STATISTICAL ISSUES IN RADIATION DOSE-RESPONSE ANALYSIS OF EMPLOYEES OF THE NUCLEAR INDUSTRY IN OAK RIDGE, TENNESSEE

E. L. Frome

Mathematical Sciences Section
Oak Ridge National Laboratory
Computer Science and Mathematics Division
P. O. Box 2008, Bldg. 6012
Oak Ridge, TN 37831-6367

J. P. Watkins

Center for Epidemiologic Research
Oak Ridge Institute for Science and Education
Oak Ridge, Tennessee 37831-0117

"This submitted manuscript has been authored by a contractor of the U.S. Government under Contract No. DE-AC05-96OR22464. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes."

The research was conducted by Oak Ridge Institute for Science and Education (ORISE) under Contract DE-AC05-76R00033 with the U.S. Department of Energy, Office of Energy Research and Office of Environment, Safety and Health. Additional funding and oversight have been provided by the National Institute of Occupational Safety and Health. Research sponsored by the Office of Energy Research, U.S. Department of Energy under contract number DE-AC05-96OR22464 with Lockheed Martin Energy Research Corporation.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
Key Words: Poisson Regression; regression diagnostics; Comprehensive Epidemiologic Data Resource; relative risk; dose-response

Abstract:

Poisson regression methods are used to describe dose-response relations for cancer mortality for a subcohort of 28,347 white male radiation workers. Age specific baseline rates are described using both internal and external (U.S. white male) rates. Regression analyses are based on an analytic data structure (ADS) that consists of a table of observed deaths, "expected" deaths, and person-years at risk for each combination of levels of seven risk factors. The factors are socioeconomic status, length of employment, birth cohort, age at risk, facility, internal exposure, and external exposure. Each observation in the ADS consists of the index value of each of the stratifying factors, the observed deaths, the expected deaths, the person-years, and the ten year lagged average cumulative dose. Regression diagnostics show that a linear exponential relative risk model is not appropriate for these data. Results are presented using a main effects model for factors other than external radiation, and an excess relative risk term for cumulative external radiation dose.

Data sets and computer programs are available via the Internet at <www.epm.ornl.gov/~frome/>—see (Oak Ridge Mortality Study).

1. Introduction

This report considers statistical issues related to combining data from multiple facilities to evaluate the potential adverse health effects of low-level occupational exposure to ionizing radiation. A detailed description of the data collection and validation procedures, as well as tabular and graphical summaries of the resulting data base are presented in companion reports [13, 12, 14]. The analysis files (which are SAS data sets, see Figure 1) are the starting point for the data analysis process. After reviewing the radiation exposure data and the monitoring and recording procedures at each of the Oak Ridge plants, we decided to limit our dose-response analysis to the subcohort of white males who were ever employed at the X-10 or Y-12 plant. About thirty percent of these workers were employed at more than one Oak Ridge facility. Most of the workers in the subcohort wore personnel monitoring devices that recorded estimates of their external dose over their employment history. For internal radiation exposure the monitoring policies and procedures varied considerably among facilities and over time [13, 14]. In this combined analysis the internal radiation exposure index was limited to the three categories (see Table 1).

2. Generating The Analytic Data Structure (ADS)

The three exposure analysis files at the top of Figure 1 contain the external dose estimate, and the internal exposure index for each year that a person worked at X-10, Y-12, or K-25. In addition to the usual time related variables (i.e. birth cohort, age-at-risk) there were three time dependent covariates:
i) cumulative external dose in year t;

ii) sequential internal exposure category in year t;

iii) facility in year t (as described in [7])

The entry and exit dates for the time dependent cells also include a lag of two, ten, or twenty years. The person-epoch [3] approach with grouping on the time dependent covariates is used to generate the ADS shown at the bottom of Figure 1. The factors in Table 1 are used to illustrate the procedure that was followed to generate the ADS for our dose-response analysis using all cancer with a ten year lag as an example.

The first step in the data reduction process was to create the “working files” (see Figure 1) for the subcohort of X-10/Y-12 white males. These files were needed to combine data for individuals employed at more than one facility. The Cumulative External Dose file contains yearly cumulative external dose data (with a ten year lag) from all previous years of employment at all Oak Ridge facilities.

In the second step the variables in these two working files were used to divide each individual into pseudo-persons according to changes in category membership for the time-dependent covariates. Each record in this file had an entry date and exit date for one of the time-dependent strata and all additional information that was needed by mortality analysis system (MAS) [9] for exact computation of person-years. In this example the 28,347 workers are partitioned into 61,597 pseudo-individuals for processing by MAS.

In the third step the MAS program was used to generate a person-years matrix for five year age and calendar year intervals for all possible combinations of factors of interest (see Table 1). Each of these matrices was then multiplied by the appropriate rate table for each cause of death category. This results in a seven dimensional table of observed and expected deaths for each of the factors, the person-years, the person-year distribution of person-years by facility and dose group for the subcohort of X-10/Y-12 white male rates) was used.

In the second step the variables in these two working files were used to divide each individual into pseudo-persons according to changes in category membership for the time-dependent covariates. Each record in this file had an entry date and exit date for one of the time-dependent strata and all additional information that was needed by mortality analysis system (MAS) [9] for exact computation of person-years. In this example the 28,347 workers are partitioned into 61,597 pseudo-individuals for processing by MAS.

In the third step the MAS program was used to generate a person-years matrix for five year age and calendar year intervals for all possible combinations of factors of interest (see Table 1). Each of these matrices was then multiplied by the appropriate rate table for each cause of death category. This results in a seven dimensional table of observed and expected deaths for each of the factors, the person-years, the person-year weighted average dose, the observed and expected deaths for each cause of death category. The ADS used to obtain the results in Tables VI—VIII of Frome et al. [7] is available through CEDR [2]. The all cancer subset used in this report can be obtained at the URL in the Abstract. Table AIV in ORNL-6785 [7] shows the marginal distribution of person-years by facility and dose group for X-10/Y-12 workers (white males) with a ten year lag.

2.1 Fitting The Main Effects Model

The general Poisson regression model is

$$E(y_{jk}) = n_{jk} \lambda_{jk} = n_{jk} \lambda_{jk}^0 R(Z_j, X_k), \quad (1)$$

where λ_{jk} represents the unknown mortality rate, y_{jk} is the number of deaths, and n_{jk} denotes the person-years at risk in the jk^{th} cell of an ADS. The j subscript indicates the dimensions of the ADS that correspond to factors of secondary interest (e.g., birth-cohort, SES) and the k subscript indicates exposure related covariates that are of primary interest, i.e. facility, internal exposure, and external dose.

Eq. (1) was used to describe the joint effects of each of the explanatory variables of interest on cause-specific mortality. Maximum likelihood estimates of the parameters and likelihood ratio test (LRT) statistics were obtained using Poisson regression [6] The baseline rate λ_{jk}^0 represents the age-specific death rate for individuals at the reference level of each of the explanatory variables. In previous reports on the X-10 only subcohort [15, 16] a parametric model was used to describe the baseline rates, i.e.

$$\lambda_{jk}^0 = \exp[\alpha_k + \theta \log(A_{jk}/52.5)],$$

where $A_{jk} = \text{age at interval mid-point}$. In Frome et al. [7, 8] the external/internal model ([1], Chapter 4)

$$\lambda_{jk}^0 = \lambda_{jk} \exp(Z_j, \alpha),$$

in which the baseline rates are assumed to be proportional to the known external standard rates λ_{jk}^*(U. S. white male rates) was used.

To contrast and further explain these two models both of them were applied to the data for the seven dimensional table of observed and expected deaths for all cancers for the X-10/Y-12 subcohort.

For the internal analyses the ERR main effects model is expressed as

$$r_{jk} = \exp[AL + B + S + L + IG + F] (1 + D),$$

where $r_{jk} = y_{jk}/n_{jk}$ is the observed cancer death rate per thousand person years at risk in the jk^{th} cell, and $AL = \log(A_{jk}/52.5)$. In this specification all of the terms are factors (one parameter for each level) except for AL and dose (D), and birth cohort is the "referent factor".

Table 1

Factors Used to Define ADS for Dose-Response Analyzes for White Males Employed at the X-10 or Y-12 Facility

<table>
<thead>
<tr>
<th>Factor</th>
<th>Levels</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>15</td>
<td>Age: Five-year intervals</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>Gender: Male or Female</td>
</tr>
<tr>
<td>S</td>
<td>2</td>
<td>Smoking: Non-Smoker or Smoker</td>
</tr>
<tr>
<td>L</td>
<td>1</td>
<td>Length of employment: less than one year or one year</td>
</tr>
<tr>
<td>E</td>
<td>3</td>
<td>Internal Exposure: EN - Eligible and Not monitored, EM - Eligible and Monitored, NE - Not Eligible</td>
</tr>
<tr>
<td>F</td>
<td>3</td>
<td>Facility: X-10, Y-12, or Other</td>
</tr>
<tr>
<td>X</td>
<td>10</td>
<td>External radiation dose group on a pseudo-series: 0, 5, 10, 20, 40, 80, 160, 320, 640+</td>
</tr>
</tbody>
</table>
For convenience in describing results the convention—
[4] Chapter 22—of dropping Greek letters (that repres-
ent the unknown parameters) and listing the explanatory
variables that define the relative risk function is used.
This corresponds to standard GLIM notation [5] for a
log-linear model with factors B, S, L, IG, and F (see Ta-
ble 2.).

The baseline rates are described by the first six esti-
mates in column 2 of Table 2. e.g. for the 1910-19 birth
cohort the estimated baseline rates are log(rate) = 0.728
+ 5.20*log (age/52.5). Consequently, the estimates for
the factor B in column two (lines 2 through 6) of Table
2 represent the log of the all cancer mortality rate for
each of the five birth cohorts at the reference age 52.5
(i.e. they are the intercept parameters). The estimates for
each level of the factors S, L, IG, and F are relative risks
in L% units (see Tornqvist et al. [11]), with the first
level of each factor as the referent category. The next to
last value in column two is the estimated coefficient for
external radiation dose and represents the change in the
ERR per Sv. Estimates of the standard errors of each of
the parameter estimates are given in column 3 of Table
2, and likelihood ratio based 95% CI given for the
ERR in the last row. The 95 percent confidence intervals
were obtained using the bounds command in epicure
[10] (at the URL in the abstract see af-tabv.txt at “Data
and Computer Programs”).

For the “external/internal” analysis

\[r_{jk} = \exp\{A + B + S + L + IG + F + D\} (1 + D), \]

where \(r_{jk} = \frac{y_{jk}}{n_{jk} \lambda_{jk}} \) is the SMR for the \(j^{th} \) stratum
and \(A = (\text{age} - 52.5)/100. \) The main differences be-
tween this and the internal analysis are in birth cohort
and age terms. The estimates for referent factor B (birth
cohort) in column 4 lines 2 through 6 of Table 2 repre-
sent the SMR for each birth cohort in L% units, i.e. \(\exp\{-
10.1/100\} = 0.9919 \) is the estimated SMR for the 1910-19
birth cohort at the reference level of each of the other
factors. Interpretation of the levels of the referent fac-
tor is straightforward. These estimates (lines 2 through 6
in column 4 of Table 2) show that the all cancer mortality
rate for the referent group (X-10 only nonmonthly long
term workers that were eligible but not monitored for in-
ternal radiation exposure) are less than the U. S. white
male rates, and that the decrease is larger for younger
workers, i.e. the more recent birth cohorts. The parameter
estimates for the factors S, L, IG, and F (in column
4) have the same interpretation as in the internal anal-
ysis, and are almost identical in numerical value to the
corresponding estimates from the internal analysis (see
column 2). The estimate for the age term in column
4 describes (and adjusts for) any systematic age-related
difference in the external rates and the study cohort in
percent per year units.

<table>
<thead>
<tr>
<th>Term</th>
<th>Internal(^2) Estimate</th>
<th>SE</th>
<th>External/Internal(^3) Estimate</th>
<th>SE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>0.728</td>
<td>0.012</td>
<td>0.728</td>
<td>0.012</td>
</tr>
<tr>
<td>(<1900)</td>
<td>0.558</td>
<td>0.032</td>
<td>0.558</td>
<td>0.032</td>
</tr>
<tr>
<td>(1900-09)</td>
<td>0.731</td>
<td>0.013</td>
<td>0.731</td>
<td>0.013</td>
</tr>
<tr>
<td>(1910-19)</td>
<td>0.738</td>
<td>0.005</td>
<td>0.738</td>
<td>0.005</td>
</tr>
<tr>
<td>(1920-29)</td>
<td>0.963</td>
<td>0.017</td>
<td>0.963</td>
<td>0.017</td>
</tr>
<tr>
<td>(1930+)</td>
<td>0.072</td>
<td>0.022</td>
<td>0.072</td>
<td>0.022</td>
</tr>
<tr>
<td>S</td>
<td>NonM</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>M vs NonM</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>Worked 1 Yr+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Worked 1 Yr-</td>
<td>1.18</td>
<td>0.91</td>
<td>1.18</td>
</tr>
<tr>
<td></td>
<td>Worked <1 Yr+</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Worked <1 Yr-</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IG</td>
<td>Elig Non M</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Elig M</td>
<td>0.87</td>
<td>0.75</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>Not Elig</td>
<td>0.67</td>
<td>0.75</td>
<td>0.67</td>
</tr>
<tr>
<td>F</td>
<td>X-10</td>
<td>15.6</td>
<td>6.6</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>Y-12 X-10</td>
<td>8.6</td>
<td>9.1</td>
<td>8.6</td>
</tr>
<tr>
<td></td>
<td>Mult vs X-10</td>
<td>0.67</td>
<td>7.5</td>
<td>0.67</td>
</tr>
</tbody>
</table>

\(^2\) For internal analysis baseline rates are estimated using \(\log (\text{age}/52.5) \) for the age term, so that for the 1910-19 birth cohort the estimated baseline rates are \(\exp\{-8.5/100\} = 0.907 \) is the estimated SMR for the 1915 birth cohort at the reference level of the other terms. The age variable, defined as \(\log (\text{age}) - 52.5/100 \), was included to reflect any baseline effect age related differences from the internal rates.

\(^3\) For external/internal model baseline rates are estimated using \(\log (\text{age}) \) as an "offset" as part of the age term. The exposure variables are relative risk estimates in L% units, i.e. the cancer mortality risk estimates are relative risk estimates for month ly vs non-monthly workers in exp (-41.9/100) = 0.6&. The coefficients for the factors S, L, IG, and F are relative risk estimates in L% units (see Tornqvist et al. [11]).

The relative risk estimates for the exposure variables IG, F, and D are adjusted for effects of the confounding
variables age, B, S, and L. Their values are readily com-
bined to obtain an estimate of the SMR for any combina-
tion of factor levels and dose. Consider four individuals
in the 1910-19 birth cohort, who were long-term Y-12
only workers and were monitored for internal radiation
exposure. Further, suppose that the first two were non-
monthly, and that the second two were monthly, and that
two of them received cumulative external radiation doses
of 0.01 Sv. Using the parameter estimates from column
4 of Table 2 we obtain the results in Table 3.
2.2 Regression Diagnostics For The Exponential Relative Risk Function For All Cancer

In previous reports [15, 16], the exponential relative risk function, \(\exp(\beta D) \), was used to describe the effect of cumulative radiation dose on cancer risk. One way to check the validity of the exponential relative risk function is to plot estimates of the relative risk versus the average dose in each of the dose categories (see Figure 2). Another approach is to use regression diagnostic techniques that describe the influence of individual data points on parameter estimates [1, 6]. The diagonal term from the hat matrix \(h_j \) provides a measure of the influence of each cell in the ADS. The left hand panel of Figure 3 shows the \(h_j \) values —scaled so that average \(\langle h \rangle = 2 \) — plotted against the dose value for each of 4160 cells that were used in the example. This plot indicates that there are a small number of cells with high relative influence in the highest dose group. To directly evaluate the influence of each cell in the ADS on the dose-response coefficient \(\hat{\beta} \), the main effects model with exponential relative risk was fit to each table obtained by deleting the \(j^{th} \) cell to obtain \(\hat{\beta}_{(j)} \). The relative percent change in \(\hat{\beta} \) (RCB) due to the \(j^{th} \) cell is then

\[
RCB = 100 \left(\frac{\hat{\beta}_{(j)} - \hat{\beta}}{SE\hat{\beta}} \right)
\]

The right hand panel of Figure 3 shows the RCB values plotted versus dose for this example. This plot shows that there are a small number of cells with high leverage values for the linear exponential dose-response coefficient. This suggests that the exponential relative risk dose-response relation may not be appropriate for this data. Table XI in [7] provides a more detailed evaluation of alternative dose-response functions, and Figure 2 further demonstrate this point.
Diagnostic Plots For Dose-Response Coefficient

Exponential Relative Risk For All Cancer - Ten Year Lag Using Unadjusted Doses

The Seven Dimensional ADS Contains 4160 Cells Zero Dose Points Plotted at 0.001

Leverage Values

RCB = 100[B(j) - 0.489]/0.205
Where B(j) Denotes the ML Estimate with the jth Cell Omitted From The Fit

ORNLS-6785 ORMS: X-10/Y-12 White Male Subcohort

Figure 3: Regression Diagnostics
3. Acknowledgments.

Funding was provided by the U.S. Department of Energy (DOE) with management and scientific oversight from the National Institute for Occupational Safety and Health (NIOSH). We thank the staff of ORAU’s Center for Epidemiologic Research and Lockheed-Martin Energy Systems for their help in data collection, and Stelmo Poteet for assistance in manuscript preparation. The authors acknowledge the vital statistics offices of the individual states as the source of death record data and appreciate the offices’ technical support of this research. The authors are solely responsible for the data analysis and the interpretation of the results.

References

