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NEUTRON DIFFUSION APPROXIMATION SOLUTION

FOR THE THREE LAYER BOREHOLE CYLINDRICAL

GEOMETRY

PART I: THEORETICAL DESCRIPTION

JAN A. CZUBEK

AND

URSZULA WoiNICKA

ABSTRACT

A solution of the neutron diffusion equation is given for a three layer cylindrical coaxial

geometry. The calculation is performed in two neutron-energy groups which distinguish the

thermal and epithermal neutron fluxes in the media irradiated by the fast point neutron source

The aim of the calculation is to define the neutron slowing down and migration lengths which

are observed at a given point of the system.

Generally, the slowing down and migration lengths are defined for an infinite

homogeneous medium (irradiated by the point neutron source) as a quotient of the neutron

flux moment of the (2/H-2)-order to the moment of the 2w-order. CZUBEK (1992) introduced in

the same manner the apparent neutron slowing down length and the apparent migration length

for a given multi-region cylindrical geometry.

The solutions in the present paper are applied to the method of semi-empincal

calibration of neutron well-logging tools The three-region cylindrical geometry corresponds

to the borehole of radius R\ surrounded by the intermediate region (e.g mud cake) of

thickness (/?2~^i) and finally surrounded by the geological formation which spreads from Ri

up to infinity. The cylinders of an infinite lenght are considered.

The paper gives detailed solutions for the O-th, 2-nd and 4-th neutron moments of the

neutron fluxes for each neutron energy group and in each cylindrical layer. A comprehensive

list of the solutions for integrals containing Bessel functions or their derivatives, which are

absent in common tables of integrals, is also included.



I. INTRODUCTION

The semi-empincal method of neutron tool calibration, elaborated by Czubek

(CZUBEK, 1992, 1993, 1994, CZUBEK et al'., 1995) was used to generate the general and

standard calibration curves as well as all porosity correction charts for different borehole

and formation conditions The borehole geometry was approximated by a two-layer

cylindrical region i.e. a borehole and a geological formation, not taking into account the

case where a mud cake plasters the borehole wall This is because the theoretical solution

for the neutron flux moments along the borehole axis obtained in the two group diffusion

approximation is comparatively simple for two cylindrical regions The mud cake requires

a solution of the three region problem as it is shown in Fig. 1.

The signal of a neutron porosity tool depends on the formation, borehole and tool

properties The most important neutron property of the complex borehole-formation

system is the neutron relaxation length: it is the thermal neutron diffusion length, L&, for a

thermal neutron source, whereas for a fast neutron source it is the migration length, L^

The migration length is defined as

0)

where Ls is the slowing down length

The thermal neutron flux (f>^(r) observed in an infinite medium can be

approximated (CZUBEK, 1992) by a function

(2)

where P is the probability of escaping resonance absorption during the slowing down

process and I a is the absorption cross section of the medium of interest When the spatial

distribution of epithermal neutrons is considered, the function F in Eq.(2) is dependent

on the slowing down length, Ls.
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The simple introduction presented above shows the necessity of the slowing down

and migration length knowledge for neutron well logging calculations The real borehole -

geological formation system requires more complicated neutron field calculations than for

the simple infinite medium as shown above The neutron tool which reads thermal and/or

epithermal neutron flux is placed in the borehole, frequently in the asymmetnc position to

the borehole axis The neutron parameters determining the neutron flux observed by the

tool are complex parameters of the formation, the borehole and the tool materials. It is the

reason that Czubek (CZUBEK, 1992) introduced the so-called ..apparent" parameters: the

apparent sowing down, LMp, and migration, Z-map, lengths, the apparent absorption cross

section for thermal neutrons, Lap, and the apparent resonance escape probability, />ap,

which describe the heterogeneous borehole - formation system.

The method of calculation of the apparent slowing down and migration lengths

requires solving of the diffusion equations for a given cylindrical geometry. Up to now it

was done by Czubek in the two-region cylindrical geometry as is mentioned at the

beginning of the paper. These calculations gave a possibility to elaborate the method of the

semi-empincal calibration for porosity neutron logging tools. The method has been used

to the ODSN-102 neutron porosity tool, 70 mm diameter equipped with an Am-Be

neutron source at the calibration facility, Zielona Gora, Poland (CZUBEK et al, 1995).

A method of calculation of the apparent neutron slowing down length, LMp, and

the apparent neutron migration length, Z-map, in the three-region cylindrical geometry by

the two-group diffusion approximation is presented in the paper.

2. WHY A NEW APPROACH IS NECESSARY

In the previous papers listed above the apparent slowing down and migration

lengths were found by solving the two-group diffusion approximation for the neutron

fluxes (f>°(r,z) = <p(r,z) (/ = b, r - borehole or rock, j• - 1, 2 - number of neutron

diffusion group, a = °, or ** - indicator of original neutrons from the real sources or

neutrons reflected from the boundaries, the so-called apparent neutron sources). The

equations are:



~ + ^-\2J<p{r,:) = -4np{r,z) , (3)

where p(r,z) = pfj(r,z) is the neutron source density distribution for each neutron diffusion

group and inside each geometric region.

The solution is found by applying the Fourier transform.

(4)

For fixed values of indices / and j the summation of partial neutron fluxes

<p*(r,z) over the index a gives the physical flux (p "really" existing inside a borehole or

formation. The existence of the apparent sources on the boundaries is realised by 4

equations resulting from the boundary conditions The Fourier transforms <j>,y (r,r\) are

combinations of the modified Bessel functions IQ(X), I\(X), 1Q(X), I\(X), Ko(x)y K\(x),

Ko(X), and K\(X), where x = r^X2
u +Tf and X = RJ\]j +1}2 . In these expressions the

quantity X,y = l/L,j is the reciprocal of the neutron diffusion length in each energy group

and in each geometric region R is the borehole radius.

The semi-empincal method of calibration is based on the calculation of the

moments ro^fa) ° ^ t n e b o r d e r from the flux <pb2(r,z) along the z axis for r = 0 i.e.

of the expression

= Jr2n(p(O,*)dz . (5)

Mathematically, this operation is equivalent to the expression:

d2fl _
( l ) ' ' ( (6)



Thus, the enure procedure is reduced to the calculation of derivatives of order 2/J

of the functions <p" (r,i)) with respect to the r\ variable Which is needed in these

calculations are the derivatives of the order In = 0, 2, 4 In spite of the fact that the

derivatives are always possible to calculate, the calculation of the derivative of the fourth

order is, in this case, a very complicated procedure giving many technical problems This

can lead to many errors in the final formulae For this reason a similar approach to the

more complicated three region problem is hopeless Some other approach to the solution

of the three region problem is needed if one wants to treat the mud cake and/or the steel

lining problem. This paper presents such a new approach

3. EQUATIONS FOR AXIAL MOMENTS OF THE NEUTRON FLUX

The idea, how to overcome the laborious calculations of higher order derivatives

for the r-axial moments of the neutron fluxes, is to establish the differential equations

directly for the flux moments Let us multiply every diffusion equation for the partial

neutron flux by z2" and integrate over z :

Using the definition of the neutron flux z-axia! moments m^iyj) we have

°° d2 d2

J z2n ~jv(r,z) <t = -rjKatar)) (8)
_~ <*• or

and similarly

00
1 5 . , . 1 6

Integrating Eq. (7) by parts, and bearing in mind that for z = ±» the neutron fluxes as

well as their derivatives vanish, one obtains:



2n cT r 2n_i 5

- * . - (io)
= 2n(2n- 1) j r2""2(p(r,z) dr = 2w(2«-l)/n2n_2((p,r) .

The source term in Eq. (7) can be rewritten as:

(11)

When the moments and mln{y,r) and /W2n(Pir) a r e presented by Hankel transforms

= \rn2n(v,k)kjo(kr)dk

where Jo(kr) is the Bessel function of the first kind, one obtains algebraic equations for

the Hankel transforms of the moments m2n{y:k) and m2n{p,k):

(13)

where /n2ff(p;#) is the Hankel transform of the moment 2n from the neutron source

distribution Py{r,z). Now the problem to obtain the desired moments is reduced to the

solution of the Hankel integral:



consecutively for n - 0, 1, 2 and respecting the proper boundary conditions The integrals

in Eq (14) are relatively simple to calculate In the general case they are

which is usually not included in the tables of integrals, but they are easy to calculate for

integer values of n, and n^ . For R = 0 we are going to use the notation:

it?i

When the above mathematical approach is applied to the calculation of moments

for the two-region problem, one should calculate every component of the moment (i.e.

from the real and apparent sources) which gives 24 equations plus 12 algebraic equations

derived from the boundary conditions for moments. At every boundary both the moment

and its first derivative should be continuos As a result there are many more equations to

solve than there were in the previous method On the other hand, the problem of

calculating of the higher order derivatives has disappeared completely For two boundaries

{i.e. three coaxial regions) it is necessary to solve, in the two-group diffusion

approximation, the set of 42 equations for the moments and the set of 24 algebraic

equations resulting from the boundary conditions.



4. EQUATIONS FOR THE PARTIAL NEUTRON FLUXES AND FOR

THE PARTIAL MOMENTS

Let us take the following geometric situation depicted in Fig 2: the borehole has a

radius R. and parameters indicated by / = b, the intermediate region representing the

mud cake is situated in the space between R^ and R, All neutron properties (from the

mud cake zone) are marked by the index ; = c or / = d, depending upon from which

boundary they originated. The properties of the geological formation outside the radius R2

are marked with the index / = r. All neutron partial fluxes and source densities have the

upper index a = °, * or ** depending upon the origin of neutrons being treated. The

index a = ° belongs to neutrons coming from the real sources distributed in the space.

The index a = * characterises all neutrons coming from the apparent neutron sources

distributed on the boundary surfaces The upper index a = ** belongs to fluxes and

neutron source densities of the second group (i.e. j = 2) originating from the fluxes

created by apparent sources with the index a = *. Each geometric region has its own

neutron transport properties: the diffusion coefficient DH and the reciprocal of the

diffusion length X,y = J/lj, . The total neutron fluxes in each region are the sums of the

partial fluxes <p%(r,z) (/ = b, c, d, r, j' = 1, 2, a = °, *, *•) . Every partial flux satisfies

the diffusion Eq (3)

For the first neutron group there are

whereas for the second neutron group
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All total fluxes (/ = 1,2) have to satisfy the boundary conditions of the continuity of both

the flux and the current

From Eqs (17, 18 and 19), in agreement with the definition of moments given by

Eq. (5), one has the equations for the total moments.

1. For the first neutron group (/" = 1):

m2n (<Pbl >r) = m2n (<Pb! ,

2. For the second neutron group (/' = 2):

(<p*2 ;

which for « = 0, 1, 2 gives 42 equations for the partial moments

boundary conditions for the total moments, according to Eq.(19), are

m2n(<t>bj>Rl) = m2n(<Py

a a
cr i i cr ii

11



which for n = 0, 1, 2, y = 1, 2 for all partial moments give 24 equations

To be able to solve the three-region coaxial problem for the moments of neutron

fluxes one needs to define first the proper source distribution densities p,y(r,r). This is

presented in Appendix A Then, the Hankel transforms ^ ^ ( p ? ; ^ ) of the axial moments

of the source distributions have to be established This is done in Appendix B. When these

moments are already known, from Eq (13) rewritten in the form:

. 2
' Aj.'

it is possible to calculate the Hankel transforms fn2n(^,k) of the neutron flux moments.

This is shown in Appendix C. To obtain the partial moments of the fluxes one takes the

inverse Hankel transform, according to Eq (12) Some definite integrals containing Bessel

functions, which are usually not included in the common tables, are needed to solve Eq

(12) These integrals are given in Appendix D, whereas the equations for the moments

/w2n(<p,y ;r) are presented in Appendix E. Once the equations for the moments w^Op";/")

are known one has to find the 24 numbers Bin.ij, ^in.ij, ®2n,ij, and ^-in.ij for n - 0, 1,

2, / = b, c, d, r and j= 1, 2 appearing in Eqs (E.I to E.42) They are obtained by

introducing the moments into Eq (22) describing the boundary conditions. These

equations are given in Appendix F.

When the numbers B^.y, C2n.v> £>2n,ij and Em.ij are known, it is possible to

calculate the apparent slowing down length and the apparent migration length along the z-

axis (CZUBEK, 1992) according to the formulae:

lw4(<pM ;0)

)

12



5. CONCLUSIONS

The paper presents the theoretical calculation which finally gives a possibility to

calculate the apparent neutron slowing down and migration lengths in the three-layer

cylindrical system which represents the borehole, the intermediate zone (e.g. mud cake at

the borehole walls), and the geological formation. The senu-empincal method of neutron

tool calibration correlates the tool reading observed experimentally with the general

neutron parameter, GNP. The GNP is defined as

(26)

where the exponents n and m are obtained experimentally during the calibration

procedure.

The apparent migration length can be calculated using the calculation procedure

described above. The neutron absorption cross section, the elemental compositions and the

densities of the borehole fluid, of the mud cake and of the geological formation as well as

geometrical dimensions of the system have to be known Knowledge of the mud cake

parameters is the worst among them A research in this field is going on.

There is no well-defined method to calculate the apparent absorption cross section

I a p and the apparent resonance probability Ptp The method proposed by Morstin

(MORSTIN AND KREFT, 1984, CzUBEK, 1992) has been used in the semi-empirical neutron

tool calibration up to now The mud cake allowance in the calculation make the problem

more difficult and must be solved

13
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APPENDIX A

Neutron source densities for three coaxial regions

According to the notation used in Fig. 2 there are

following source densities related with the diffusion Eq. (3). In all

source distributions the p,y(z) and Yy(z) are functions of the

source distributions on the boundary surfaces. They are unknown

functions which have to be found from appropriate boundary

conditions. The b(r) is the Dirac delta.

A. hirst neutron group (slowing down neutrons), j— 1

1 Borehole region, i---b

(p£,(r,z) - epithermal neutron flux originating from the real

source of fast neutrons situated at the origin of the cylindrical co-

ordinate system (1 neutron/s) having the space density

Pbi ('•*) =
6(0

4jtDbl 2iw
6(z) (A l )

<Pb,(r,z) - epithermal neutron flux from the apparent fast neutron

sources distributed on the lateral boundary between the borehole

of radius R\ (on the side of the borehole) and the mud cake.

The space density of these sources is given by the expression

(A.2)

2. Intermediary region (the mud cake), /=c, d

<Pci(r>z) ~ epithermal neutron flux from the apparent fast neutron

sources distributed on the lateral boundary between the borehole

of radius R\ (on the side of the mud cake) and the mud cake. The

space density of these sources is given by the expression

\

cl 2nRt

(A3)

15



z) - epithermal neutron flux from the apparent fast neutron

sources distributed on the lateral boundary between the mud cake

of radius R2 (on the side of the mud cake) and the formation The

space density of these sources is given by the expression

1
2TLR2

(A.4)

3. Geological formation, /=r

(prl (r,z) - epithermal neutron flux from the apparent fast neutron

sources distributed on the lateral boundary between the mud cake

of radius Rj (on the side of the formation) and the formation. The

space density of these sources is given by the expression

(A.5)
4nD,rl

B. Second neutron group (thermal neutrons), j= 2

1. Borehole region, /=b

(Pu(r-Z) - thermal neutron flux originating from the real source

of epithermal neutrons having the space density

P°b2 (A.6)

<p*b2(r,z) - thermal neutron flux originating from the apparent

epithermal neutron flux <Pbi(/*.*) which has the spatial source

distribution given by

z) (A. 7)

(p"2(r,z) - thermal neutron flux from apparent epithermal neutron

sources distributed on the wall of a borehole of radius R\ at the

boundary between the borehole and the intermediary region

(on the side of the borehole) with the space source density given

by

"'"""I (A8)

2. Intermediary region (the mud cake), J=C, d

<pc2(r,z) - thermal neutron flux from apparent epithermal neutron

sources given by the flux <p*,(r,z) with the space source density

given by

• I *\ A
1 \* rn Ir r\ /A O\

4nD,c2



neutron flux from apparent epithermai neutron

sources given by the flux (pd|(r,z) with the space source density

given by

) (A. 10)
c2

*P«2(r'x) " thermal neutron flux from the apparent epithermai

neutron sources distributed on the lateral boundary between the

borehole of radius Rt (on the side of the mud cake) and the mud

cake The space density of these sources is given by the expression

' (A. 11)
sc2 " 2nRl

- thermal neutron flux from the apparent epithermai

neutron sources distributed on the lateral boundary between the

mud cake of radius R2 (on the side of the mud cake) and the

formation The space density of these sources is given by the

expression

£2 (A. 12)

3. Geological formation, /=r

<9a(r.z)- thermal neutron flux from the apparent epithermai

neutron flux %\(r,z) with sources given by the expression

z) (A. 13)
4nDt2 "

<P*2 (/\*)- thermal neutron flux from the apparent epithermai

neutron sources distributed on the lateral boundary between the

mud cake of radius Ri (on the side of the formation) and the

formation. The space density of these sources is given by the

expression

(A. 14)
2nR2

17



APPENDIX B

Definition of the moments of source densities

When Eqs (19) are multiplied on both sides by zln and

integrated over z, the boundary conditions for the flux moments

are found. At first one has to calculate the moments of the source

distributions given by Eqs (A.I to A. 14). The following 24

numbers are introduced:

(B.U)

(Bib)

(B.lc)

(Bid)

OD

= f

j = l , 2 ; n = 0 , 1 , 2

When one uses the Hankel transforms v

ao

6(r - R) = RJkJti(kr)J0(kR) dk

the following Hankel transforms, according to Eq.(12), are

obtained for the moments of the source distributions:

(Pel •"*) =

2n

(B.3)

(B.4)

(B.5)



(Pdl ."*) = D
2TC

E

b2

47tDb2

(Pb2 ••*) =

*»

2K

(B.6)

(B.7)

(B.8)

(B.9)

(B .10)

(B 11)

(B.12)

.C2 r
271

(B.I 3)

(B.14)

(B.I 5)

(B16)

Note that the Hankel transform for the moments given by

Eqs (B.3 to B 16) have to be calculated consecutively for n - 0,

1.2

E

19



APPENDIX C

Hankel transforms of the moments

The Hankel transform of z-axial moments of neutron fluxes has been defined in Eq (23) Here the transforms are given explicitly for

all n, i andy needed in the calculations When Eqs (B 3 to B 16) are inserted consecutively into Eq. (23), the following transforms of the

moments are obtained:

A. For n-0 there are 14 moments:

- , « . . 1 1
2*Dblk

2+\\l

Jo(kR\)

(Cl)

(C2)

(C3)

d ! •"*) = (C.4)

(C5)

'bl

B

•b l

X 2
b 2 - X 2

b l V+X2
b, AT + .b2,

BO.bl
J0(kRx) J0(kR{)

-̂bl

(C6)

(C.I)



2*Db2
*0.b2

* ' «

^ (

1
D,

2 « a , oc2 *2
 + x2

c2yc2

2TID,I2 ? i J

For «-1 there are also 14 transforms of moments:

'O.c l
rc2 kl +

Ocl 72̂
rc2 X c 2 - *" + lcl l c 2 .

crl

(C.8)

(C9)

(CIO)

(C.ll)

(Cl 2)

(CI3)

(C.14)

(C.I 5)

21
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2;iDr

J0(kJi2) J0(kR2)

k2.j2 + tQf2(L2 , 2 \ 2

* + A r2 I* 2+X2
r 2)

(C.28)

C. For /i=2 there are 14 following transforms of moments:

24

^ / u ^ b l

R
4

2KD,cl

- J U ^ C 1

D,

*bl

"cl

Ik2 + X2

(C.29)

24 B,,
Jo (*/?,) (C.30)

(C.31)

1 2 D 2.cl + 24D0,cl (C.32)
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APPENDIX D

Some useful definite integrals containing Bessel functions

Here some definite integrals containing Bessel functions are

given together with their first denvatives with respect to the radial co-

ordinate r For these integrals some special notation is used.

Integrals containing one Bessel function JQ(kr):

(D.I)

( D 2 )

< D 3 >

k + X.

and in general (BATLMAN, 1953, p. 96, Eq. 59):

Definite integrals containing Bessel functions JQ(kr)and J0(kR):

Integrals of the type

«_\ / /LD\

Uc (D.5)

have to be calculated depending on the condition r<R or r>R and

they are marked in the text as In(r<R,\) or Im(r>R,\)

according to the case From BATEMAN (1953, p. 96, Eq. 57) there is:

r<R

r>R K }

The other integrals (i.e. for n>\ in Eq.D.5) are not ubulated. They have to be calculated by consecutive derivation of the integral

Ix(r,R,\) with respect to the parameter \:

27
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tint derivatives of the integrals Jn(r,X) with respect to r:

(D.10)

(D.I I)

(D12)

First derivatives of the integrals In (r. R, I ) with respect to r:

R.k)

K0(\r)]

4 A/

(D.17)

(D.18)

Special values of integrals Jn(r.\) for r = 0:

Here the general formula is used;

Urn x"Kn{x) - (n - \y 2"~[

which gives

(D.I 9)

Special values of integrals In(r,R,X) for r = 0:

(D.20)

(D.21)

(D.22)
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U)
oh

Special values of integrals ln(r,R.X) for r=R:

(D23)

(D24)

(D.25)

/3<*./U) = — \2X212 (R.R. X)- (D26)

Special values of the first derivatives of the integrals I'n(r,R,\) for r "R:

i, r <R

-XI^(XR)KX(XR\ r>R

R_

2
- I0(XR) K0(XR)]

— l2/(u(R.R.X) - R\\-
4X2 ' l

— - { 2 1{X)(R.R,X) - R [I - K0(XR)I0(XR)]\.

~K0(XR)I0(XR))}. r<R

r> R

(D.27)

(D.28)

(D.29)

2
J2 l{i}(R.R,X) - R [1 - K0(XR)10(XR)]] (D.30)



APPENDIX E

Inverse Hankel transforms of the z-axial moments of partial fluxes

The Hankel transforms of moments given in Appendix C have to be inverted to the form depending on the radial co-ordinate r, i.e.

one has to perform the inverse transform given by Eq. (12). Keeping the notation of integrals given in Appendix D the following partial

moments are obtained:

A. For n = 0 the following inverse transforms one obtains from Eq.

(12) for the transforms given by Eqs (C. 1 to C. 14):

( E l )

(E.2)

(E.3)

2nJ)bl

0,rl

(E.4)

(E.5)

. Xbl) - y,(r.

X2

L

I
2nDb2

i2

B 0.b2

x 2
c l

2 2

- X

(E.7)

(E.8)

(E.9)

(E.10)
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1

2nDc2

2nD,
D o.c2

c2

tf.

Or2

( E l l )

(E12)

: A r l ) - / , ( r > * 2 . X r 2 )

(E 13)

(E14)

B. For n

(12) /or /

1 /Ae following inverse transforms one obtains from Eq.

transforms given by Eqs (C. 15 to C.28):

2
(E15)

bi

b l > r ) ~ ^ ~ l 2bl

-[C2 . c l / . ( '
cl

i.0 =
2nD

ci

2nD,
-K.,

2Xbl

0 bl / 2 ( r

(E.16)

(El 7)

0,, /2(^</?2^cl)]

(El 8)

) r l / 2 ( r > * 2 . X

(E.19)

(E.20)

*b2 ~ A bl

— {B2 > 2B0.bl[/2(r</?1.Xb,)-/2(r<^1.;

2 B o.b2 (E.22)



^i^ci)] + 2C0>l[/2(r > *, .X e l ) - / 2 ( f > K,.Xc2)]} (E.23)

- ^ ± - ' 2 (D2tCl[/,(r < *2 .Xe ,)-/,<r < *2.Xe2>] + 2DOc,[/2(r < /t2 .Xc l)-/2(r < J«2.Xe2)]} (E-24)
2Jt£>C2 X.C2 - X C |

i ,X r 2 ) + 2E 0 f2 I2(r

C. For n ~ 2 the following inverse transforms one obtains from Eq. (12) for the transforms given by Eqs (C.29 to C.42):

24

33

/2(r < *2.Xe2)] (E.26)

- - ^ { E [ / ( ' ' > J « X ) - / ( r > ^ 2 X 2 ) l + 2E0 [/2(r > R2, Xfl) - /2(r > J«2. Xr2 )]} (E.27)

n>4^bi^) = ~-—-J3(r.Xbl) (E.29)

•'•> = — 7—[B 4 .b l / , (#-</ i 1 ,Xb l )+l2B 2 # b l / 2 (r<<R | lXb , ) + 24B0_bl /3(r < /?,.Xbl)l (E.30)

* i . X c , ) + 1 2 C 2 c l / 2 ( r > Rlt\cl) + 2 4 C 0 c l / 3 ( r > * , .
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APPENDIX F

Calculation of constants for the boundary conditions.

For the calculation of the z-axial moments after the formulae given >n Appendix E one has to know first the constant numbers,

C2/1.C/. &2n.cj and Ein.ij appearing there (cf. Eq.(B.l) for the meaning of these constants) First, using the boundary conditions given by Eqs

(22), one has to find for n = 0 the constants, Bo.bi, Co,ci, Do.ci , Eo,ri, for the first neutron group, and then the constants, Bo.b2, Co,c2,

Do,c2 . Eo,r2, for the second neutron group.

Knowing these constants one can calculate from the same Eqs (22) for n = 1 the constants B2,bi , C2>ci , D2.CI , E2,ri and B2,b2»

C2.C2 • D2.C2 , E2,r2, and after that it is possible to calculate the constants B^b) , C4 d , D4 ci , E4 rj and B4b2 , C4.C2 . D4C2 , E4_r2. This is

because for a given n in the linear Eqs(22) the constants obtained for (n - 1) enter as the already known parameters When Eqs (22) are

established for a given n the derivatives with respect to the variable r of the functions Jn(r,X) and In(r,R.X) are needed at r = R\ and

r = Ri. The reader can find all these functions and their derivatives in Appendix D. All equations which one has to solve are the set of linear

equations with four unknowns As an example the boundary Eqs (22) are written below for n - 0 and j - \.

mo(<PM/*i) + ™o(VbV'K|)^ /^(<PcV /et) + w o( ( Pdi .^ i ) (F.I a)

[*)(<PbV') + '"o(<Pbi.')]|r-,?1 DtX\mQ(i9\x;r) + mQ(vAX,')](,-*, (Fib)

(F-IC)

[b^l.O] \r.Rl (Fid)



Equation (F. 1) has to be rewritten using the formulae ( E l ) to (E. 14) which gives:

DO,cl ^\(^2^2>Kl)r<fi2 ~ EO.rl K(^2'R2^t\

(F.2a)

(F.2b)

(F.2c)

(F.2d)

where the derivation with respect to r is always going for the first variable of the function lx(r,R,X). The set of Eqs (F.2) is reordered

according to the sequence of the unknowns Bo.bi, Co.ci, Do,ci, Eo,,i, which gives

BO.bl

B O.bl .cl

Ocl

x C O c l

'O .c l

D O.cl

l),cl

2
 D 0 . c l

A,.

Eo.rl = 0

En rl = 0

(F.3)

37



©
*—%s

a;
M

v 0?

a:v
v

<N

9-
I

a:

9-

I Z

Z Q
o

Q

9
u
3*

Q

+
of

.2
9-

i
+

9

C?

a:
A

a;
A

JO
o"

QQ

05

of

f

9

• u
9

I

05

I

aT

3

a:
•

9

i

0*3
9

i

a:
A

< J

3



and

for

the free terms

0 and j -

V

Vi

are defined as.

1:

A,.

= 0

(F6a)

(F.6b)

(F.6c)

= 0 (F 6d>

for 2 / 1 - 2 and j « l :

- 2BObl/i(/?,./?,,Xbl) + 2C0C | /i(/?|.^|.XC |) + 2DOcl/i</<,,,K2,Xcl) (F.7b)
Obl

(F.7d)
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For n = 0, 1,2 andy = 2 the coefficients a^i are of the form:

KJ.
0

0

z>.

a I(R2.R2.Xc2)

0

0

I(R2lR2,\f2)
(F9)

1 ^

using the substitution Â  = ——iL-y- (/ = b, c, r), the free terms are defined as
Ki2 ~ Ki

for n - 0 and j • 2:

= In [-

yc2

(F.lOa)
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(F.12d)

— [/»4(<P^.O + '"4((Pd2.'')] r.R2 + 2«/)r2 — [m4(<Pd • r ) \ r-R2 -I2C2 > c 2 /2( / ?2.^| .

n(R2.R2,\c2)r<Rj + 12E2r2 Ii(R2.R2.Xf2) + 24EOr2

- l2D2>c2/i(/?2./?2lXc2) - 24DOc2 niRi.Ri.Ki)^, + \2E2f2Ii(R2,R2.Xf2) + 24E
Or2

In that way all equations and constants needed to calculate the second and fourth r-axial moments of all neutron fluxes for the three

coaxial layer configuration have been established.



APPENDIX G

Solution of the set of linear equations related to the boundary conditions.

From the boundary conditions given by Eq (22) one always

has four linear equations with four unknowns X1 ,JC2 ,X3 ,X4 of the

form

a,,*, +anx2 +a 1 3 x 3 +O x4 = A,

a 2 l x l + a 2 2 X 2 + a 2 3 r 3 + O * 4 = *

Ox,
O x ,

tation

c . . =

C I2 =

C 2 . =

C 22 =

is —

+ u3 2x2

+ "42*2

i is used

a.2«2>

a l 3 a 2 .

"22^44

"J3a44

V2 |
*3U44

+ a 3 3 x 3 + a 3 4 x 4 =A3

+ a 4 3 x 3 + a 4 4 x 4 =A4

- a22*M

- a 2 3 a i .

" a42 f l34

~ U43U34

" Vll

*4a34

(G.I)

(G.2)

By the elimination of the two unknowns xx,x4 one obtains a set

of two equations

cux2
(G.3)

By the calculation of the determinants for Eq.(G3) one obtains

C22

C22

- C2.C!2

C I2
(G.4)

which gives the solution for and x3:

(G.5)

After the substitution of the solutions given by Eqs (G.5) into

Eq (G 1) one obtains for x, and x4 :

I

a
(G.6)

a 34

When by = 64 = 0 in Eq (G 1), then </2 = 0 , and:

x4 = -
'34

(G.7)

which makes the calculations easier.
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APPENDIX H

Apparent neutron parameters

The apparent neutron slowing down and migration lengths are defined by Eqs (24 and 25) The 2-nd and 4-th neutron flux moments on

the borehole axis, i.e for r = 0, are calculated from Eqs (20 and 21) using the solutions (E 15. E 16, E 20, E 21, E.22, E 29, E 30, E 35 and

E 36). The particular values of integrals JH(r.\ ) and In(r,R,\ ) for r = 0 are obtained from formulae (D. 19 to D.23).

lnJJb\

1 I 1

(HI)

2nDk

-bl

2nDu kb2

(H2)
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