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NEUTRON DIFFUSION APPROXIMATION SOLUTION
FOR THE THREE LAYER BOREHOLE CYLINDRICAL
GEOMETRY

PART I: THEORETICAL DESCRIPTION

JAN A. CZUBEK

AND
URSZULA WOZNICKA

ABSTRACT

A solution of the neutron diffusion equation is given for a three layer cylindncal coaxial
geometry. The calculation is performed in two neutron-energy groups which distinguish the
thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source.
The aim of the calculation is to define the neutron slowing down and migration lengths which
are observed at a given point of the system.

Generally, the slowing down and migration lengths are defined for an infinite
homogeneous medium (irradiated by the point neutron source) as a quotient of the neutron
flux moment of the (2r+2)-order to the moment of the 2n-order. CZUBEK (1992) introduced in
the same manner the apparent neutron slowing down length and the apparent migration length
for a given multi-region cylindncal geometry.

The solutions in the present paper are applied to the method of semi-empincal
calibration of neutron well-logging tools. The three-region cylindnical geometry corresponds

to the borehole of radius R; surrounded by the intermediate region (e.g mud cake) of

thickness (R;-R)) and finally surrounded by the geological formation which spreads from R,
up to infinity. The cylinders of an infinite lenght are considered.

The paper gives detailed solutions for the 0-th, 2-nd and 4-th neutron moments of the
neutron fluxes for each neutron energy group and in each cylindncal layer. A comprehensive
list of the solutions for integrals containing Bessel functions or their derivatives, which are

absent in common tables of integrals, 1s also included.



1. INTRODUCTION

The semi-empinical method of neutron tool cahbration, elaborated by Czubek
(CZUBEK, 1992, 1993, 1994, CZUBEK ef al., 1995) was used to generate the general and
standard calibration curves as well as all porosity correction charts for different borehole
and formation conditions. The borehole geometry was approximated by a two-layer
cylindncal region i.e. a borehole and a geological formation, not taking into account the
case where a mud cake plasters the borehole wall. This is because the theoretical solution
for the neutron flux moments along the borehole axis obtained in the two group diffusion
approximation is comparatively simple for two cylindrical regions. The mud cake requires
a solution of the three region problem as it is shown in Fig. 1.

The signal of a neutron porosity tool depends on the formation, borehole and tool
properties. The most important neutron property of the complex borehole-formation
system is the neutron relaxation length: it is the thermal neutron diffusion length, L4, for a
thermal neutron source, whereas for a fast neutron source it is the migration length, L.
The migration length is defined as

12 =12+13 (1)
where L 1s the slowing down length.

The thermal neutron flux ¢4 (r) observed in an infinite medium can be

approximated (CZUBEK, 1992) by a function

P
96 (r) = 5= F(Ly) @)

where P is the probability of escaping resonance absorption during the slowing down
process and Z, is the absorption cross section of the medium of interest. When the spatial
distribution of epithermal neutrons is considered, the function F in Eq.(2) is dependent

on the slowing down length, L.
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The simple introduction presented above shows the necessity of the slowing down
and migration length knowledge for neutron well logging calculations. The real borehole -
geological formation system requires more complicated neutron field calculations than for
the simple infinite medium as shown above The neutron tool which reads thermal and/or
epithermal neutron flux is placed in the borehole, frequently in the asymmetric position to
the borehole axis. The neutron parameters determining the neutron flux observed by the
tool are complex parameters of the formation, the borehole and the tool matenals. It is the
reason that Czubek (CZUBEK, 1992) introduced the so-called ,apparent” parameters: the

apparent sl-wing down, Lsap, and migration, Lyap, lengths, the apparent absorption cross

section for thermal neutrons, L, and the apparent resonance escape probability, Pap.
which describe the heterogeneous borehole - formation system.

The method of calculation of the apparent slowing down and migration lengths
requires solving of the diffusion equations for a given cylindrical geometry. Up to now 1t
was done by Czubek in the two-region cylindrical geometry as is mentioned at the
beginning of the paper. These calculations gave a possibility to elaborate the method of the
semi-empirical calibration for porosity neutron logging tools. The method has been used
to the ODSN-102 neutron porosity tool, 70 mm diameter equipped with an Am-Be

neutron source at the calibration facility, Zielona Gora, Poland (CZUBEK et al., 1995).

A method of calculation of the apparent neutron slowing down length, Lssp, and

the apparent neutron migration length, Lyap, in the three-region cylindrical geometry by

the two-group diffusion approximation is presented in the paper.

2. WHY A NEW APPROACH IS NECESSARY

In the previous papers listed above the apparent slowing down and migration

lengths were found by solving the two-group diffusion approximation for the neutron

fluxes (pg(r,z)s(p(r,z) (i = b, r - borehole or rock, j = 1, 2 - number of neutron

diffusion group, a= °, * or ® - indicator of original neutrons from the real sources or

neutrons reflected from the boundaries, the so-called apparent neutron sources). The

equations are:



& 1¢ &
[;:;f T *%Jw,:) - amp(rs) ®)
where p{r.z) = pjj (r,2) is the neutron source density distribution for each neutron diffusion

group and inside each geometric region.

The solution 1s found by applying the Founer transform:
15 .
of (n)=o [FF e ™an )

For fixed values of indices i and j the summation of partial neutron fluxes
(pf-j’-‘(r,z) over the index a gives the physical flux ¢ "really” existing inside a borehole or
formation. The existence of the apparent sources on the boundaries is realised by 4

equations resulting from the boundary conditions. The Founer transforms Gg(r,ro are

combinations of the modified Bessel functions Ig(x), 11(x), lo(X), 11(X), Ko(x), Ki(x),

Ko(X), and K;(X), where r:r‘/kf-j+n2 and X:R‘/Af-j+nz . In these expressions the

quantity A, = 1/[1}- 1s the reciprocal of the neutron diffusion length in each energy group

and in each geometric region. R 1s the borehole radius.
The semi-empinical method of calibration is based on the calculation of the

moments m,, (@) of the 2n-order from the flux ¢.,(r,z) along the z axis for r=20 ie.

of the expression
a
ma(9) = [2270(0,5)dz 6)

Mathematically, this operation 1s equivalent to the expression:
2n

"’2’!(‘9) = (— ])" 6(’1 n)h_.:o' r=0 - (6)

dn 2n



Thus, the entire procedure is reduced to the calculation of denvatives of order 2n
of the functions G,‘j‘(r,n) with respect to the 1 vanable. Which is needed in these

calculations are the derivatives of the order 2» = 0, 2, 4. In spite of the fact that the
denvatives are always possible to calculate, the calculation of the denvative of the fourth
order 1s, in this case, a very complicated procedure giving many technical problems. This
can lead to many errors in the final formulae For this reason a similar approach to the
more complicated three region problem is hopeless. Some other approach to the solution
of the three region problem is needed if one wants to treat the mud cake and/or the steel

lining problem. This paper presents such a new approach.

3. EQUATIONS FOR AXIAL MOMENTS OF THE NEUTRON FLUX

The idea, how to overcome the laborious calculations of higher order denvatives
for the z-axial moments of the neutron fluxes, is to establish the differential equations

directly for the flux moments. Let us multiply every diffusion equation for the partial

2 .
neutron flux by z7" and integrate over z:

< & 18 & T n
[ (5122 i lseae- ] sgeate 0

-

Using the definition of the neutron flux z-axial moments m,, (¢;r) we have

T, & &

__Lzz ?q’(m)dz = 5‘2-('"2,,((9#)) (8)
and similarly

T 5,10 18

I Fera = 2 mun) ©)

Integrating Eq. (7) by parts, and bearing in mind that for z = 1w the neutron fluxes as

well as their derivatives vanish, one obtains:

6
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n-] C
I a.ch d = —2)1_{:2 lé—.(p(r,z)d:z
-® - -~ (10)

x

=2n(2n-1) [ 2" (r,2) & = 20(2n - V)mgp_y (0i7)

-

The source term 1n Eq. (7) can be rewntten as:
Izz"p;'(r,z)d:zmzn(pf]‘.;r) . (11)

When the moments and m,, (¢;7) and m,,(p,7) are presented by Hankel transforms:

Mo (0:7) = [ Py, (0 k) kS (k) dk

J (12)
Mo (Pir) = [y k) k Jo(hr) dk

0

where Jy(kr) is the Bessel function of the first kind, one obtains algebraic equations for

the Hankel transforms of the moments #,,(p.k) and A, (p.k):

(K2 432 ) By (0,k) + 20020 — 1) g3 (03K) = 4n gy (pik) . (13)

where #i,,(p; k) is the Hankel transform of the moment 2n from the neutron source

distribution p,;(r,z). Now the problem to obtain the desired moments is reduced to the

solution of the Hankel integral:

k
s, (9;r) = fk.]o(la)( k_h'%_)”(z -1)—?;—2:&’——)]& (14)

2
i + Ay



consecutively for n =0, 1, 2 and respecting the proper boundary conditions. The integrals

in Eq. (14) are relatively simple to calculate. In the general case they are:

T kJoUkr) Jo(kR)
]

dk (15)

which is usually not included in the tables of integrals, but they are easy to calculate for

integer values of n, and n,. For R =0 we are going to use the notation:

T k Jo(kr)
Jm'm(r,kq-,klp)zj

. 16)
() ‘

When the above mathematical approach is applied to the calculation of moments
for the two-region problem, one should calculate every component of the moment (i.e.
from the real and apparent sources) which gives 24 equations plus 12 algebraic equations
derived from the boundary conditions for moments. At every boundary both the moment
and 1ts first derivative should be continuos. As a result there are many more equations to
solve than there were in the previous method. On the other hand, the problem of
calculating of the higher order denvatives has disappeared completely. For two boundaries
(i.e. three coaxial regions) it 1s necessary to solve, in the two-group diffusion
approximation, the set of 42 equations for the moments and the set of 24 algebraic

equations resulting from the boundary conditions.



4. EQUATIONS FOR THE PARTIAL NEUTRON FLUXES AND FOR
THE PARTIAL MOMENTS

Let us take the following geometric situation depicted in Fig 2: the borehole has a

radius R, and parameters indicated by 7 = b, the intermediate region representing the

mud cake is situated in the space between R, and R, All neutron properties (from the
mud cake zone) are marked by the index i =c or i = d, depending upon from which
boundary they originated. The properties of the geological formation outside the radius R,
are marked with the index i =r. All neutron partial fluxes and source densities have the
upper index a =0, * or ** depending upon the origin of neutrons being treated. The
index a =90 belongs to neutrons coming from the real sources distributed in the space.
The index a = * charactenses all neutrons coming from the apparent neutron sources
distnibuted on the boundary surfaces. The upper index a = ** belongs to fluxes and
neutron source densities of the second group (i.e. j = 2) onginating from the fluxes
created by apparent sources with the index a =*. [Each geometric region has its own
neutron transport properties: the diffusion coefficient D,-j and the reciprocal of the

diffusion length A; =1/L; . The total neutron fluxes in each region are the sums of the

partial fluxes (p;-(r,z) (i=b,c,dr, j=1,2; a=0 * **) Every partial flux satisfies

the diffusion Eq. (3):

For the first neutron group there are

(pbl(",Z) = ch[(",z) +(P;l(r,2)
0q(r,2)= (pzl(r,z)-r(p;l(r,z) 17)
(pﬂ(raz) = (p:] (",Z)

whereas for the second neutron group

Pp2(7,2) = 03 (7,2) + 912 (r,2) + 01 (7,2)
0a(r2) =05(r2)+ 9 (r.2)+0u(r,2) + 05 (r,2) (18)
Q.(r,z) = q>:2(r,z) +<p;(r,z)
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All total fluxes (; = 1, 2) have to satisfy the boundary conditions of the continuity of both

the flux and the current:

Py (R1.2) = 0(R),2)
%
Dbj ?;‘pbj(r»:)} r=R =D (pg(r Z)l r=R,

Vo (19)
(pq' (RZ ’2) = ‘prj(RZ ,Z)

G, é
Dg'gwcj(r,z)Jrsz =D ar(pq(r Z)l’ R

From Egs (17, 18 and 19), in agreement with the definition of moments given by
Eq. (5), one has the equations for the total moments:

1. For the first neutron group (j = 1)

Moy (Qy157) = My, (93).7) +my, ((P;)l ;r)
Mo (9 137) = My (90 7) + iy, (0.31:7) (20)

m, (q)rl;r) = mZn((prl;r)

2. For the second neutron group (j = 2):

my, (@p2;7) = mzn((sz;’)"""zn((P;z;’) +my, (Qya;7)
My (P2:7) = Mo (@2:7) + Mgy (Oca i) + My, (9 g2:7) + My (©4257) (21)

Mo (@) =my, (@7 + my, (@r3,7)

which for n = 0, 1, 2 gives 42 equations for the partial moments mz,,(qaz-;r). The

boundary conditions for the total moments, according to Eq.(19), are

My @y Ry) = My (05 Ry)

0 0
Dy 5 man(@vi7)| g, = Do 57 M2n (0417},

22
mzn((Pg';Rz)=mzn((Pq',R2) @2

5 2
Do 5 m2n (00| g, = Dy 3 man(@yir) o,y

11



which for n=0,1,2, j=1,2 for all partial moments give 24 equations.

To be able to solve the three-region coaxial problem for the moments of neutron

fluxes one needs to define first the proper source distribution densities pf} (r,z). This 1s

presented in Appendix A. Then, the Hankel transforms m,, (pf};k) of the axial moments

of the source distributions have to be established. This is done in Appendix B. When these

moments are already known, from Eq. (13) rewntten in the form:

i, (@5 k) =

4n 1 _
PE: +lz""zn(93;k)+2n(2"- 1)Wm2,-2(¢3;k) : (23)
y y

it is possible to calculate the Hankel transforms #,,(¢;;;k) of the neutron flux moments.

This is shown in Appendix C. To obtain the partial moments of the fluxes one takes the
inverse Hankel transform, according to Eq. (12). Some definite integrals containing Bessel
functions, which are usually not included in the common tables, are needed to solve Eq.

(12). These integrals are given in Appendix D, whereas the equations for the moments

m,, ((p,‘;F ,r) are presented in Appendix E. Once the equations for the moments mz,,((p,‘;;r)

are known one has to find the 24 numbers B2, j;, Canij, Da2ni;, and Ezny for n=0,1,
2, i=b,c,d r and j=1,2 appearing in Eqs (E.1 to E 42) They are obtained by
introducing the moments into Eq. (22) descrbing the boundary conditions. These

equations are given in Appendix F.
When the numbers Bz, 5, C2nj, D2y and Ej,j; are known, it is possible to

calculate the apparent slowing down length and the apparent migration length along the z-

axis (CZUBEK, 1992) according to the formulae:

2 _1my(9u50)

= 24
P 6m(py);0) (24)
1 my(@p2,0)
L2 =z ——= 25
P 6 my(pp2;0) 23)

12



5. CONCLUSIONS

The paper presents the theoretical calculation which finally gives 8 possibility to
calculate the apparent neutron slowing down and migration lengths in the three-layer
cylindrical system which represents the borehole, the intermediate zone (e.g. mud cake at
the borehole walls), and the geological formation. The semi-empincal method of neutron
tool calibration correlates the tool reading observed experimentally with the general

neutron parameter, GNP. The GNP is defined as

GNP = L, 25 P1 (26)

where the exponents n and m are obtained experimentally during the calibration
procedure.

The apparent migration length can be calculated using the calculation procedure
descnbed above. The neutron absorption cross section, the elemental compositions and the
densities of the borehole fluid, of the mud cake and of the geological formation as well as
geometrical dimensions of the system have to be known. Knowledge of the mud cake
parameters is the worst among them. A research in this field 1s going on.

There 1s no well-defined method to calculate the apparent absorption cross section
2ap and the apparent resonance probability P,y The method proposed by Morstin
(MORSTIN AND KREFT, 1984, CZUBEK, 1992) has been used in the semi-empincal neutron
tool calibration up to now. The mud cake allowance in the calculation make the problem

more difficult and must be solved.

13
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APPENDIX A

Neutron source densities for three coaxial regions

According to the notation used in Fig. 2 there are
following source densities related with the diffusion Eq. (3). In all
source distributions the B, (z) and y,(z) are functions of the
source distributions on the boundary surfaces. They are unknown
functions which have to be found from appropnate boundary

conditions. The &(r) 1s the Dirac delta.

A. First neutron group (slowing down neutrons), j=1

1. Borehole region, i-b
¢p;(r.z) - epithermal neutron flux originating from the real

source of fast neutrons situated at the origin of the cylindrical co-

ordinate system (1 neutron/s) having the space density

1 8(r)5( )

Al
nDbl 2 ( )

Pui(r.2) =

s

(p;,(r, z) - epithermal neutron flux from the apparent fast neutron

sources distributed on the lateral boundary between the borehole
of radius R, (on the side of the borehole) and the mud cake.

The space density of these sources is given by the expression

(A.2)

8(" R])
nl%, Bo1(2)———— ]

Ppi(r.2) =

2. Intermediary region (the mud cake), i=c, d

cpsl(r,z) - epithermal neutron flux from the apparent fast neutron
sources distributed on the lateral boundary between the borehole
of radius R, (on the side of the mud cake) and the mud cake. The
space density of these sources is given by the expression

5(" Rl )

2nR,

(A3)

_41:0



(p:“(r,z) - epithermal neutron flux from the apparent fast neutron

sources distributed on the lateral boundary between the mud cake
of radius R, (on the side of the mud cake) and the formation. The

space density of these sources is given by the expression

(A4)

. _ | 6(’-R2)
pdl(r'Z)_47ch‘ Ya(2) 2R,

3. Geological formation, i=r
(p:,(r,z) - epithermal neutron flux from the apparent fast neutron

sources distributed on the lateral boundary between the mud cake
of radius R, (on the side of the formation) and the formation. The

space density of these sources is given by the expression

5(r - Ry)
Yn(2) 2k, (A.5)

. 1
r, =
prl( Z) anl

r]

B. Second neutron group (thermal neutrons), j=2

1. Borehole region, i=b
®p2(r.z) - thermal neutron flux originating from the real source

of epithermal neutrons having the space density

Pp2(r.2) = Dy A51905: (7. 2) (A.6)

7'-Db2

(p;,z(r,z) - thermal neutron flux onginating from the apparent

epithermal neutron flux w;,(r.z) which has the spatial source

distribution given by

Azblwt.,l(r,z) (A7)

Pp2(r.2) = :

4Dy,
(p;‘z(r,z) - thermal neutron flux from apparent epithermal neutron
sources distributed on the wall of a borehole of radius R, at the
boundary between the borehole and the intermediary region

(on the side of the borehole) with the space source density given

by

By, (2 )6(r R))

(A.8)
TCDbz R

P2 (r.2) =
2. Intermediary region (the mud cake), i=c, d
(p:2 (r.z) - thermal neutron flux from apparent epithermal neutron
sources given by the flux ‘0:1 (r.z) with the space source density
given by

DyAy01(r.2) (A.9)

. 1
rz)=
Pcz( ) 4"-Dc2



*P;z (r,z) - thermal neutron flux from apparent epithermal neutron
sources given by the flux cp;,(r. z) with the space source density

given by

DA2194)(r.2) (A.10)

. (r.2) = 1
pdz ' - 4nDC2
tp:;(r,z) - thermal neutron flux from the apparent epithermal

neutron sources distributed on the lateral boundary between the
borehole of radius R, (on the side of the mud cake) and the mud

cake. The space density of these sources is given by the expression

8(r - Ry)
27R,

(A.11)

Pea(r.z) = Bea(z)—-12

4nDc2

(p;;(r,z) - thermal neutron flux from the apparent epithermal
neutron sources distributed on the lateral boundary between the
mud cake of radius R, (on the side of the mud cake) and the

formation. The space density of these sources is given by the

expression
. _ i 8(" Rz)
P (r0) = g Yl (A12)

17

3. Geological formation, i=r

(p:z (r.2)- thermal neutron flux from the apparent epithermal

neutron flux (p:,(r.z) with sources given by the expression

D0, (r.2) (A.13)

[ ]
r.z) =
Pea(r.2) anD,,

©,2(r.z)- thermal neutron flux from the apparent epithermal

neutron sources distributed on the lateral boundary between the
mud cake of radius R; (on the side of the formation) and the

formation. The space density of these sources is given by the

expression
. | 6(r Rz )
2) = A 14
P;z(" Z) 47‘0,2 [2( ) 2 ( )



APPENDIX B

Definition of the moments of source densities

When Eqs (19) are multiplied on both sides by 227 and

integrated over z, the boundary conditions for the flux moments

are found. At first one has to calculate the moments of the source

distributions given by Eqs (A1 to A 14). The following 24

numbers are introduced:

BZn,b/

C 2ny

D 2ngy

EZn,u =

= ]')zz"ﬂw (2)dz

—a0

[22"B; (2)dz

= Izancj(z)dz
—a0

B PO

—a0

J=1,2,n=01,2

(B.1a)

(B.1b)

(B.1¢)

(B.1d)

When one uses the Hankel transforms .

5(r) = rfkJy(kr) dk
0 B.«

8(r ~ R) = R[ kJo(kr) Jo(kR) dk
0

the following Hankel transforms, according to Eq.(12), are

obtained for the moments of the source distributions:

1 1
4D, 2n (B.3)

miy(ppy k) = my(pyy k) =0

’T'O(Pgl"") =

- . 1 1
my, (Pyy k) = man,m E-’o("Rn) (B.4)
bl
. 1 1
m NE C —Jo (kR B.S
my Py k) D, " 2 o(kRy) (B.5)



- . | 1
my, Py k) = 4—75—02";.1 2“1;J0("R2 )
cl

- . | |
My (P k) = 4—n5_,E2"“ “2—;-’0("1?2)
| 4

Miyn (Po2 k) = Dy Ay 1y, (00 K)

1
4nDy,

anDy, Dyy A3 iy, (9 k)

Ay (P2 k) =

1
4nDy,

- . |
my,(py2 . k) = S E;JO(le)

- . 1
”’zn(Pcz-"‘)=4nD
c2

Doy AL, By, (94 k)

c2

Dey A3y Py (91K)

iy (P gz k) = 3

(B.6)

(B.7)

(B.8)

(B.9)

(B.10)

(B.11)

(B.12)
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- . |
mp, (pcz .k) = Czn'cz ?T;Jo(le) (813)

4D,
Finn (03 K) = ;K—Z‘)—C;Dzn,cz — Jo(kRy) (B.14)
n(pr2 k) = 7 ﬂ')rz Doy A2 Figg (051 K) (B.15)
Ay (0r3 k) = ;‘n—‘D'[—z-Ezn;z = Jo (kR ) (B.16)

Note that the Hankel transform for the moments given by
Eqs (B.3 to B.16) have to be calculated consecutively for n = 0,
1,2



APPENDIX C

Hankel transforms of the moments

The Hankel transform of z-axial moments of neutron fluxes has been defined in Eq. (23). Here the transforms are given explicitly for

all n, i and j needed in the calculations. When Eqs (B.3 to B.16) are inserted consecutively into Eq. (23), the following transforms of the

moments are obtained:

A. For n=0 there are 14 moments:
Po0h K= 5 +lx2.,. () Fio(@11:6) = 35~ Dogy Z‘;‘f’;’zd) (C.4)
o (@g k)= z—n[l)‘;BO,bl :—;)gfl—:;b_)l (C2) g (@ k) = 21‘;)” Eon Zg(f}:;”) (C.5)
g (@gy k) = E_nll)—chQ" ;{2% (C3)
Mo (9b.K) = 21};;12 (kz ﬂzm)l(kz +Xzbz) - 2212;:,2 A3, 1;3,,, (k’ »flx{,, T +lx{,2] ©e)
iy (9, k) = Z—%Bo,m (kz N ;0()1‘(12'2)+ 2 ) = 222;) Bopi 2 1)‘2 [:f(mlz) - JZO(kR;) ] (o))
bl b2 2 b2 ~Ab LAT +Ay AT+ A,



1 Jo(kRy)

Ay (Py2:k) = Bo,v2 (C8)
2rDy, k2 + X‘iz
ook = Mg, hGR) My o [Jo("Rl) _ Jo("Rl)] ©9)
’ - A - ,C .
) 2D, ¢ (kz + ki,)(kz + kzcz) 2rD, kiz - kzc, [ S CA T 33;2
e A2 Jo(kRy) A2, | Jo(kRy) Jo(kRy)
(o ;k)="""c'—‘D = Dy - (C.10)
) e ) (6 ) T T (e T R et
e 1 Jo(kR))
k)= Co. (US| (C.11)
To(02:k) 2mD; O k2 422,
_ . es 1 Jo(kRy)
mo(9g2.k) = Dy —>—— (C.12)
0(®q2 27D, 0277 A2
e A2 Jo(kR A2 | Jo(kRy) Jo(kRy)
my(@y2, k) = an Eoni7 20 22) Y S an Eon 3 [ ;’ 22 - f 22 (C.13)
2 (k + l,,)(k + k,z) 2 22, a4 Lk e a2, kPl
e 1 Jo(kRy)
(902:4) = Egr3 —0—5— (C.19)
"’0 2 zﬂD'2 0,[2 k2 + kiz
B. For n=1 there are also 14 transforms of moments:
-~ 1
iy (@p1:k) = (C.15)

2
2nDy (k2 + Ai,)z
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- [T ] JO(kRZ)
my (@2, k) = Exo—5 3 + 2Eon 3 (C.28)
21Dz K=+ K+ 2d)
C. For n=2 there are 14 following transforms of moments:
_ 24 1
my(@p); k) = (C.29)
2 3
Dur (1 43
e 1 Jo(kR}) Jo (kR Jy (AR
My (Qy). k) = 5D B.a,m;zg"(—;l{“ + lsz,m"’;QL—zL)‘{ + 248%1’;“)‘(“”2'—)‘; (C30)
bl t Ap) (k +Xb,) (k +Xb|)
-
e 1 Jo (kR Jo (kR Jo (kR
Pa(ouik) = | €y D) ac, TR e, R (€31)
e el k242 K+ Af_,) (k2 + lzc,)
L
-
. | Jo(kRy) Jy (kR Jo (kR
my(@g), k) = Seh | Pl s 12Dy ¢ — 2)2 24Dg ¢ of 2)3 (€32)
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APPENDIX D

Some useful definite integrals containing Bessel functions

Here some definite integrals containing Bessel functions are »
e HERTER T | Junr )= [ LUy, =—‘—(i) K,(\) (D4)
given together with their first denvatives with respect to the radial co- o (k2 + ) )"*' 2"t
ordinate r. For these integrals some special notation is used.
- L . . r kR):
Integrals containing one Bessel function Jy(kr): Definite integrals containing Bessel functions J,(kr) and J,(kR)
Integrals of the type
Tk Jo(kr)
Ji(r.x) = dk = Ky (W) (D.1) ®
I 1,(r.R)) = J.kJO(h)JO(fR) dk ®.5)
K Jy (k) (It2 +).2)
lr
Ja(r A ——0-———— =-—K,(M D.
2(r.A) = {(kz Y ) d 2 K\Ov) (0-2) have to be calculated depending on the condition r<R or r>R and
they are marked in the text as /,(r<RA) or [ ,(r>R,)
w 2
J3(r.A) = IM]. dk = l(i) K, (W) (D.3) according to the case. From BATEMAN (1953, p. 96, Eq. 57) there is:
0 (k2 + 12) 8\
ThJy(kr Iy (Ar) Ko (AR), R
1,0.RA) = [ X0l JotkR) ={ oANK(R), r<R 1 o
and in general (BATEMAN, 1953, p. 96, Eq. 59): o K+ Iy(AR)Kp(Mr), r>R

The other integrals (i.e. for n>1 in Eq.D.5) are not tabulated. They have to be calculated by consecutive derivation of the integral

1,(r.R,A) wath respect to the parameter A
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First derivatives of the integrals J (r,\) with respectto r:

First derivatives of the integrals 1 (r.R,1) with respectto r:

Jilr.A) = -2 Ky (M) (D.10) 1{(r < R,A) = A1 (M) Ky(AR) (D.13)
Jz'(f.’t)='£HKo(7v) (D.11) 1i(r > R.A) = =& Lg(AR) K, (Ar) (D.14)
1
o I5(r < RA) = =[R 1, (Ar) K, (AR) = r Io(Ar) Ko (AR)) (D.15)
S Ay = - 2 r K G) (D.12) 2
1
I5(r> RA) = E[R L (MR Ky (W) = r I;(AR) Ko(Ar)] (D.16)
i<y ] (1) + (R)
7 < RA) = S [AR1 O KR = MR M Io(hr) Ky (AR) + 52— 1 v) Ky (OR) | ®.17)
, | Ay + (WR)
I(r>RA) = ;—ﬁ[m 1, (AR) K, (Ar) + AR Ar [, (AR) Ko (W) - (——l%(—l-lo(m K (V) ] (D.18)
Special values of integrals J, (r,A) for r =0: Ju (O 1
0,A)= —-
Here the general formula is used; O ax ©20
"”L XK, (x) ~ (- 1) 2" Special values of integrals 1,(r,R,\) for r=20:
which gives. 1,(0.R. 1) = Ky(MR) (D.21)
1
1 1 = —
nor-- 0.19) 20.R1) = —5 AR K\ (AR) ©22)
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13(0,R.A) = E{T(m)z Ky (AR) (D.23) I;(RRA) = %[IO(LR) K\(AR) - 1) (\R) Ko (AR)] (D.25)
Special values of integrals I, (r R\ ) for r=R:
11 (R,R,X) = I (AR) Ky(AR) (D.24)
)
I, (R.R\) = o (212 I,(R.R\) - (J\.R)lel()LR) K,(AR) - I4(AR) KO(A.R)]} (D.26)
Special values of the first derivatives of the integrals I (r,R,\) for r =R:
XI|()-R) Ko(M), r < R
I (R RA) =
((RRD) {4 Io(WR)K,(WR), 7> R (D.27)
R
R RA) == [LAR) K \(R) - I, (OR) Ky(WR)] (D.28)
——'7{2 VR RA)-R [1- 2AR [, (AR) Ky (AR) ~ Ko (AR) IO()LR)]}, r<R
J{(R,R2) = ‘ﬁ (D.29)
ZF‘Z 1{"(R.RA) = R[1 - Ko(AR) Iy (AR, r>R
(D.30)

15“(R,R.1)|,>R = ;—i;{z IfY(R.RA) - R[1- Ky(AR) lo(xR)]}



APPENDIX E

Inverse Hankel transforms of the z-axial moments of partial fluxes

The Hankel transforms of moments given in Appendix C have to be inverted to the form depending on the radial co-ordinate 7, i.e.

one has to perform the inverse transform given by Eq. (12). Keeping the notation of integrals given in Appendix D the following partial

moments are obtained:

A. For n = 0 the following inverse transforms one obtains from Eq.

(12) for the transforms given by Eqs (C.1 10 C.14):

1
my(@hy.7) = ;@—Jl(’-lbl)

b)
mo(@ey.r) = L B 1i(r < Ry, Ay)
: — r<
0l@ by ey, 0,bi41 [ bt
my(@.,. 1) = Coa! R,.A
(9. 7) 7D, 0.t (r >Ry Apy)
. |
my(@gq,.r) = "Z“K‘D“ Do 1h(r <Ry, xy)
m (tp‘ r) = I Eogalitr >R
[r) = r>
0\¥r] 21(.1)“ 0,71 71 P rl)

(E.1)

(E.2)

(E3)

(E.4)

(E.5)

31

X3, 1
my(@pa:r) = Ji(r A p) = N (r Ap2) (E..6)
2KDb2 X [ ]
. AL, [ ]
my(Ppy. 1) = By, by Lh{r <R, Ap) -1 <Ry Ay)
2nDy A -
(E.7)
[ X ] ‘
my(Qyy. 1) = B Li(r <R, hy) (E.8)
0(Py2 27Dy, ob2 4 A2
2 1
mo(wlr)— ' Li(r>R,A)~-1i(r>R,A,)
c 21!.Dc2 0.cl zcz—- %l[l 1 ®cl 3 1 c2]
(E.9)
my(9gz. ) = K Dy ! [I(r<R )= I (r < Ry Ag))
0 2' - .

(E.10)



1

[ 2 ) L] l
mo((pcz'-r)z CO,CZ ll(r>Rl'kc2) (Ell) mz((pbl;r):-i—an—I-[Bz'b‘ ll(" <R|'kb|)+2B0,bl 12(" <R|,Xbl)]
c2
. 1 (E.16)
mo(9qz.r) = D Do /1(r < Ry Aey) (E.12) l
c2 m(9air) = [Cact 11 > R AG) +2Co0 1o (7 > Ry Ao
R 2” 1 cl
my(@p:7) = 2mD, Eo, i m[h(’ >Ry, k)= 11(r> Ry Ap5) (E.17)
E.13) . 1
, ( m(@a1r) = 2 [D2.c1 1(r < Ry A1) +2Dg o Ly (r < Ry A)]
L 1] I
my(@ . r) = Eo,, [)(r > Ry A,) (E.14) ¢
0\¥n2 21\’-D,2 0,r2 41 r (E_ls)
. 1
my(@n:r) = [Esni 11(r > Ry M) +2Eq g 1 (7 > Ry An)]
I
B. For n = 1 the following inverse transforms one obtains from Eq. ' E19)
(12) for the transforms given by Eqs (C.15 to C.28): ) ‘
o . — szl 1
bl .
2
. A l
my(@py.r) = —> 3 7 {Bz,bI[II(’ <R Ay) -1 (r < RiApp)] + 2Bo_m[/z(’ <R Ay)-1h(r< R]-Mz)]} (E21)
2nlyy Ay — Ay
- 1
my(Qy2.r) = [Bz,bz Li(r <Ry App) +2Bypy 1(r < Ry Ay, )] (E.22)

21Dy,



my(Pcy.

m, (@g4;

ml(‘pcl .

my (@42
m; (‘9!2

[ X ]
my (@,

2
A2, 1

r)= 3 7 {CZ.CI[II(’ >Ry k) -1(r > Rl')‘c2)] + 2Co,u[’2(’ >Ryrg)-L(r > R,.lcz)]}
21D, Az —Aq
A2 !
Jr) = cl 3 3 {Dzlcl[ll("<R2,xc|)_l|(r<R2,kc2)l+200":‘[/2(’<R2-A‘c])—12(r<R2'kC2)]}
2rD,, )‘cl “)‘cl
) e —d [Crc2 h(r > RiA)+2Co 0 11 (r > Ry AG))
2n'Dc2
1
ir) = [Dac2 1h(r < RyA2) +2Dg 2 1o (r < Ry Aoo)]
2nD,,
A2
iy i ! —{Esallir > R M) =11 > Ry )] + 2Eo [0 > Ry M) - 1 (r > R}
2"‘0‘2 )‘IZ ‘)‘rl
1
Jr)= E, 2 1/(r > Ry, A 3)+2E;,, [3(r > Ry Apy)
20D, [ 2,12 1) 20 Mp2 0,52 °2 2: N ]

C. For n = 2 the fullowing inverse transforms one obtains from Eq. (12) for the transforms given by Eqs (C,é9 10 C.42):

my(@y;.r) = 5

my(Qpy. ) = 3

my(@,. 1) = 5

24

J](r')“bl)
i

[Baot 11(r < Ry Ay)+12B, ) 1, < Ry Ay)) + 24Bg ) 1y(r < Ri.Av))]
l

[Cact 11(r > R A ) +12C, ) 1y (r > Ri Ay + 24Cqc, 1y(r > Ri.Aoy))

b cl
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(E.23)

(E.24)

(E.25)

(E.26)

(E27)

(E.28)

(E.29)

(E.30)

(E31)
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APPENDIX F

Calculation of constants for the boundary conditions.

For the calculation of the z-axial moments after the formulae given in Appendix E one has to know first the constant numbers, B2, v,
C2n.g . D2n and Ez, appearing there (cf Eq.(B.1) for the meaning of these constants). First, using the boundary conditions given by Eqs
(22), one has to find for n =0 the constants, Bg i, Coc1, Doci, Eon, for the first neutron group, and then the constants, Boy2, Coc2,
Do 2. Egr2, for the second neutron group.

Knowing these constants one can calculate from the same Eqs (22) for n =1 the constants B vy, C2¢1, D2c1, E21 and Bap2,
C2.c2. Dy.2, E2 2. and after that it is possible to calculate the constants B4y, Cacy, Daci, E4q1 and Byypa, Cac2, Dac2 , Eqr2. Thisis
because for a given n in the linear Eqs(22) the constants obtained for (7 — 1) enter as the already known parameters. When Eqs (22) are
established for a given n the derivatives with respect to the vanable r of the functions J,(r,A) and I,(r,R,\) are needed at r = R; and
r = Ry. The reader can find all these functions and their derivatives in Appendix D. All equations which one has to solve are the set of linear

equations with four unknowns. As an example the boundary Eqs (22) are written below for n = 0 and j = 1:

my(@91: R) + mo(@p). Ry) = my(@gy i Ry) + mo(9gy: Ry) (F.1a)
2 \ . d . .

Dy, ‘67[’"0(‘9“"") +”'o(‘0b|"’)] lr=r, = Dei 5[”’0(‘%1'") + ’"o(‘Pdnf’)] |r=Ry (F.1b)

my(9c1: Ry) + my(9g1: Ry) = my(o;,. Ry) (F.1c)

0 L ] L] a L ]
Dy 5‘["’0(%1"’) + ”'0(%\5’)] lr=Ry = Dy 5[’"0(‘0;15’)] |r=Ry (F.1d)



Equation (F 1) has to be rewritten using the formulae (E.1) to (E.14) which gives:

—5;[.1,(1(, Ap) + Bopy L1 (R Ry, kb.)]

(R Ry AG) + Doy 1y (R Ry A

SRy Ayy) + By oy J{(RL Ry A b)) rcr, =C0,c| I(RLRLA ) s py + Dot [1(RLRY A, cry

»——[CUL.HRZ Ry )+ Doy (R Ry, c.>]— Eonll(Rz Ryn)

Cocr 1/(Ry. Ry Ae1)psp, + Doy /n'(Rz.Rznlcl)mR, =Eon li(Ry, Ry A))rsg,

(F.2a)
(F.2b)
(F.2¢)

(F.2d)

where the denivation with respect to r is always going for the first variable of the function /,(r, R,A). The set of Eqs (F.2) is reordered

according to the sequence of the unknowns By, Co.c1, Doci, Eo., which gives

l'(R"~»[i"M")BUbl _ II(RI-RI'MCO | _ ln(Rl-Rz-M|)DO |
I)bl ' Dcl o Dcl o
HRLR A p1)r e Boor —1I(RL KL, 5k Coc ‘ll'(Rl Ry, cl)r<R, Doci
L(Ry R )) (R, Ry Ay
2R dade LR Ry Ay) Do)
Dcl Dcl

HRy R AGD)esr Cor +H{(Ry Ry b)), g, Do

37

__ DR Ay)
Dy,
=-Ji(R.Apy)
Ry R
( 202 rl) 0” :0

—Il,(Rl'RZ'}‘tl)nRzEO,rl =0

3

r (F.3)
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and the free terms are defined as:

forn=0and j=1:

1y = - 1f: o) (F.6a)
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‘by, =0 (F.6d)
for2n =2 and j=1:
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Forn=0, 1, 2 and j = 2 the coefficients aj; are of the form:
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using the substitution Af = —Z—Li- (i =b, ¢, 1), the free terms are defined as:
i2 ~ Nl

forn=0and j=2:
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- 12D, ; 15(Ry. Ry hc2) = 24Dg 2 I3(R2. Ry M p) e, + 12Ep 0 13(Ry Ry M) + 24Egp I3(Ry. R2 M 2)rsm, =
="Azc{cnt,cllll'(RZtRl»xcl)-Il'(RZ'Rl-lc))]”m + 12C, [ 15(Ry. R A ) - Ii(RZ'Rl-lcl)]”m +

+ 24Co[/3(Re. R A ) = I3(Ry. Ry A )] oy + Daarl/iRau Ry her) = 1Ry Ry A )]un; +

+ |2Dz,.~.|[li(Rz-Rz-"cl)—li(Rz-Rz-7\c2)]’(ﬂz + 24Dg [ 13(Ry . Ry M) - li(Rz-Rz-lcz)]KRz} +

+A2:{Ea,n [7i Ry, Ry M) = 11 (Ry, Ry A ) + '252.r|[15(R2»1'Q2v1n)“15(’*2-’*2'1:2)]”“z +
r>R)

+ 24Eg o[ 13(Ry. Ry M) - Ii(Rz'RZ-xIZ)],>R1} - R2C o I3 (R Ry Ay) - 24Cy o I3(Ry R\ A 3), 5, —

= 12Dy 02/3(Ry. Ry A y) — 24Dg oy I3(Ry. Ry Ap)cr, + 12B 203 (Ry, Ry X pp) + 24Egp I3(R2 Ry A 12), 5,

In that way all equations and constants needed to calculate the second and fourth z-axial moments of all neutron fluxes for the three

coaxial layer configuration have been established.



APPENDIX G

Solution of the set of linear equations related to the boundary conditions.

From the boundary conditions given by Eq.(22) one always

has four linear equations with four unknowns x,,x,,x;,x, of the
form
a; x, +a,,x, +a,;;x; +0-x, = b,

ay X, +a, %X, +a,;x; +0-x, =b2

(G.1)
0-x, +ay3,X, +ay3%y +ay,X, =b3
0:x, +ay,Xx, +A,X; +a,,X, =b4
The notation s used:
€)1 T 9),4; — 454,
€2 =4349;, — a4,
Cyy = dqyyd,, — dyad
21 224944 42934
(G.2)
Cap T A4y T 439,
d, =ba, - b,

dy =byuy, - byay,
By the elimination of the two unknowns x;,x, one obtains a set
of two equations.
€)Xy ¥ €)Xy =d)

(G.3)

€)Xy +€yXy =d,

49

By the calculation of the determinants for Eq.(G.3) one obtains

Dys ‘N2 a2
D, = de¢y - dyc, (G.4)
D, = dy dycy
which gives the solution for x, and x;:
=22 xy =21 (G.5)
4, A2

After the substitution of the solutions given by Eqs (G.5) into

Eq.(G.1) one obtains for x, and x,:

X = ;“‘(bl —a5% “’13"3)
1 (G.6)
B |
X, = ;‘“(bs RGP ED) “‘133"3)
3
When by =b, =0 in Eq.(G.1), then d, =0, and:
A, =d\cy Ay =-dcy
1 (G.7)

X4 = ‘a(asz"z +a3,x3)

which makes the calculations easter.



APPENDIX H

Apparent neutron parameters

The apparent neutron slowing down and migration lengths are defined by Eqs (24 and 25). The 2-nd and 4-th neutron flux moments on
the borehole aus, i.e. for r = 0, are calculated from Eqs (20 and 21) using the solutions (E 15, E. 16, E 20, E 21, E 22, E29, E30, E.35 and
E.36). The particular values of integrals J_(r,1 ) and /_(r,R,| ) for r =0 are obtained from formulae (D.19 to D.23).

1 1 1 R
my (¢y):0) = ‘2"ﬂ—D-bT[2Jz(0-7~t>|)+ Bt [1(0, Ry, Apy) +2Bg y 13(0, Ry, Ay = Dy -):i.:+ Bo.v1 ';::Kl(Rllbl)*'Bz.blKo(RlMl )]

(H1)

| 222
my (‘sz 0) = { bl

>xD 3 3 {Jz(o-lbl)‘J2(°-1b2)+Bz.m[ll(o-Rn-lbl)—/l(o-Rl-Mz)] +2Bo.b|[lz(°.Rhlbn)-lz(o.Rl-lbz)]}‘f
b2 )-bz -)‘bl

1 A2 1 1
+ By pa /1(0, R, Ap2) +2Bg 2 7/5(0, R, Ay2) } = { 0| + By i [Ko(RiAp)) - Ko(RiAy2)] +

21Dy, lz.a-lzmllm Ao2

1 i 1
+R, Bo,u[r Ky(RiAyy) - I K (R, )]} +B3 p2Ko(RiAp2) + By 2 l—RIKI(RbeZ)}
b b2 b2

(H2)
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