

From (26) and (27) the following lemma immediatly follows.

Lemma 1. Let a continuous function g(I,k) = ®'(0)¢ be given
on a set of intervals Iy satisfying the ”Staircase Condition”. Then
the corresponding function g(0, k) is univalently determined on [0, co)
by recursion formulas (26) and (27).

From Lemma 1 the recursion formula for the inversion of the op-
erator ®’(0) can be easy obtained for every set of intervals satisfying
the ”Staircase Condition”.

6. Statement of the Problem and Numerical Example

Thus, now we can formulate the statement of the problem to
which suggested Numerical Method could be applied.




Statement of the Problem. To reconstruct the potential by
means of the phase shift given on the set of the intervals satisfying
the ”Staircase Condition”.

For this problem there are no theorems establishing its well-
posedness, so we are able only to examine it numerically. Let a
phase shift §(/, k) be given on the set

L ={(1,k);0 <k < a1 }|J{(0,k);a;, < k < o0} . (29)

Then from the formulas of Sect.5 we obtain the following relation:

(&7 (0)g) = m(g(0,0) + g(1,a)l(ar™ ~ 5a~'r~*)sin(2ar)+
+r~2 cos(2ar)] + 21r/g(0, k) cos(2rk)kdk — ‘2.7r/g(1,k)><
a 0

x[(k — 2k7*r"%) cos(2rk) — (2r~! + k~%r~%)sin(2rk))dk .  (30)

Then using this inversion formula for initial approximation we apply
the algorithm described in Sect.4.

Below we bring some pictures illustrating the results of the nu-
merical calculations based on this method. We start from the known
potential V,(r) on [0,10], then solve the direct problem and obtain
phase shifts 8o(k) on [5,10] and é,(k) on [0,5], and finally reconstruct
the potential V,(r) on {0,10]. '

The results of numerical investigation show that the considered
problem can be numerically solved with high accuracy and so such
statement of a problem is reasonable. As seems to us, the interesting
problem now is to prove the corresponding well-posedness theorem.
3 Acknowledgments. This work was supported by RFFI, grants

94-01-01119 and 95-01-01467a.
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- Figure 1: In upper row the first figure displays V,, and second one - 8y, in lower
row the first figure displays 6; and second one - V;..
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Atipanersan P.I"., [ly3sinun U.B., Kuakos E.I1. E11-96-393
Yucnenuplit MeTon peweHns oOpaTHOH 3anauu
KBaHTOBOi TEOPHH paccesHUs

[pemioxen HOBbIH YWCJIEHHBIA METOH pPELIEHUS 3ajayd O BOCCTAHOBIEHHH
MOTeHUHaNa B3aMMOACHCTBHA MO a3oBOMY CUABHIY, 3a1aHHOMY Ha CEMENHCTBE HHTEP-
Ba10B B (/,k)-TJIOCKOCTH, YAOBJIETBOPSAIOIEMY OMNPEAE/IEHHOMY I'€OMETPHYECKOMY
«Ycnosuio JlectHuua». MeTox OCHOBaH Ha pelieHuH ypaBHEHHs a3oBbix PyHKUHI
M Ha MoaMdHKaUMK HenpepbBHOIO aHanora merona Hetotona. |

. Pabota Brinonxena s JlTaboparopuu BoIYNCAHTENBHON TEXHHKH M aBTOMATH3aLUHH
OHAH.
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Numerical Method for Solving the Inverse Problem
of Quantum Scattering Theory

A new numeric4l method for solving the problem of the reconstruction
of iteraction potential by a phase shift given on a set of closed intervals in (/,k)-plane,
satisfying certain geometrical «Staircase Condition», is suggested. The method
is based on the Variable Phase. Approach and on the modification of the Continuous
Analogy of the Newton Method.
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