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Summary

We consider point events occuring in a random way in time. In many applications the
pattern of occurrence is of intrinsic interest as indicating, for example, a trend or some
other systematic feature in the rate of occurrence. The purpose of this report is to
survey briefly different statistical trend analysis methods and illustrate their applicability
to temporal phenomena, in particular.

Before any analytical methods are treated some simple graphical methods are con-
sidered. Graphical methods are important e.g. in finding the grosser features of the data
and also checking on the assumptions on which the more formal methods of analysis
are based. Graphical displays are always helpful if data is wanted to be presented.

The first hypothesis usually is that events are occurring randomly in time. A well-
known mathematical model of a completely random series of events is the Poisson
prosess. When the intensity with which the events occur in time is constant, there is no
increasing or decreasing trend in the event occurences, and the Poisson prosess is said
to be a time homogeneous Poisson prosess. We shall deal, however, with a
generalization, the non-homogenous Poisson process (NHPP), in the case of which the
intensity of the occurence of events is a function of time.

The trend testing of point events is usually seen as the testing of the hypotheses
concerning the intensity of the occurrence of events. When the intensity function is
parametrized, the testing of trend is a typical parametric testing problem.

The Laplace test is orginally developed as a parametric test for the NHPP obeying a
certain intensity function. There are models, for which the Laplace test has rather good
statistical properties. From a practical point of view, the Laplace test provides a good
indication of the existence of a trend. Together with graphical presentations, the Laplace
trend statistics give rather a clear picture about the possible trends. The use of Laplace
statistics is practically recommendable to analyse the point phenomena. However, if the
phenomenon is not properly described by a point process model, one must not use the
Laplace test.

In industrial applications the operational experience generally does not suggest any
specified model and method in advance. Therefore, and particularly, if the Poisson-
process assumption is very questionable, it is desirable to apply tests that are valid for
a wide variety of possible processes. The alternative approach for trend testing is to use
some non-parametric procedure. In this report we have presented four non-parametric
tests: The Cox-Stuart test (a modification of the sign test), the Wilcoxon signed ranks
test, the Mann test, and the exponential ordered scores test.

It is obvious that the fewer or weaker are the assumptions that define a particular
model, the less qualifying we need to do our decision arrived at by the statistical test
associated with that model. That is, the fewer or weaker are the assumptions, the more
general are the conclusions. However, the most powerful tests are those which have the



strongest or most extensive assumptions. The parametric tests have a variety of strong
assumptions underlying their use. When we have reason to believe that the conditions
for a parametric test are met in the data under analysis, then we should certainly choose
a parametric statistical test for analyzing those data. If these conditions are not met,
some relevant nonparametric test can be used.

In addition to the classical parametric and non-parametric approaches we have also
considered the Bayesian trend analysis. First we discuss a Bayesian model, which is
based on a power law intensity model. The Bayesian statistical inferences are based on
the analysis of the posterior distribution of the trend parameters, and the probability of
trend is immediately seen from these distributions. In principle, it is possible to apply
non-parametric Bayesian models.

We applied some of the methods discussed in this report in an example case. The
results were not contradictory, and every model detected the trend that was assumed in
the Monte Carlo generation of the example data. It is to be noted that this report is a
feasibility study rather than a scientific evaluation of the statistical methodologies, and
the example analyses can be seen only demonstrations of the methods. Furthermore,
there is a lot of other statistical methods relevant to analysis of phenomena varying
along with time which have not been considered in this report.

This study was started within the scope of the Nordic joint project NKS / SIK-1 on the
initiative of Ralph Nyman, SKI / RA, and has been conducted with financial support
from SKI, the Swedish Nuclear Power Inspectorate, which is hereby gratefully ack-
nowledged.
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Sammanfattning

Vi betraktar diskreta händelser som inträffar slumpmässigt i tiden. I många tillämpnin-
gar finns dock ett mönster i händelserna som är av stort intresse genom att det återger
exempelvis en trend eller något annat systematiskt drag i händelsefrekvensen. Avsikten
med denna rapport är att översiktligt kartlägga olika metoder för statistisk trendanalys
och att illustrera deras tillämplighet speciellt på tidsberoende fenomen.

Kartläggningen börjar med några enkla grafiska metoder. Grafiska metoder är särskilt
användbara när det gäller att identifiera grova datastrukturer och att testa de antaganden
som ligger till grund för tänkbara analytiska metoder. Dessutom kommer grafiska
metoder alltid väl till pass när data skall presenteras.

Ett mycket vanligt förekommande antagande är att de händelser man betraktar inträffar
helt slumpmässigt i tiden. Den s.k. Poissonprocessen är en välkänd matematisk modell
för en fullständigt slumpmässig serie av händelser. Om intensiteten i processen är
konstant förefinns ingen ökande eller avtagande trend i händelsernas inträffande, och
processen säges vara en homogen Poissonprocess. Här skall vi emellertid betrakta en
utvidgad klass av processer, s.k. inhomogena Poissonprocesser (NHPP), för vilka
händelseintensiteten är en funktion av tiden.

Att testa trenden i en punktprocess är vanligtvis liktydigt med att testa hypoteser
rörande intensiteten för händelsernas inträffande. När intensiteten beskrivs av en
parametrisk funktion är trendtestet ett typiskt parametriskt testproblem.

Det s.k. Laplace-testet utvecklades ursprungligen som ett parametriskt test av NHPP
med en viss typ av intensitetsfunktion. Det finns modeller för vilka Laplace-testet har
ganska goda statistiska egenskaper. Sett ur praktisk synpunkt ger Laplace-testet en god
indikation på förekomsten av trend. Tillsammans med grafiska presentationer ger
Laplaces trendstatistika en god bild av tänkbara trender. Användning av Laplace-testet
rekommenderas för analys av punktprocesser. Om det aktuella fenomenet inte låter sig
adekvat beskrivas av någon modell för punktprocesser bör man inte använda Laplace-
testet.

Drifterfarenheter från industriella tillämpningar ger vanligtvis inte någon direkt finger-
visning om lämplig modell och metod. Därför, och i synnerhet om antagandet om
Poissonprocess är diskutabelt, är det önskvärt att använda tester som är tillämpliga på
en vid klass av tänkbara processer. Ett alternativt trendtest är att använda någon icke-
parametrisk procedur. I denna rapport presenteras fyra icke-parametriska tester: Cox-
Stuart's test (modifierat teckentest), Wilcoxon's teckenrang test, Mann's test och det
exponentiella ordnade indextestet (exponential ordered score test).

Det är uppenbart att ju färre eller svagare antaganden som ligger till grund för en
modell desto mindre förbehållsamma resultat kan uppnås med det statistiska test som är
förenat med modellen. Annorlunda uttryckt, ju färre eller svagare antaganden, desto
mera generella slutsatser. Å andra sidan, de starkaste testen är sådana som bygger på de
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starkaste eller mest omfattande antagandena. Användningen av parametriska test vilar
på en mängd antaganden. När vi har skäl att tro att analysdata uppfyller förutsättningar-
na för ett parametriskt test kan vi med säkerhet använda ett sådant test för analys av
dessa data. Om sådana förutsättningar ej föreligger kan man pröva något icke-
parametriskt test.

Utöver de klassiska, parametriska och icke-parametriska tillvägagångssätten har vi också
betraktat Bayesiansk trendanalys. Bl.a. behandlar vi en Bayesiansk modell som bygger
på den s.k. potensprocessen, en NHPP vars intensitet är en potens av tiden. Bayesiansk
statistisk inferens utgår ifrån analys av posteriorifördelningen för trendparametrarna, och
sannolikheten för trend kan direkt utläsas ur denna fördelning. I princip är det också
möjligt att tillämpa icke-parametriska Bayesianska modeller.

Några av de metoder som diskuteras i rapporten har tillämpats på testfall. De resultat
som erhållits är inte motstridiga, och varje modell upptäckte den trend som antogs vid
Monte Carlo-genereringen av testdata. Det bör understrykas att denna rapport är en
användbarhetsstudie snarare än en vetenskaplig utvärdering av statistiska metoder, och
studiens analysexempel bör ses enbart som en demonstration av metoderna. Vidare är
vi väl medvetna om att det finns många andra statistiska metoder som är relevanta för
analys av tidsberoende fenomen och som vi inte beaktat i denna studie.

Studien påbörjades inom ramen för det nordiska samarbetsprojektet NKS/SIK-1 på
initiativ av Ralph Nyman, SKI / RA, och har utförts med finansiellt stöd av SKI, vilket
härmed tacksamt noteras.
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1 Introduction

We consider point events occuring in a random way in time. That is, we have a
continuum, usually but not nesessarily one-dimensional, and a series of points
distributed haphazardly along it. For example, the events may be stops of a machine, as
measured in the running-time of the machine, or restorings or replacements of equip-
ment, etc.

In many applications the main interest lies in obtaining an estimate of the mean rate of
occurence of events, for example: how many stops per running hour. In other ap-
plications the pattern of occurrence is of intrinsic interest as indicating, for example, a
trend or some other systematic feature in the rate of occurrence. We shall be concerned
mainly with the latter type of application.

The purpose of this report is to survey briefly different statistical trend analysis methods
and to illustrate their applicability to temporal phenomena, in particular. Simple
graphical methods of presentation will also be considered. Graphical methods are
important both in finding the gross features of the data and also checking the as-
sumptions on which the more formal methods of analysis are based.

We denote the observed intervals between successive events by x,, x2, ... . The series
would be given equivalently by the instants of occurrence of events measured from the
start of period of observation. These times are obtained by forming cumulative sums of
the xr's, i.e. t,=x,, t2=t,+x2,..., t=tr.,+xr, where tr is the time of occurrence of the rth
event.

2 Graphical presentation

It will quite often be required to present this type of data graphically, either as a
preliminary to a more detailed analysis or in order to have a simple record which can
be brought up to date as fresh information is obtained. When the main interest is in
changes in the average rate of occurrence of events, there are two methods of graphical
presentation, one based on cumulative numbers and the other based on individual
numbers of occurrences.

The simplest cumulative plot is the total number of events to have occurred at or before
/, against t. At each event, the plot jumps one step upwards. An important property is
that the slope of the line joining any two points on the plot is the average number of
events per unit time for that period. It reveals how the average rate of occurrences
fluctuates with t.

To obtain a non-cumulative plot we take time as the abscissa and then divide the time
scale into convenient equally spaced time periods and count the number of events in
each period.



Examples of a cumulative and a non-cumulative plot are given in Figures 1 and 2.

Figure 1: A non-cumulative plot of a series of events (Coal-mining disasters.
Numbers in successive 400-day periods, taken from (Cox and Lewis, 1968)).
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Figure 2: A cumulative plot of a series of events (Coal-mining disasters.
Cumulative number versus t, taken from (Cox and Lewis, 1968)).

An advantage of the cumulative plot is that it enables small systematic changes in the
rate of occurrence to be noticed readily. Advantages of the non-cumulative plot are that
the local fluctuations are directly indicated.



3 Point process models and tests

3.1 Homogeneous Poisson process

In applications the first hypothesis usually is that events are occurring completely
randomly in time. Thus, if we wish to test, for instance, the reality of the apparent trend
in the failure rate, we take a null hypothesis that the failures occur randomly at constant
rate. Such a hypothesis can be considered for two reasons. First, before we can have
confidence in the reality of an apparent systematic effect in the series, we need to show
that the effect is unlikely to have arisen just by chance. Secondly, simple methods for
the comparison of the rates of occurrence in different series are available whenever the
individual series can be assumed to be comletely random.

As a mathematical model of a completely random series of events we consider the
Poisson prosess. The definition and main probabilistic properties of the Poisson process
are well-known and are discussed in the literature, for example by Snyder (1976).

Consider events occurring along a line which for definiteness will be called the time
axis. Let N, denote the number of events occurring in an arbitary interval of length t.
Then N, has a Poisson distribution of mean Xt, i.e.

P*N-r) = fr)^ (1)

where X is a constant with the dimension of the reciprocal of time. It will measure the
mean rate of occurence of events over a long period of time and will be called the rate
of occurrence or more fully the probability rate of occurrence of events (N/t converges
in probability to X as /—*», justifying the name rate of occurrence given for the
parameter X of the Poisson process (see Snyder, 1976)).

We denote /j=Xt. As ju increases, the Poisson distribution is asymptotically normal with
mean and variance ft. For many problems connected with significance tests and
confidence intervals, the normal approximation is quite accurate enough even below
fj=lO. The main source of error in the approximation arises from the skewness of the
Poisson distribution.

A second important group of properties of the Poisson process concern the intervals
between events. Let X denote the interval from the time origin to the first event. Using
(1) we may show that the probability distribution of X is exponential, with cumulative
distribution and the density function

Fx(x) = \-e'u (2)

and



fx(x) = h.*. (3)

A very important point is that because the occurrences in any section of a Poisson
process are independent of the preceding sections of the process, the origin from which
X is measured may be defined in variety of ways. Thus X may be

(a) the time from original time origin to the first event;
(b) the time from any fixed time point to the next event;
(c) the time from any event to the next succeeding event, i.e. the interval

between successive events;
(d) the time from any point t' determined by the pattern of events in (0,/'] to

next event.

Further if X,, X2>... are the intervals between the origin and the first event, between the
first and second events, and so on, the random variables X,, X2,... are mutually indepen-
dent and each with the probability density function Xe'^ (3). In fact the Poisson process
can be defined by this property (see Snyder, 1976).

As we can notice from the above, the intensity with which the points occur in time is
constant. This kind of Poisson processes are called time homegeneous Poisson proces-
ses, and there is no increasing or decreasing trend in the point occurrences. In opposite
to this, it is possible to define Poisson processes, the intensity of which is a function of
time.

3.2 Non-homogenous Poisson process

It is possible to generalize the Poisson process in many ways, for example by con-
sidering a process in several dimensions. We shall deal, however, with only one
generalization, the time-dependent or non-homogenous Poisson process (NHPP).

As before, it is still required that occurrences in different time periods are independent,
but now the rate of occurrence of events is a function of time: X(t). This function is
also called intensity function. The time-dependent Poisson process or NHPP can model
many kinds of behaviour for the reliability. For example, a reliability growth (decay,
stability) is equivalent to a NHPP with an intensity decay (growth, stability).

One of the main properties of the time-dependent Poisson process is that the number of
events occurring in the time interval (s,t) has a Poisson distribution with mean

Further, Nlsl) follows the Poisson distribution



[\'X{u)du\ne
P(NM = n) = VL. I

n\

It is worth noticing that a non-homogeneous Poisson process may be used as a so called
minimal repair model for failures of repairable components. According to the minimal
repair model, the components are after a repair as good as old, i.e. the failure rate of the
component after a repair has the same value as just before the repair. The usual as-
sumption applied in reliability models is the "as good as new - model", in which it is
assumed that the repair is comparable to the replacement of the component with a new
one.

The choice of the intensity function determines the trend properties of a non-
homogeneous Poisson process. Many models have been applied for various purposes.
One of the most popular intensity functions is the simple power law model, the intensity
function of which is

X{f) = ap/p"', <6>

where a > 0 and P > 0 are parameters. The above model is sometimes called Crow
model or Weibull process.

The expected number of occurences within a time interval (s,t) is obviously

-st) (7)

We notice that if P > 1 then the intensity is increasing. We may easily modify (6)-(7)
as

X(t) = <xpr0-'+A.o> (8)

and

-s*) + X0(t-s), (9)

which is the model discussed also in section 5.

Another form of intensity often applied is

X(t) = ea**, <10)

which is increasing if P > 0. The log-linear model (10) is also known as Goel-Okumoto
model (Gaudion, 1992).



It is very easy to postulate different intensity functions: one must only make sure that
the intensity function is positive and nonexplosive (i.e. }0

TX(t)dt < °°, VT < oo). The
intensity functions may even be discontinuous. For most trend analysis purposes the
above intensity models are usually sufficient.

3.3 Generalizations

The Poisson process is an archetype of counting processes. Other models may be
derived as modifications from the Poisson process .

One group of new models is obtained by assuming that the intensity is a random
variable. The most simple version of this model is a non-homogeneous Poisson process,
the parameters of which are random variables. In this case the conditional probability
distribution of the number of events within the interval (s,t) given the parameter 6 is the
Poisson distribution

Since 8 is a random vector, it is modelled by a probability distribution

P(QedB\t,) =

in which t, is the parameter of the distribution g( •]£,)• Parameter £ may be known or
unknown, in the latter case the uncertainty is again modelled by a probability distribu-
tion.

We obtain the marginal distribution of the number of failures by integrating (over) the
distribution of 9

= f
•/, \ " -('Mf.exif (13)

The above model is applied in section 5 where we consider Bayesian methods for
identifiction of trends. We may call the above model a mixed or doubly stochastic
Poisson process. It is possible to generalize the notion of doubly stochastic Poisson
process by assuming that the intensity function is a stochastic process. We shall discuss
this case shortly in section 5.

Another type of modified Poisson process is the case where the intensity depends on the
history of the process Nr For example we may assume that the times between occuren-
ces are random variables, the distribution of which depends on the number of of events



occurred earlier. By assumming that this distribution is exponential and that the
parameter of the fth interevent time depends geometrically on the number of earlier
occurences, we may postulate the model

= ( 6 ) Q i ~ l p ~ 6 ° 6 ' ' (14)

in which 60 and 8, are positive parameters.

3.4 Laplace test for trend identification

The Laplace test is originally developed as a parametric test for a certain non-
homogeneous Poisson process obeying the intensity function

in which a and P are real parameters (see Cox and Lewis, 1968 and Grow, 1992). We
notice that if P > 0 (< 0) then the intensity is increasing (decreasing) which means that
there is a trend.

The Laplace test statistic corresponding to the above intensity function can be defined
for two cases: it is assumed that the observations on the process are stopped either at
the time point t or at the time point Tn, where n'th point occurs. If the observations are
stopped at the time point t then the test statistic has the form

(16)

N

where

S = T" T (17)

If the observation is stopped at event Tn the statistics is defined by

U.~
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In practice the above versions of test statistics do not differ significantly. For large
values of n the test statistic is approximately normally distributed, and the critical
values of the statistic are defined accordingly. The approximation is adequate at the 5%
significance level for «>3.

The U statistic is used with following hypotheses:

no-trend vs intensity decline: reject the null hypothesis p>0 at the sig-
nificance level y, if u<l^
no-trend vs intensity growth: reject the null hypothesis (3<<9 at the sig-
nificance level y, if «>my;
no-trend vs intensity decline or intensity growth: reject the null hypothesis
P=0 at the significance level y, if \u\>nr

For y = 5%, the critical values are ly= -1.645, m^= +1.645, ny = 1.960.

The Laplace test is originally designed for the log-linear model (10). However, it is
possible to modify the test to cover also other intensity models. A simple modification
is suitable for the power law model

X(/lcc,p) = aprp-',

in which the parameters a and P are positive, The intensity (19) looks like the above
exponential intensity model modified by a logarithmic transformation. The growth of
X(t) depends on the position of p relative to 1. "p = 1" corresponds to the homogeneous
Poisson process.

The modification of the Laplaces test is made by defining the sum of log-failure times
as

( 2 0 )

We notice that S* is a logarithmic counterpart of S in equations (16)-(18). The modified
Laplace test may be constructed for two cases, as earlier.

If the observations are stopped at time x, then the modified Laplace test statistic is
defined by

= "25; - - 2£ ; , In
T (21)

If the observations are stopped at «'th event, then the Laplace test statistic has the form



\

v V

(22)

For large values of n, Smod is approximately normally distributed, and the critical values
of the statistic are defined accordingly. The approximation is adequate at the 5%
significance level for «>3. Generally Smml follows %2(2k) distribution and it can be used
with following hypotheses:

no-trend vs intensity decline: reject the null hypothesis P>1 at the sig-
nificance level y.if Smoj<x2(2k;l-yy,
no-trend vs intensity growth: reject the null hypothesis P<1 at the sig-
nificance level y, if Smoj>x2(2k;y);
no-trend vs intensity decline or intensity growth: reject the null hypothesis
P=l at the significance level y if Smod<x2(2k;J-y/2) or Smmp>x2(2k;y/2),

where

k=n in the case when n events are observed between (0,1), x given in
advance (stop at time t);
k=n-l in the case when the observation ends at n'th event (stop at event
n).

From the theoretical point of view, the Laplace test is not completely satisfactory
because neither its exact statistical significance level, nor its power are calculable.
Further, its should be noticed that the Laplace test in its "standard form" (see equations
(16)-(18)) is a parametric test for the intensity given by (15). The power and the exact
statistical significance level depend on the functional form of the intensity function.

3.5 Practical aspects

General point process models discussed in this chapter are intented for description of
phenomena which occur pointwise in time. Examples of this kind of phenomena are
failures of components and transients at nuclear power plants. Point process models can
also be used to describe some phenomena connected to continuous processes, e.g. the
level crossing phenomena of cumulative processes.

An archetype of point process models is the homogeneous Poisson process, in which the
events are assumed to occur with a constant intensity. As discussed above, the Poisson
process model can easily be generalized.

The trend testing of point processes is usually seen as the testing of the hypotheses
concerning the intensity of the process. When the intensity function is parametrized, the
testing of trend is a typical parametric testing problem. Parametric tests can be
developed for different intensity functions'



The Laplace test discussed above is originally a parametric test for a specific intensity
function. In practice, the Laplace test is often used like a nonparametric trend test.
According to Gaudoin (1992), there are models, for which the test has rather good
statistical properties. Further, the difference between the options of different stopping
rules of the observations is not practically significant.

From a practical point of view, the Laplace test provides a good indication of the
existence of a trend. Together with graphical presentations, the Laplace trend statistics
give a rather clear picture about the possible trends. The use of Laplace statistics is
practically recommendable to analyse the point phenomena. However, if the
phenomenon is not properly described by a point process model, one must not use the
Laplace test.

In practice, very low values of the statistical significance level are not always actually
used, but the test statistics would rather be applied to indicate a possible trend or to
compare trends. Since the Laplace statistics have also theoretical foundations, it is very
useful for this kind of use.

4 Non-parametric tests

In industrial applications the operational experience generally does not suggest any
specified model and method in advance. Therefore, and particularly, if the Poisson-
process assumption is very questionable, it is desirable to apply tests that are valid for
a wide variety of possible processes. The alternative approach for trend testing is to use
a non-parametric procedure.

The Cox-Stuart test (a modification of the sign test), the Wilcoxon signed ranks test, the
Mann test, the exponential ordered scores test, the run test, and the tests based on Ken-
dall's 1 or Spearman's p are examples of non-parametric trend tests, which may be
used to study the existence of trend in a series of subsequent observations. We shall
shortly present the first four ones mentioned above.

In following we assume that X,, X2, ..., Xn is a sample of mutually independent random
variables. The basic task is to verify the hypothesis Ho against an alternative hypothesis
H,:

Ho: there is not any trend;
H,\ there is an increasing (decreasing) trend.

4.1 Cox-Stuart test

Assume that the data consist of observations on a sequence of mutually independent
random variables X,, X2 Xn, arranged in the order in which the random variables are

10



observed. The measurement scale of the X,'s is at least ordinal. The X,'s are either
identically distributed or there is a trend.

The Cox-Stuart test can be used to detect any specified type of nonrandom pattern, such
as a sine wave or other periodic pattern. The idea of the Cox-Stuart test is based on the
comparison of the first and the second half of the sample. If there is a downward trend
the observations in the second half of the sample should be smaller than in the first
half. If they are greater, the presence of an upward trend is suspected. If there is not
any trend one should expect only small differences between the first and the second half
of the sample due to randomness.

Thus, to perform a trend analysis, the sample of differences is to be calculated: yy=;t/+c-
xi> y2=x2+c'x2' ••• • yc=xn'xn-c where c-n/2, if n is even, c=(n+l)/2, if n is odd. The
differences equal to zero are not taken into account. For simplicity, let us denote the
sample of positive differences by y,, ... , ym.

The Cox-Stuart test is a sign test applied to the sample of non-zero differences y,, ... ,
ym. Let sgn(a)=l, if a>0 and sgn(a)=-l, if a<0. The test statistic of the Cox-Stuart test
is

( 2 3 )

Decision rule: At the significance level a, reject the hypothesis Ho and accept the alter-
native hypothesis H,, if T>t(a) (increasing trend), if T<t(a) (decreasing trend), where
t(a) is the proper quantile of the binomial distribution. For m>20, an approximation

t(a) = -L[/n + w(a)h/wi~ (24)

where w(a) is the a-quantile of the standard normal distribution, can be applied.

4.2 Wilcoxon signed ranks test

To use the Wilcoxon signed ranks test it is necessary to compute ranks R,, R2, ... , Rm

for absolute values of differences \y,\, lv2l, ... , lyml, i.e.

/?,. = #{j\ IvKlyJ, j = 1,2,...,m}, i = 1,2,...,m, (25)

where #{A) denotes the number of elements in set A. If there are equal values of ly,l, i
= 1, 2, ... , m, i.e., there are ties in the sample, the average ranks shall be calculated for
them.

The test statistics is
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Ym sgn(y.)R.
T = ~ " 8U> \ (26)

For the case of no ties it is more convenient to use only the positive signed ranks:

( 2 7 )

in which I(y{) = 1, if y, > 0 and I(yt) = 0, otherwise.

Decision rule: At the significance level a, reject the hypothesis Ho and accept the alter-
native hypothesis H,, if V>wha (or 7>w,.a) for increasing trend, if T*<wa (T<wa) for
decreasing trend, where

(1) in the case of small and untied samples: wp is the pth quantile, that should be found
in the proper table of Wilcoxon signed rank test;

(2) in the case of large (m>20) and tied samples: wp is the pth quantile of the standard
normal distribution.

5.3 The Mann test

The Mann test is based on paired comparison of the X/s. It compares, for example,
each failure interarrival time with each earlier one. If there is no trend then the expected
number of comparisons where the later interarrival time is greater than the earlier one
(a so-called inversion, denoted by W) is equal to the number with the reverse situation,
i.e., the expected number of inversions for n failures is

E[W\H0] = n{n~l\ (28)

The further the number of inversions is below this the greater is the probability that
there is a decreasing trend in the times between failures. The variance of the inversions
is

D2[W\H0] = n ( " " 1 ) ( 2 " + 5 ) . (29)

The test statistic is
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W*l-E[W\Hn]
2 (30)

and it converges to the standard normal distribution for large n (generally n>10
required) (Tibor,1993).

4.4 Exponential ordered scores test

The test is valid for all distributions of the X,'s as far as they are independent, because
the test is based on the ranks of the X,'s. To the observed value X, which is the rth
largest in magnitude, we attach the score

srn = ! + ...+ 1 ,r=l,...,n. (31)
n n-r+1

Since we are interested in the trend of X, on serial numbers, we take the independent
variables z,'s to be the linear orthogonal polynomial z=-(n+l)+2i. Consequently,

S = Y" sri, z, (32)

in which r(i) = rank(X,), has the expected value equal to zero and its variance is

where K2n is the second semi-invariant of the finite population of scores, i.e.

A , — 1 ~ —
n-\

The standard test statistic is

C =-4- (35)

which can be approximated by the standard normal distribution.
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5 Bayesian methods

5.1 Parametric inference

Bayesian statistical analyses may, similarly as the conventional methods, be interpreted
as parametric and non-parametric. In parametric Bayesian inference, the posterior
distributrions are given for finite dimensional parameter vectors, while in non-
parametric inference, the posterior analysis may have reference to infinite dimensional
variables, such as whole probability distributions or failure intensity functions.

Very often statistical records subjected to trend analysis are made up of recorded
number of events, yt, of a certain type under corresponding operating time periods tr An
alternative form of statistical records could be observed times between successive
events. Let us first restrict the description to the former case and assume that a
recorded time series, (yit tj; i = /,..., n, is a trajectory of a nonhomogeneous Poisson
process, which implies, among other things, that the intensity is a time dependent
function X(t\Q), and that the number of events in an arbitrary interval (s, t] is Poisson
distributed with mean

(36)

The intensity X(t\Q), in which 8 is a parameter vector, is defined as the probability in
unit time that at least one event occurs in an infinitesimal interval (t,t+At]. As the time
dependent function X(t), the following expression is chosen:

c v c ~ 1 + V (37)

where C>0,X,>0 and \0>0 are fictive model parameters. Due to this intensity function,
the process can be called an Extended Power Law process, i.e. a Power Law process
extended with the constant intensity parameter A,, in order to achieve an arbitrary
asymptotic level. The parameter C is the central trend parameter since C<1 leads to
decreasing intensity, C=l to constant intensity and C>1 to increasing intensity. Thus
this trend model can handle both decreasing and increasing trends as well as concave
and convex tendencies.

The parameters C>0, X,>0 and X0>0 are estimated, applying a Bayesian methodology
(see Pom (1990)), by means of the computer program BayTREND (1996). The
methodology is based on Bayes' theorem, which can be presented briefly in the form

p(Q\y) ~ p(yie)-p(6). <38>

Here the a priori distribution p(Q) describes the knowledge about the model parameter
8 (0 = (CXJ.XQ) in the application of this study) that exists before any observations
have been made. When observations y are available the a priori distribution can be
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updated to the posterior distribution, p(Q\y), through the probability model, p(y\Q),
expressing the likelihood of getting the observations y if the parameter 6 is known.

Thus, in the specific application of this study, the estimation of the parameters C,X,Xo
starts from an a priori distribution p(C,X,X0), which is then modified through the
Poisson based likelihood function to the posterior distribution p(Ck,,X0\y,,...,yJ,
conditioned by the available observations y,,...,yn. A priori, the parameters are assumed
to be mutually independent and to have the distributions

7 , , T (39)
p{C) ~ eL, p(X.) ~ A, , p(\) ~ Ao •

These distributions, of which p(X,) and p(X0) are improper, are so called "non-infor-
mative" distributions. They have been derived according to the principle of data
translated likelihood (see Box & Tiao (1973)).

This means that each feasible combination of the three parameters is assigned a
probability weight, first a prior weight according to the non-informative ditributions
above and second a posterior weight, where the latter is determined to a great extent by
the probability (likelihood) for the actual recorded events, conditioned by the given
parameter combination. Thus each candidate in the given class of deterministic intensity
functions is tried in this way and is assigned a posterior weight based on the prescribed
prior distribution and the likelihood of the given records.

A graphical presentation of the results of the above Bayesian model is given in Figure
3. For each accumulated operating time t we have thus a distribution which describes
the uncertainty about the intensity value X(t) in question. The time dependent mean
value of this distribution may be considered as a trend curve for the time series
considered. Uncertainty about this mean value is shown only for the total operating
time. Further, the marginal distribution of the trend parameter C is presented, from
which one can find the strength of trend, especially in the beginning of observation
period. The graphic presentations include also a predictive distribution, which gives the
probability of various outcomes of events during the next period of observation, after
the record period. This predictive distribution is based on the assumption that the trend
model used to describe the recorded events is valid also for the future behaviour.
Moreover, in the predictive distribution all parametric uncertainties of the trend model
have been taken into account through integration.

In above, the Bayesian parametric inference was described for a specific form of the
intensity function. However, it is rather easy to apply the same methodology for any
form of the intensity. As in above, the analytic determination of the posterior
distributions is not possible and one must apply numerical methods. Rather straightfor-
ward methods for this purpose can be developed on the basis of Monte-Carlo sampling
(see e.g. Tanner, 1991).
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Figure 3: A sample case diagram from the I-book (Porn et al, 1993).
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5.2 The interpretation of the results

This chapter is intended to be a guide for the reader to interpret and use the results
correctly. The arbitrarily chosen sample case describes the occurrence of Initiating
Events within the group Ts for a Swedish reactor unit during the operating years
1975-86. The accumulated operating time during these years is shown on the x-axis of
the first diagram in Figure 3. From the results obtained for this sample case we have
chosen to present four diagrams for illustrative purposes. This set of diagrams is
supplemented with a diagram showing the observed number of events as a cumulative
function of time and the corresponding expected number of events. This diagram is
supplied when the input option for "times between events" is used in the code.

The first diagram (left upper comer) presents the frequency of events versus the
expected intensity, which can be called the trend curve. The frequency of events in each
year has been normalized with respect to the actual annual exposure time. This will
give a more realistic and comparable basis in relation to the computed expected
intensity. Thus heights of columns of some events may be noninteger. In order to
indicate that we did have an observation in a certain year when no events occurred, a
tiny column is used. The trend curve represents the expected (mean) intensity of X(t)
during the record period. At each time instant t, the intensity X(t) is associated with an
uncertainty that is described by a distribution. We choose to present the mean values of
these distributions as our trend curve. Visually examining this curve is usually enough
to study the trend but in some uncertain cases, consulting the distribution of C (see
"marginal distribution of trend parameter C" below) will be needed.

The second diagram (left lower comer) shows the probability distribution of X(T) (noted
by h(T) in Figure), i.e. the distribution of the intensity at the end of record period. This
particular distribution is of greatest interest since it presents our uncertainty about X(T)
at the moment. Knowing this will be helpful in making predictions of the development
of trend in the next observation period and the occurrence of events.

The third diagram (right upper comer) presents the predictive distribution of number of
occurrences during an operating year ahead, that is , it gives the estimated probabilities
of having 0, 1, 2, ... occurrences of some event during the prediction period. From this
diagram one can also obtain roughly the probability of having, e.g., less than two events
or more than three events.

The forth diagram (right lower comer) presents the marginal distribution of parameter
C and this distribution is obtained from the joint distribution of X,, Xo and C. Since the
ranges C<\ or C>\ determine whether we have a decreasing or an increasing intensity
in time respectively, one can compare the area to the left of 1 and the area to the right
of 1 under the distribution curve of C. This comparison will indicate the kind of trend
(decreasing or increasing) as well as the strength (how strongly we are convinced of
such a trend). In case of a strong trend, this comparison gives overwhelmingly support
to the trend curve in the first diagram, but when the areas differ little one has to
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examine the results together, both numerical and graphical, to draw conclusions about
the trend.

It should be noted, however, that the parameter C has impact on the intensity only
through the time dependent term Ck,tc~'. That is, one may have a clear decreasing
trend e g in the beginning of the record period, while the rest of the period is charac-
terized by a rather weak trend around the "asymptotic" level Xo.

The Bayesian trend analysis approach described above seems both promising and useful.
The basic model covers nonhomogeneous Poisson processes (NHPP), of which
homogeneous Poisson processes (HPP) are special cases. Because of the specific class
of intensity functions that are used here we have named the model "expanded Power
Law Process. Thus the model can be expected to be strictly applicable only to cases
where the trend is non-stochastic and monotone.

Further, the statistical treatment is fully Bayesian, an approach which is in accordance
with the statistical analysis of component failure rates applied in Sweden. Thanks to the
Bayesian approach it is rather easy to compute the uncertainty of the primary parameter,
the degree of tendency and the predictive probability distribution of future events.

The Bayesian method of statistical inference outlined above have been used in the
recently issued I-Book (see Porn et al, 1993), a handbook for the treatment of initiating
events in Nordic nuclear power plants. The Bayesian trend analysis approach has also
been applied to accident records of commercial air taxi in the Nordic countries (see
Porn & Shen, 1993).

A substantial, but relatively easy, extension of the applicability of the model above
would be obtained by generalizing the model to include what is called trend-renewal
processes, a class of processes that contain HPP, NHPP and renewal processes as
specific cases (Lindqvist, 1993). Such an extended trend analysis tool could be applied
also to non-monotone and stochastic process intensities, features that are expected to be
valid for many maintenance procedures.

5.3 Non-parametric Bayesian inference

The trend analysis of point processes can also be formulated as a problem of non-
parametric Bayesian inference. The basic principle is to model the intensity function as
a stochastic process, which may have also increasing or decreasing realizations. Beeing
a stochastic process, a realization of the intensity cannot be modelled by using a finite
number of parameters but as an element of an infinite dimensional function space. The
objective of Bayesian inference is then to determine the posterior distribution of such
functions, which is not actually possible. However, it is possible to generate samples of
of the intensity functions, if the form of the intensity process is simple.

One rather simple but still rich form of such processes is an intensity function which is
piecewise constant, and which has jumps down or up at random time epochs. It is
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possible to write the likelihood function given any realization of the intesity process,
and thus it is possible to generate samples from the "posterior intensity process".
Methods like Gibbs sampling or any Markov-chain Monte-Carlo methods are applicaple
for this purpose (see, Arjas & Gasparra, 1993, 1994 and Tanner, 1991).

6 Examples

As an example, a data set consisting of 45 times between events has been analysed by
applying Cox-Stuart and Wilcoxon tests, Laplace test, a power law non-homogenous
Poisson process model and the Bayesian model described in section 5. The data set is
given in Table 1. The data has been generated by Monte Carlo simulation. The
simulated data consists of four data sets, each of which follow a gamma distribution
with its own expected values. The simulated values can be interpreted here as times
between events.

Table 1. The example data.

n:o

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Observed
value

21

100

261

3

80

119

79

97

36

186

133

552

141

173

190

n:o

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Observed
value

190

372

100

97

194

230

1

49

60

1

84

5

15

0.5

40

n:o

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

Observed
value

502

536

235

937

352

1104

293

465

967

691

195

652

110

640

386

The simulated data is presented also in Figure 4, from which we can see that there is
an increasing trend in the times between events. In the following it is studied whether
the methods discussed earlier detect this trend.

According to the Cox-Stuart test there is an increasing trend in times between events,
the value of Cox-Stuart test statistic is 16.0, and the corresponding p-value is 0.0165,
which means that at 5% signifigance level the hypothesis H,,: "no trend" must be
rejected. The Wilcoxon test results in the same conclusion at 5% signifigance level (test
statistics 7^=209.0, p-value /?=0.0369).
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Figure 4. The simulated example data.

The Laplace test is presented in Figure 5, where the value of the test statistic is
presented after each observation point (number of failures). The test detects a
decreasing (negative) event rate trend after the 35th observation, and even more certainly
after the later observations, at the 5% one-sided signifigance level; the value of Laplace
test statistic «<-1.96, the critical value given by the standardized normal distribution.

The non-homogenous Poisson process with power law intensity (Weibull) estimated
from the example data set is presented in Figure 6. The trend parameter has point
estimate p=0.666<l, which indicates a decreasing event rate. It may be noticed that the
temporary increasing trend of event rate between 20th-30th observations is not directly
reflected in the parameter estimates, if the whole data set is used in estimation.

Finally, the example data set is analysed by using the Bayesian model. The results are
presented in Figures 7 - 1 0 . The marginal posterior distribution of the trend parameter,
C, is given in Figure 7, from which it is seen that values of C are concentrated to the
left of value C=l, indicating a decreasing trend in event intensity. The expected event
intensity and frequency of events are presented in Figure 8, which also shows a
decreasing trend. The posteriori distribution of event intensity at the end of the obser-
vation period is presented in Figure 9 and the predictive distribution of number of
events at 100 time units ahead is given in Figure 10.
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Figure 7. Posterior distribution of the trend parameter.
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Figure 8. Event frequency and expected intensity.

22



750
PDF

500

250

0
0 0.001 0.002 0.003 0.004 0.005 0.006

Intensi ty at T

Figure 9. Posterior distribution of event intensity at the end of observation period.

Number of occurrence x

Figure 10. Predictive distribution of the number of events 100 time units ahead.

23



7 Conclusions

In this report we have discussed methods for analysing trends in event occurence. We
have considered graphical methods, both parametric and non-parametric statistical tests,
point process models and Bayesian model techniques.

Graphical methods are necessary giving an exploratory view over the observations, and
identifying the need for deeper trend analyses. Often, the graphical methods are enough
to show that there is no trend. However, the graphical tools are not sufficient for the
evaluation of the statistical signifigance and for making statistical conclusions on the
trend phenomena. Therefore one must apply formal statistical tests or models. On the
other hand, although the graphical methods could indicate a trend, the sample size of
statistical observations may be so small that it is not possible to accept statistically any
hypothesis of the trend.

With every statistical test is associated a model and a measurement requirement; the test
is valid under certain conditions, and the model and the measurement requirement
specify those conditions. Sometimes we are able to test whether the conditions of a
particular statistical model are met, but more often we have to assume that they are met.
Thus the conditions of the statistical model of a test are often the assumptions of the
test.

It is obvious that the fewer or weaker are the assumptions that define a particular
model, the less qualifying we need to do our decision arrived at by the statistical test
associated with that model. That is, the fewer or weaker are the assumptions, the more
general are the conclusions.

However, the most powerful tests are those which have the strongest or most extensive
assumptions. The parametric tests have a variety of strong assumptions underlying their
use. When those assumptions are valid, these tests are the most likely of all tests to
reject the hypothesis of nonexistence of a trend, for instance, when it is false. That is,
when data may appropriately be analyzed by a parametric test, that test will be more
powerful than any other in resulting in an acceptance of the trend.

When we have reason to believe that the conditions for a parametric test are met in the
data under analysis, then we should certainly choose a parametric statistical test for
analyzing those data. If these conditions are not met, some relevant non-parametric test
can be used. Non-parametric statistical methods often involve less computational work
and therefore are easier and quicker to apply than other statistical methods.

The parametric tests are based in this case on some point process models. An archetype
of point process models is the Poisson process model, the parametric tests of which can
be applied in trend detection. In this report, we consider the Laplace test, which is
originally intended for a certain intensity model. There are models, for which the
Laplace test has rather good statistical properties. However, if the Poisson process
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model (or any other model) is questionable, one should choose a simpler model and
apply non-parametric trend tests. Here we have presented a lot of non-parametric tests.

In addition to the classical parametric and nonparametric approaches we have also con-
sidered the Bayesian trend analysis. First we discuss a Bayesian model, which is based
on a power law intensity model. The Bayesian statistical inferences are based on the
analysis of the posterior distribution of the trend parameters, and the probability of
trend is immediately seen from these distributions. In principle, is is possible to apply
non-parametric Bayesian models.

We applied some of the methods discussed in this report to an example case. The
results were not contradictory, and every model detected the trend that was assumed in
Monte Carlo generation of the example data. However, this report is a feasibility study
rather than a scientific evaluation of the statistical methodologies, and the example
analyses can be seen only as demonstrations of the methods. Furthermore, it is to be
noted that there is a lot of other statistical methods relevant to analysis of phenomena
varying along with time which have not been considered in this report.
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