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These theories emerge most naturally from the compactifications
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study of superstring compactifications.”
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ABSTRACT. - The basic ideas and the important role of gauge prin-
ciples in modern elementary particle physics are outlined. There
are three theoretically consistent gauge principles in quantum field
theory: the spin-1 gauge principle of electromagnetism and the
standard model, the spin-2 gauge principle of general relativity,
and the spin-8/2 gauge principle of supergravity.

Many quotations remind us of Dirac’s ideas about the beauty
of fundamental physical laws. For example, on a blackboard at
the University of Moscow where visitors are asked to write a short
statement for posterity, Dirac wrote: “A physical law must possess
mathematical beauty.” Elsewhere he wrote: “A great deal of my
work is just playing with equations and seeing what they give.”.
And finally there is the famous statement: “It is more important
for our equations to be beautiful than to have them fit experi-
ment.” This last statement is more extreme than I can accept.
Nevertheless, as theoretical physicists we have been privileged to
encounter in our education and in our research equations which
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have simplicity and beauty and also the power to describe the real
world. It is this privilege that makes scientific life worth living,
and it is this and its close association with Dirac that suggested
the title for this talk.

Yet it is a title which requires some qualification at the start.
First, I deliberately chose to write “SOME beautiful equations ...”
in full knowledge that it is only a small subset of such equations
that I will discuss, chosen because of my own particular expe-
riences. Other theorists could well choose an equally valid and
interesting subset. In fact it is not a bad idea that every the-
orist “d’un certain age” be required to give a lecture with the
same title. This would be more creative and palatable than the
alternative suggestion which is that every theorist be required to
renew his/her professional license by retaking the Ph.D. qualifying
exams.

Second, I do not wish to be held accountable for any precise
definition of terms such as mathematical beauty, simplicity, natu-
ralness, etc. I use these terms in a completely subjective way which
is a product of the way I have looked at physics for the nearly 30
years of my professional life. I believe that equations speak louder
than words, and that equations bring feelings for which the words
above are roughly appropriate.

Finally, I want to dispel the notion that I have chosen a presen-
tation for my own evil purposes. Some listeners probably antici-
pate that they will see equations from the work of Dirac, Einstein
and other true giants. The equations of supergravity will then
appear, and the audience will be left to draw its own conclusions.
I assure you that I have no such delusions of grandeur. My career
has been a mix of good years and bad years. If the good years
teach good physics, then the bad years teach humility. Both are
valuable.

The technical theme of this talk is that the ideas of spin, sym-



metry, and gauge symmetry, in particular determine the field equa-
tions of elementary particles. There are only three gauge principles
which are theoretically consistent. The first of these is the spin-
1 gauge principle which is part of Maxwell’s equations and the
heart and soul of the standard model. The second is the spin-2
gauge principle as embodied in general relativity. Both theories
are confirmed by experiment. Between these is the now largely
known theoretical structure of supersymmetry and the associated
spin-3/2 gauge principle of supergravity. Does Nature know about
this? Here, you can draw your own conclusions.

This viewpoint is what led me to work on supergravity in 1976.
It is a view of the unification of forces before the unification pro-
gram was profoundly affected by string theory. However, I confess
that I myself think far less about unification now than I used to.
Instead I think and worry about the survival of our profession and
our quest to understand the laws of elementary particle physics. 1
hope that it is not a delusion to think that this presentation may
contribute in a small positive way to the survival of that quest.

Let us start with the general idea that a particle is a unit of mat-
ter of definite mass m and spin s. There are two classes of particles,
the bosons with integer spin 0,1,2 ... and the fermions with half-
integer spin 1/2, 3/2.... We now know that whether a particle is
“elementary” is not an absolute question. It depends on whether
the experiments used to probe it can achieve a small enough spatial
scale to detect an internal structure of smaller units. It is in this
way that we have been led in the 20th century from atoms to nu-
clei to quarks. I will simplify that issue by saying that a particle is
elementary if one can associate with it a wave equation and a local
interaction Lagrangian and use these to account for experimental
results within a certain range of scales. Those wave equations
are restricted by Lorentz invariance and other symmetries. Un-
derlying this is the beautiful mathematical structure which I will
outline.
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A spin-() particle is described by a real scalar field. If massless
it satisfies a very simple wave equation,

u¢z(a—2—v2)¢(xt)=o (1)
ot? '

which is the equation D’Alembert invented to describe acoustic
waves in 1747. If it has a mass then there is another term, and
one has the Klein-Gordon equation from the 1920’s

(O+m?)p=0. (2)

The particle physics of this equation is also very simple. The
equation is second order in time. As initial data one must specify
both ¢(z,0) and d:¢(z,0) at ¢ = 0. These two pieces of classical
initial data correspond to a single quantum degree of freedom; for
each possible momentum p, there is a one-particle state, usually
denoted by the “ket” [p >, in a fertile notation we owe to Dirac.

Now we come to one of Dirac’s major achievements, the wave
equation he invented in 1927 to describe the spin-1/2 electron in
a way consistent with the laws of special relativity. He postulated
a first-order equation for a four-component complex field 9, (z, t).
The equation requires a set of four matrices, now called « matrices,
+#, satisfying the anti-commutation relations

{v, v} =2n"", (3)
where n#*¥ = (+,—, —, —) is the Minkowski metric of space-time.
The Dirac equation can then be written in the massless and mas-
sive cases as

0
y = g —
’La’l,b =11y y ’l,b(:l), t) = 0
(i@-m)yp = 0. (4)
It would require too long a digression to tell the full story of

the physics contained in this equation, and I will just list a few
things:



1. an accurate account of the spectrum of hydrogen;
2. prediction of the magnetic moment of the electron;
3. negative-energy states and anti-particles;

4. when applied to other spin-1/2 particles, namely the muon,
proton and neutron, the Dirac equation and the system of +-
matrices provided the framework which established the form
of the weak interactions in a very exciting chapter of 20th
century physics;

5. the equation is one of the foundations of today’s standard
model of particle physics. It describes quarks, electrons,
muons, and neutrinos, and their strong, electromagnetic,
and weak interactions.

Despite this broad physical scope the basic particle physics of
the Dirac equation is straightforward. It is a first-order equa-
tion so one must specify the four components of ¥ (z,0) as initial
data. There are four quantum degrees of freedom, namely for each
momentum p, a particle and antiparticle, each with two possible
spins: |p,£1/2 > and |p,£1/2 >. This is really the same ratio,
namely 2/1, of independent classical data to particle states, be-
cause the four complex components of 1 contain eight pieces of
real information.

Following this approach one might think that a spin-1 parti-
cle should be described by a vector field A,(z,t) and the wave
equation

massless DA, =0 (5)

massive (O —m?)4, =0. (6)

However trouble looms because there is a mismatch between the
eight independent data for the classical initial value problem and
the particle count required by Poincaré invariance, namely two



particle states of helicity + 1 in the massless case and three states
of helicity £+ 1,0 in the massive case. Things get even worse because
the extra components of the vector field give a quantum theory
with negative probabilities, hence unacceptable.

It is here that the principle of gauge invariance comes to the res-
cue, with important consequences both for the linear wave equa-
tions of free field theory and the nonlinear equations which de-
scribe interactions. Gauge invariance is the idea that part of the
information contained in the field A, is unphysical and unmea-
surable, yet it is difficult and ill-advised to remove it entirely. It
is a bit like writing a triangle on a piece of paper. The essential
information about the triangle is contained in just three numbers,
the side lengths, but for many purposes, such as to describe its
relation to another figure on the paper it is useful to introduce
a coordinate system and specify the coordinates (z1, 1), (z2, y2)
and (z3,y3) of the three vertices.

What is postulated is that the physical information in A4, is
specified by its “curl”

Fpu - auAu - auAu 3 (7)

and this information is unchanged if A, is changed by the “gradi-
ent” of an arbitrary scalar function 8(z), viz.

Ay — A= A, +8,0 8)

This is called a gauge transformation of A,. The simplest wave
equation which is invariant under this gauge transformation is

MF, = 0
M(OuAL—0,A,) = 0
0A,-0,0-4 = 0. 9)

These are all equivalent forms, and the last form shows that the
new equation differs from the naive one (4) by the fairly simple sec-



ond term. Yet this change is sufficient to solve previous problems,
resulting in

1. aclassical initial value problem with four independent initial
data (this is usually shown using a gauge-fixing procedure
not discussed here);

2. the quantum theory contains two polarization states |p, +1 >
of a massless spin-1 particle; and the gauge property can
be used to show that these states transform properly under
Lorentz transformations;

3. probabilities are positive.
We introduced gauge invariance to describe the photon, but

there is a new and richer aspect, related to symmetry properties
of the Dirac field. Let us look at the massive Dirac equation

i@ —mip=0. (10)
We make a transformation to a new spinor variable
ba(x) = Ya(z) = €%4a(z) , (11)

which is just a change of the complex phase of ¥(z). It is obvious
that .
(i@ — m)y' (z) = (i@ — m)y(z) =0, (12)

so 9/(x) satisfies the Dirac equation if ¥(z) does.

This is a symmetry — a transformation of a set of fields which
takes one solution of the field equations into another. The phase
angle 8 is called the symmetry parameter. In this case we have a
global or rigid symmetry because 8 is a constant, independent of
Z.

However, we are reminded, if only for alphabetic reasons, of
our description of the electromagnetic field. There we saw that



the gauge transformation (8) with an arbitrary function 8(z) is
a symmetry. What happens if we try to generalize the previous
phase symmetry to

ba(z) = Yo(z) = 9@y (z) ? (13)

We must again test whether 1/(z) satisfies the same field equation,
and we find

(ig—m)Y(z) = 2@ (i —1#8,0 —m) Y(x) = —eP4*8,0 . (14)

So symmetry fails unless 8,6(z) = 0, and we are back to a global
symimetry.

Now comes the powerful step. Suppose that we introduce a new
interaction between A, (z) and 9(x), using the covariant derivative

Dyt = (9 — ied,)(x) (15)
and the modified Dirac equation
Dy —myp=0. (16)

It is easy to see that this equation is invariant under the simulta-
neous transformation

Y(z) = P(z) = Py(z)
Au(z) = A, = Au(z)+i0,0(z) . (17)
So we now have a nonlinear field equation with local symmetry.

The final step is to require that the combined Dirac and Maxwell
equations be obtained from a gauge invariant Lagrangian, which
turns out to be

L=~ 3F%, + (4 Dy — m)p (18)



The 61 variation of £ produces the gauge-invariant Dirac equa-
tion, while the 6 A, variation produces the modified Maxwell equa-
tion

au(ap,Au - auAu) = ew')’uw (19)
in which the “current” J, = ey,1 is the source. If we take the
divergence of both sides of the equation, then the left side vanishes
identically because of ur antisymmetry, so J, must satisfy the
equation of continuity

o ~ =
vJ,==Jo—V-J=0. 2
03y = 5o~V T =0 (20)

In turn, one can verify that this current conservation equation
is satisfied because of (16) and its complex conjugate. So gauge
invariance produces a system of field equations linked by subtle
consistency conditions. Of course one must not forget to mention
that what we have obtained in this way are the field equations
of quantum electrodynamics, which have been verified experimen-
tally with high precision. Indeed it is this theory and its coupling
constant e?/4whc = 1/137 that controls, in Dirac’s words, “all of
chemistry and much of physics.”

It is worth summarizing what we have done because the same
strategy has worked at least twice more in this century:

1. we promoted the rigid phase symmetry of ¢¥(z) to a local
symmetry by coupling to the gauge field A, (z) using covari-
ant derivatives;

2. in the resulting gauge invariant theory, the conserved current
of the matter field ¢ becomes a source of the gauge field;

3. a fundamental force of Nature is described in this way.
Let us introduce an aesthetic subtheme in this talk, namely

the occurrence of the equations of physics in public art and de-
sign. A millenium ago, 1964 to be exact, I was a postdoctoral
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fellow at Imperial College in London. I noticed then, and on sub-
sequent visits, the frieze over the main door of the physics building,
where some iinportant equations and facts are carved in black mar-
ble. I was lucky enough to get (with the considerable help of Dr.
K. Stelle of Imperial College), some transparencies showing this
frieze. There is a full view showing four blocks of mathematical
material interspersed with graphics. And there is an enlargement
of the mathematical blocks. The third block is devoted to elec-
tromagnetism, with Maxwell’s equations in full 19th century form
very prominent. In the first block there is quantum mechanics
with the Dirac equation in the upper-right corner. The second
block is a mix of special relativity, Newtonian gravity (why not
general relativity?) and thermodynamics. I call your attention
only to the numerical relation

e

G = 2.27 x 10 (21)
which gives the ratio of strength of electric and gravitational forces
between the electron and proton. From this one can easily com-
pute that if there were no electromagnetism, the Bohr radius of
gravitationally bound hydrogen would be 10%2 cm ~ 105 light
years. Reciprocally one can see that it is only on an energy scale
of 109 GeV that quantum gravitational effects among elementary
particles become important.

Because of its importance in the modern picture of particle in-
teractions, I must describe the non-Abelian generalization of gauge
theory obtained by Yang and Mills in 1954. The mathematical
background is a Lie group G of dimension N, with the matri-
ces T, of an n-dimensional irreducible representation, structure

constants f%¢, and commutators
[T, T%) = if°Te . (22)

At the global level one has N symmetry parameters, 6%, a set of



n fermion fields ¥;,(z) and infinitesimal transformation rule

To achieve local invariance one needs a set of NV gauge potentials
Al (z). It is then straightforward to “covariantize” equations for
1; using the non-Abelian covariant derivative

Dy = Opths — ig AT 505 (24)

The new feature here is that the gauge field is in part its own
source. This is reflected in its transformation rule

§A% = 8,0% + g feALG" (25)

in which there is both a gradient term similar to the electromag-
netic case (8) plus a “rotation” term which survives for constant
#%. The non-Abelian field strength is nonlinear,

F&, = 0,A% ~ 9,A% +g f AL AL, (26)
and so is the Yang-Mills field equation

DHMFS, = OMFS, + g f"ALFS, = gy, To%; . (27)

One can show that Fj, and D*F], transform homogeneously, e.g.,
§F%, =g f°F?6° (28)

which means that they are covariant under non-Abelian gauge
transformations. Non-Abelian gauge invariance is the fundamen-
tal principle underlying the standard model of elementary parti-
cles, and there is strong experimental evidence that this model,
with gauge group SU(3) x SU(2) x U(1), describes the strong,
electromagnetic, and weak forces.

Our profession is a difficult one. To find the right field equa-
tions is only part of the job. It is far more difficult to solve those



equations in the context of quantum dynamics where each field
variable is an operator in Hilbert space. Our knowledge of gauge
field dynamics comes from a combination of experiment and the-
oretical insight. It is fortunate in many ways that there is a weak
coupling regime in which perturbation theory is valid, and precise
calculations using Feynman diagrams can be performed.

The only aspect of this dynamics that I will discuss here is
the question of spontaneous symmetry breaking. This is the phe-
nomon that when field equations are invariant under a large trans-
formation group G, only a subgroup, H C G, need be realized
directly in the mass spectrum and scattering amplitudes which
would be observed experimentally. For example, realization of the
full symmetry group G means that all observed particles can be
organized in multiplets which are representations of G with the
same mass for all particles in a given multiplet. If the symmetry
is broken, then only a subgroup H is realized in this way, but there
are other observable signals of the larger group G. The situation
for broken global symmetry is covered by the Goldstone theorem,
which states that if G has dimension N, and H has dimension M,
then there must be N — M massless scalar particles whose scatter-
ing amplitudes have characteristic properties at low energies. For
broken gauge symmetry, one has instead the Higgs mechanism.
The gauge fields reorganize into M massless fields of the subgroup
H, plus N — M fields which appear as massive spin-1 particles.
It is quantum dynamics that must tell us whether symmetry is
broken or not. This depends on whether wave functions invariant
under G or H have lower energy.

It is time for another aesthetic interlude, this time from Wash-
ington D.C. Near the National Academy of Sciences building, and
completely accessible to the public, is a full size statue of Albert
Einstein. He holds a tablet on which the enduring part of his life’s



work is summarized in these three equations

1
Ruy - —2' guyR = KTNV
eV = hv—A
E = mc? (29)

from general relativity, the photo electric effect, and special rela-
tivity. Underneath the equations is his signature. This is a pow-
erful artistic statement, which makes one proud to be a physicist.
(I thank my MIT colleague Prof. A. Toomre for obtaining slides
of this statue for me.)

I want to discuss general relativity very briefly from the view-
point of gauging spacetime symmetry. The theoretical principle of
special relativity is that physical field equations should be invari-
ant under translations and Lorentz transformations of space-time.
These are transformations between two coordinate systems z* and
x'* related by

z'# = Atz + ot . (30)

In a special relativity, this is a global symmetry. There are four
translation parameters a#, while A is a matrix of the group 0(3,1)
containing six parameters which describe the relative angular ori-
entation and velocities of the two coordinate systems. There is
a great deal to say about the often counterintuitive effects of the
mixing of space and time in special relativity, but for the purposes
of today’s talk, I speak only about two formal consequences:

1. particles are classified by their mass m and spin s; technically
these numbers specify a representation of the group;

2. there is a conserved symmetric stress tensor T#¥ whose in-
tegrals P* = f d32T% are the energy and momentum of a
system of fields or particles.



For the electromagnetic field this stress tensor is

1
T = FMF) - £ ¥ (Fpe)? .
If you look carefully you can find the conservation equation on the

Imperial College frieze.

The gauging of this space-time symmetry is a fairly compli-
cated process, but the elements are similar to those of the spin-1
gauge principle. I must oversimplify and state that one seeks a set
of equations which are invariant under general coordinate trans-
formations, in which two sets of space-time coordinates z# and z'#
are related in a completely arbitrary way:

¥ = a*(z")

~ zH+EH(2) . (31)

where the last form holds for infinitesimal transformations. The
gauge parameter is the vector £#(z), and the gauge field is a sym-
metric tensor g, (z) with the transformation rule

5g;w(x) = aufpgpu + aufpgup - fpapg;w
- Dl_l,fu + Dufy . (32)

In the first line one sees a mix of gradient terms plus a translation
term, indicating that the resulting theory is self-sourced. This
is a funny way to say that the gravitational field itself carries
energy and momentum. In the second line I just want to indicate
that things can be organized into covariant derivatives which also
simplify the coupling of g, to matter fields.

Finally the analogue of the field strength F,, is the curvature

tensor R;\Lp,,, from which one forms the Ricci tensor Ry, = R;),\,,

and the Riemann scalar R = g*R,,,. . These are the elements of
the Einstein field equation

1
RM — = g R=r T (33)



in which the source of the curvature is the energy-momentum ten-
sor of the matter fields in the system.

In a single general lecture one can give neither an adequate
technical account of general relativity nor an adequate discussion
of the ideas it embodies as a theory of gravity. I will make three
brief comments.

1. On the formal side, gauge invariance guarantees that the par-
ticle content of the field g, is the massless spin-2 graviton
with two helicity states |E, +2 >, with positive probabilities
and interactions which maintain these properties.

2. On the side of ideas is the remarkable fact that g, () is
the metric tensor of space-time. So the theory of gravity is
a theory of space-time geometry, a fact that has captivated
many physicists.

3. Best of all is the experimental side. The theory is right in
the classical domain. Several subtle effects which distinguish
Einstein gravity from alternative theories (e.g., Newton’s)
have been observed. A fairly recent example is the accurate
measurement of the decay of the orbit of the binary pulsar at
the rate expected from quadrupole gravitational radiation.

[t is a straightforward matter to take the standard model and
couple it to gravity by the procedure I have hinted at above. This
is completely described in several textbooks. But one learns little
because the direct quantum effects of gravity are negligible at the
energy of any conceivable particle accelerator. So for practical
purposes one cau drop the gravitational terms and concentrate on
the dynamics of particle physics. Here there are many interesting
unsolved problems, and for the last three years I have been working
on some of them.
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However, most physicists agree that one must eventually un-
derstand gravity at the quantum level perhaps only as an intel-
lectual question (but perhaps more). One can be fairly certain
that there is “new physics” at the quantum gravity or Planck
scale of 10'? GeV, because theories obtained by the straightfor-
ward coupling of matter contain uncontrollable infinities. They
are non-renormalizable in roughly the same way that the effective
Fermi theory of the weak interactions is unrenormalizable.

The Weinberg-Salam-Glashow model of the electroweak inter-
actions was put forward in 1968. It contained new ideas and was
renormalizable. It predicted weak neutral currents which were
found in 1972 at the scale of accelerator experiments realizable
at that time. The W and Z bosons which were the key to the
modification of the Fermi theory were found a decade later with
masses just below 100 GeV which was close to the weak scale of 300
GeV at which the Fermi theory necessarily broke down. Analo-
gously one can hope that new ideas about quantum gravity could
have somewhat indirect consequences well below 10'? GeV and
perhaps answer some of the questions left open by the standard
model. These could include the following. Does the group of the
standard model appear as a subgroup H (unbroken at the weak
scale) of a larger unification group G? Are there some restrictions
among the free parameters of the model, most of them from the
poorly understood sector of non-gauge fermion couplings? This
is the pragmatic component of the motivation for supersymmetry
and supergravity and also string theory. There is also an aes-
thetic motivation, namely the search for beauty and symmetry in
physical laws, which I think would have pleased Dirac.

Supersymmetry is a symmetry of relativistic field theories con-
necting fields of different spin. There are transformation rules
containing a spinor parameter which rotate a bosonic field into
a fermionic superpartner and vice versa. That such a symmetry
is theoretically consistent was a surprise because earlier work, es-
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pecially the Coleman-Mandula theorem, had indicated that the
invariance groups permitted in quantum field theory were limited
to the Poincaré group of space-time symmetries and a Lie group G
for internal symmetries is described above in connection with non-
Abelian gauge theories. Neither contains spin-changing symmetry
operators. However, in 1971, Gol’fand and Likhtman [1] sought to
go beyond the limitations of the Coleman-Mandula theorem. They
wrote down the algebraic relations of an extension of the Poincaré
algebra containing spinor generators, and an interacting field the-
ory which is invariant. The mathematical structure is that of a Lie
superalgebra, which was not considered in earlier work. In 1972,
Volkov and Akulov [2] obtained another invariant field theory with
a different and pretty structure; it described a spontaneously bro-
ken form of supersymmetry. Finally in 1973 Wess and Zumino
[3] discovered supersymmetry in four-dimensional field theories by
generalizing a structure found in early work on superstring theory.
Their paper contained the basic supersymmetric theories, with
their off-shell multiplet structure, and systematic rules for con-
structing invariant interacting Lagrangians. The paper of Wess
and Zumino was the springboard for the work of many physicists
who contributed to the formal and phenomenological development
of the subject.

Let us look at the example of supersymmetric Yang Mills the-
ory, first obtained by Ferrara and Zumino [4] and Salam and
Strathdee [5], which is the simplest interacting theory where you
can see both that supersymmetry works and that it has some
depth. It is important to look at an interacting theory because
there are many possible symmetries of a free theory which are
spurious, because one cannot introduce interactions. So I will
present the full theory, and a guide to the manipulations needed
to show that it is invariant.

The fields of the theory are the N gauge bosons Aj(z) and
their superpartners, a set of N-gauginos x*(x) which are Majo-
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rana spinors. A Majorana spinor satisfies a linear condition which
means that only four independent real functions are required as
initial data. It describes a spin-1/2 particle which is its own
anti-particle. The minimal Lagrangian which is gauge invariant,
namely
1 9 b _

L= —Z(F;:U) + 5 Xa’)’p' (Dp,X)a (34)
also possesses global supersymmetry. It is invariant under the
following transformations which mix bosons and fermions

6x* = o"Fje (35)
where
174 1 v
ot = 2]
DuXa — auXa+g fabcAZXc
Fu = 0,A%-0,A%+g fALAC . (36)

To show supersymmetry in a simplified way, let us establish the
invariance of the free equations of motion. We need to show that
if x and A, satisfy the Dirac and Maxwell equations

ioux = 0
OF, = 0 (37)

then so do their variations éx and §A,. For the Maxwell equation,
we need

5Fp,,, = 3;,,5_4,, — 0,04,
ZE(')’p.au - 'YVau)X . (38)

Then
OH6F,, = 1€(@ux — v Ox) - (39)
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Both terms vanish separately if @x = 0. The Dirac equation is a
little more involved and more instructive

’7“3%5)( = 7“0)"’3”}:‘)\!,6 . (40)

We substitute the standard Dirac matrix identity

1 1
¥ = o e+ 5 {0V
1 1.

= S =) + 5 My, . (41)

in (40) and find

1 .
70u8x = {7 = 17 )BuFrp + Y510 Ou P pte . (42)

The first two terms vanish by the Maxwell equation above, and
the last vanishes if one substitutes F), = 0)A4, — 8,4 and uses
the fact that e#*9 is totally anti symmetric.

In the interacting non-Abelian theory things are a little more
complicated. The Ricci and Bianchi identities of Yang-Mills theory
are required

[Du, DJX® = g f*Fjx°
EHPDLFS, = 0 (43)

and one then finds that the term (in 6£)
g F% e x XX’ (44)

must vanish as the final test of invariance. It can be shown to
vanish as a consequence of the Fierz rearrangement identity for
the  matrices and the crucial fact that the spinor quantities x(z)
and € must anticommute because of the Pauli exclusion principle.

It is worthwhile to summarize the ingredients of the proof:
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a. the Ricci and Bianchi identities which are fundamental to
the non-Abelian gauge invariance;

b. properties of the y matrix algebra used in the relativistic
treatment of spin;

c. anti-commutativity of fermionic quantities required by the
connection of particle spin and statistics.

If the discussion above does not convince you that supersymme-
try is a principle of great depth, then let me describe one more fact.
This is the relation of supersymmetry to the space-time transfor-
mations of the Poincaré group. For any physical field ®(z) of
a supersymmetric theory one can make repeated supersymmetry
variations, with spinor parameters, ¢; and ¢;. The commutator of
two transformations is

(6e,6ey — bey66,)8(2) = iE1Y er 0, 8(x) . (45)

Thus the commutator is an infinitesimal translation in space-time
with displacement parameter da* = i€;y*€s. So supersymimetry
is a “square root” of translations in much the same way that the
Dirac equation is said to be the “square root” of the scalar wave
equation. This is already enough to see that the local form of
supersymmetry must involve gravity, and we will return to this
shortly.

In a theory with a non-Abelian gauge group G, we have seen
that the fields are organized in representation of G. In a super-
symmetric theory there is the analogous Poincaré super-algebra,
including translations, Lorentz and SUSY transformations. Fields
are organized in multiplets of this algebra, the basic ones contain
fields of spins

chiral multiplet (1/2,0%,07)
gauge multiplet (1,1/2)



N > 2 supergravity

(46)

A field theory with local supersymmetry is called a supergravity
theory. Let us see what is required for such a theory by applying
what we have learned about the spin-1 and spin-2 gauge princi-
ples. We want invariance with respect to transformations with an
arbitrary spinor function €,(2), so we should expect to require a
gauge field with an additional vector index, a vector-spinor field
Yua(x). A free field theory for i,.(x) had been formulated in
- 1941 by Rarita and Schwinger, describing a spin-3/2 particle. For
a Majorana field, their Lagrangian is

1 _
L=-3 MY PAvs Ve Oty - (47)

One can easily see that it is invariant under the gauge transfor-
mation 8y, = Gye. So the spin-3/2 field is the natural candidate
for the gravitino, the superpartner of the graviton, and we should
expect that the particle content of the basic supergravity theory
should be given by the (2, 3/2) supermultiplet above.

However it was not clear that the theory could be mathemat-
ically consistent because of the infamous history of attempts to
add interactions to the Rarita-Schwinger theory. All such at-
tempts had led to inconsistencies. For example if v, is cou-
pled to an electromagnetic field using the covariant derivative,
Dy, = (0, —ieA,),, the resulting theory, although formally rel-
ativistic, has propagation of signals at velocities faster than light.
We now know that such problems arise when the interactions fail
to incorporate the gauge invariance of the free theory.

Our approach [6] to the construction of supergravity was to
start with the minimal elements required in a gravitational La-



grangian with fermions. These were:

vierbein e

7
. . 1
spin connection f),mb = 3 (et (Ouen — Ovepy)
+ebeg (Osecple], — (a — b))
o o Co
curvature tensor Ry = Oy Wyab + Wyy Wech
—(p o)
. o . 1
Lorentz covariant derivative D,y, = (8, + 3 Dvab aab)z/)p . (48)

From these we formed the Lagrangian

ﬁ = £2+£3/2
_dete
452

where £ is the gravitational coupling constant. The first term is
the standard pure gravity action in vierbein form, and the sec-
ond the Rarita-Schwinger Lagrangian with minimal gravitational
coupling. This Lagrangian is acceptable from the viewpoint of
the spin-2 gauge principle, and the next question is whether it is
locally supersymmetric.

1 _
eauebuRuuab -3 El\puu'w,\'ﬁ Cz’YaDu"/’p (49)

For this one needs transformation rules. It was natural to pos-

tulate . ] ]
(o]

8, = - Dpe = - (Ope + 5 Weab o%e) (50)
because this is both gravitationally covariant and contains the ex-
pected mix of gradient plus Bose-Fermi mixing terms. The vier-
bein variation

6 e, = —i k&Y' Y, (51)
is almost uniquely determined by invariance arguments.

I will present the first steps in the proof of local supersymmetry
which shows that terms of order x~'&) vanish in the variation of



the action. In conventional vierbein gravity the variation of L9 for
any dey, is

1, o
AS =5 / d'z dete(R™ — ~e™R)Beay - (52)

It is the Einstein tensor in frame form that multiplies éej;. We
now compute the §1 variation of L3/,, getting a factor of two by
varying 1 and 1, according to the rules for Majorana spinors,

A1S3y = —-;/d‘lx e’\p“”'(/;,\'yyyuD,,Dpe

1 -
= L [t w5

where we have used the gravitational Ricci identity in the last line.
We now use (41) in the form

1 1
Yo = *2'(6276 e’ + 5 5 ieue sy (54)
When this is inserted in (53) the first two terms give contractions
P Rypub = 0 (55)

which vanish due to the first Bianchi identity for the curvature
tensor.

After use of ¥yyg€ = —&yqt¥y, which holds for anti-commuting
Majorana spinors, we are left with

A1S3/2 = éi/d4xe")‘p”eab°deZR,,pbc€'yd¢)\ . (56)

It is less fun, but straightforward, to compute the contraction of
the € tensors
6p/\pl/eabcdeauRupbc = 92det e(ebAecpedr + ec,\edpebu

+edrebPect )Ry pbe

1
= 4dete(R* - ied’\R) . (57)
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When this is inserted in (56) and (51) is inserted in (52) we find
an exact cancellation!

The situation is similar to that of supersymmetric gauge theo-
ries. The cancellation is due to the combined effects of the gravita-
tional Ricci and Bianchi identities and the Dirac y-matrix algebra.
This lowest order cancellation showed that we were on the right
track, but there was more work to be done because there is a
non-vanishing variation A3S3/, of order K3,

Here we struggled for many weeks because it was hard to per-
ceive a pattern in quantities with so many indices. Finally we
devised a systematic approach involving:

a) a general ansatz for a modified gravitino transformation of
order &'t = réyp?;

b) an analogous general ansatz for a contact Lagrangian of or-

der L4 = K2(y1p)2

The §'¢ variation of L3/, and the ¢ variation of L4 give additional
order xe® terms and we were able to find unique choices for §'v
and £4 to make the total variation vanish. Fierz rearrangement
was required here.

Unfortunately new and complicated terms of order x3&y® are
generated by fe and 8’1 variations of £4. One could show eas-
ily that no further modification of the framework could be made,
and these terms had to vanish or the theory failed. We were able
to show that they vanished by a computer calculation in FOR-
TRAN language with explicit input of the <y-matrices and a pro-
gram to implement the anti-symmetrization implicit for fermionic
variables.

Soon thereafter an important simplification of the resulting the-
ory was obtained by Deser and Zumino [7], with a further simpli-



fying step (8] somewhat later. This involved the idea that the
gravitino modifies the space-time geometry by including torsion.
The net result is that the Riemannian spin connection ‘f)uab is
replaced by

o 1 - - _
Wyab =Wyab +'2‘ ix? (¢u'7a¢b - wu'Yb"ﬁa - ¢a'7/ﬂ»bb) (58)

in the Lagrangian (49) and transformation rule (50). This group-
ing of terms gives a complete and succint definition of the theory,
and a simpler proof of invariance. :

The subsequent development of supergravity included:

1. coupling supergravity to the chiral and gauge multiplets of
global supersymmetry; these couplings involve conserved su-
percurrents and super-covariant derivatives; there are now
relatively simple tensor methods to obtain the most general
form of these theories;

2. developing extended supergravity with N < 8 gravitinos;
the maximal N = 8 theory was once thought to be the best
candidate for a unified field theory.

3. Higher dimensional supergravity culminating in the 10 and
11 dimensional theories. The 10 dimensional version is im-
portant both historically and practically for superstrings.

Earlier we said that the only theoretically consistent gauge prin-
ciples are those of spin-1, spin-2, and spin-3/2. This information
comes from a set of theorems, due to Coleman and Mandula and
Haag and Lopuszanski, which limit the symmetries permitted in
an interacting theory. These theorems hold under certain assump-
tions which must be examined critically. But it appears that they
are essentially correct. For example, one can write free field theo-
ries for a spin-5/2 field, but attempts to include interactions have
all failed.
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There is time to describe only very briefly what now appears
to be the most plausible scenario for experimental verification of
these ideas. This is the global supersymmetric extension of the
standard model with fields grouped in chiral and gauge multi-
plets. The known quark, lepton, gauge, and Higgs fields all have
superpartners. One then couples this large set of matter fields
to supergravity. Observed supersymmetry requires that a particle
and its superpartner must have the same mass. This is decidedly
false, so one must expect supersymmetry breaking, and superpart-
ners are predicted with masses between 100 GeV and 1 TeV.

Without the supergravity couplings explicit mechanisms for the
symmetry breaking have not been found. There could be a subtle
dynamical breaking mechanism, but in any case the spontaneous
global supersymmetry breaking would give a Goldstino, a mass-
less spin-1/2 particle that is excluded experimentally. So the role
of supergravity in these models is to break supersymmetry such
that the gravitino becomes massive by a super-Higgs mechanism,
without generating a cosmological constant.

The first model which correctly described this super-Higgs mech-
anism was obtained by Polonyi [9]. General studies of the condi-
tions for the super-Higgs effect by Cremmer, Julia, Scherk, Fer-
rara, Girardello and van Nieuwenhuizen [10] and by Cremmer,
Ferrara, Girardello and Van Proeyen [11] also contain the most
general N = 1 supergravity actions. It is this work which has
been widely applied to supersymmetric extensions of the standard
model. A very early discussion [12] of the super-Higgs effect for
N spin-3/2 fields and N Goldstone fermions is incorrect both for
general NV and in the special case N = 1.

Discovery of the superpartners is the key requirement to con-
firm the picture of broken supersymmetry, but there is also a less
direct set of predictions related to the unification scale of gauge
coupling of the standard model, the rate of proton decay and the



masses expected for the top quark and Higgs bosons. There is now
favorable experimental evidence on the unification scale and the
observed lower limit on the proton lifetime. These facts appear
quite naturally in the supergravity models but not in the simplest
forms of theories without supersymmetry.

In this lecture I have not done justice to string theory and the
beautiful ideas it contains. Therefore I must clearly state that the
N = 1 supersymmetry/supergravity framework I have discussed
cannot give a complete theory. There are non-renormalizable in-
finities which require new physics at the Planck scale. A more
fundamental superstring theory could well be correct and there
are well studied scenarios by which such a theory can lead, for
energies less than 10!° GeV, to an effective N = 1 supergravity
theory.

I have not had the time to discuss some of the pragmatic fea-
tures of supersymmetry/ supergravity theories which make them
attactive as a candidate for physics beyond the standard model.
There are review articles to consult about this very active subject
of research. Instead what I have tried to say is that these theories
are based on the only theoretically consistent symmetry principle
not so far confirmed in Nature. This suggests that it is historically
inevitable for supersymmetry to play a role. Of course this could
be as dangerous as the prediction that “capitalism contains within
itself the seeds of its own destruction.” Experiment is the ultimate
test of theoretical speculation. New experiments are needed to-
gether with theorists who are willing to devote a good part of their
effort to support the experimental enterprise.
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Note

We can include explicit reference only to a few of the original
papers on supersymmetry and supergravity. Many important pa-
pers are omitted, and it is fortunate that they are reprinted and
reviewed in the following collections which are also a very good
way to learn the subject.

a. “Supersymmetry and Supergravity”, ed. M. Jacob, North
Holland, Amsterdam (1986), a collection of Physics Reports
by J.Ellis, P. Fayet and S. Ferrara, H. Haber and G. Kane,
C. Llewellyn Smith, D. Nanopoulos, P. van Nieuwenhuizen,
H. Nilles, A. Savoy-Navarro and M. Sohnius.

b. “Supersymmetry”, 2 Vols., ed. S. Ferrara, North Holland,
Amsterdam (1987).

c. “Supergravities in Diverse Dimensions”, 2 Vols., eds. A.
Salam and E. Sezgin, North Holland/World Scientific {1989).
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