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Abstract

To describe the "anomalous" diffusion the generalized diffusion equations of fractal order are

deduced from microscopic models with anomalous diffusion as Comb model and Levy flights.

It is shown that two types of equations are possible: with fractional temporal and fractional

spatial derivatives. The solutions of these equations are obtained and the physical sense of these

fractional equaitions is discussed. The relation between diffusion and conductivity is studied

and the well-known Einstein relation is generalized for the anomalous diffusion case. It is shown

that for Levy flight diffusion the Ohm's law is not applied and the current depends on electric

field in a nonlinear way due to the anomalous character of Levy flights. The results of numerical

simulations, which confirmed this conclusion, are also presented.
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1 Introduction.

Classical diffusion, in which diffusing particle hops only to nearest sites, has been thoroughly

studied, and many methods, related to the research of this phenomenon, have been developed.

In distinction of this the random walks with an anomalous power character are ,however, studied

less. One of the well known examples are random walks on percolation clusters (random fractals),

which have a sub-diffusion character [1],[2]:

<X2(t)>~t*T« (1)

Here t is diffusion time, < X2(i) > is a random mean square (rms) displacement during the

time, 6 is a critical index of the anomalous diffusion. Let's note too that the critical exponent

of anomalous diffusion 0 depends on the space dimension: #2 ~ 0.8, #3 ~ 1.3. The change of

diffusion character is caused by two reasons : strong tortuous (twistness) of percolation ways

and presence of impasses - " dead ends on current ways at least. This problem was formulated

many years ago in the [3],[4]- as a problem of "ant in labirint" and it is still not solved.

To take into account an influence of impasses for diffusion character the model of comb

stucture was put forward [5] and [6]. This model consists of one-dimensional backbone with

fingers of infinite lengths - see fig.l. Using the technique of the generating functions it was

shown, that the root-mean-square displacement along an axis of structure depends on time in

the anomalous way (1) with the exponent 9 = 2.

This model is one of the few exactly solvable models with unusual diffusion properties. So in

this paper we consider this model in more detail. The generalized diffusion equation, describing

random walks along an axis of structure, was deduced. It essentially differs from the usual

diffusion equation, having the form of the continuity equation: instead of the first derivative

on time the derivative of the fractional order 1/2 arises. The expression for a diffusion current

remains the former - see also [7]. The generalization for a multidimensional case is performed.

The relation of the diffusion on the comb model with a problem of continuous time random

walks (CTRW) is established [8],[9]. A further development of the model is a study of random

walks on the comb structure with random distribution of fingers over lengths [10] , [11]. In

particular it was shown for a power law distribution /(/) ~ /~7,1 < 7 < 2 rms depends on time

in the following power way :

<X2{t)>~ti (2)

It is connected with that at these values 1 < 7 < 2 all moments of the power distribution over

lengths are diverged. Recently an analogous behavior was obtained in the continuum description

of the anomalous diffusion on the comb structure [12],[13]. It is necessary to note that the

diffusion problem on random comb structure is not yet solved , and the above called results

were obtained in the effective medium approximation. We discuss this problem and show that

results essentially depend on the way of averaging. The expressions for averaged probabilities



(Green functions) are found in two limiting ways. The form of operator evolution in the fractal

temporal derivative is deduced in the effective medium approximation. The drift of particle and

the influence of an electrical field for the statistical properties of random walks are also studied.

The second part of this paper is devoted to another anomalous random walks - super-diffusion

via Levy flights [14],[15]. At Levy flights particles may hop for an arbitrary large distance with

a power probability, so that rms displacement per unit time appears to be infinite. The study

of Levy diffusion is of interest as a microscopical model with an unusual diffusion and in a

connection with possible applications to hopping conductivity in disordered media and to other

fields. The generalization of Levy diffusion for a finite length of hop is discussed. In this case

Levy flights are alternated by the usual diffusion. The most interesting one is a research on the

relation between diffusion and conductivity in the super-diffusion case. It is shown that due

to a super-diffusion character of random walks the current and electric field are connected in

a nonlinear way. The index of the nonlinearity is described by the exponent of the anomalous

Levy diffusion.

The paper organized as follows. In section 2 the exact solution of the random walks on comb

structure is obtained. Namely the generalized fractal diffusion equations for the anomalous case

are deduced in two different ways. In section 3 the generalization for a multidimensional case

is made. The connection between problems of diffusion on comb structure and continuous time

random walks is considered in section 4. The transition to usual diffusion due to a finite length

of finger is traced in section 5. Section 6 is devoted to diffusion on the random comb model.

Some variants of effective medium approximation (EMA) are considered. In section 7 another

variant of EMA, based on microscopical approach, is studied. The drift on the comb structure is

considered in section 8. In the last sections 9-11 the diffusion via Levy flights and in an electric

field are studied. It is shown that a relation between diffusion and conductivity is nonlinear.

The results of numerical simulations are also discussed. Section 12 concludes the paper and the

discussion of results is given.

2 The diffusion on comb structure.

A feature of the diffusion in the considered model consists of that the displacement in the

X-direction is possible only along an axis of structure (at y = 0). This means that diffusion

coefficient Dxx is different from zero only at y = 0:

Dxx = Dtfiy) (3)

i.e. X- component of the diffusion current is equal to:

£ (4)



The diffusion along fingers is considered as usual: Dyy = D2. Thus, the random walks on the

comb structure is described by the tensor of diffusion:

~ / D15(y) 0 \
D={ 0 D2)

Accordingly, we obtain the following diffusion equation:

^ ^ ^ y , t ) = 6(x)6(y)S(t) (5)

Here G(x,y, t) is the Green function of the diffusing problem. To solve the equation we use the

following reception. Let's rewrite equation (5) as the usual diffusion equation with a non-uniform

right part:

[ | - f t ^ = Cl%)g (6)

The solution of the homogeneous equation (6) is well known and has the Gaussian form:

(7)

Thus we obtain the integral equation for the concentration of the diffusing particles:

P(x,y,t) = jG(y-y',t- t')DM)^^'J'^dy'dt' (8)

After integration over y' one obtains the closed equation for the concentration of particles on an

axis of the structure (y=0):

It is easy to see, that the right-hand side of formula (9) is the integral of the fractional order

1/2 [16],[17]. Therefore using the operator of fractional differentiation of a degree 1/2 we obtain

the required diffusion equation:

d*p{x,t) d2p{x,t)
= D

The integro-differential form of the diffusion equation (10) is a consequence of random disap-

pearance and subsequent birth of particles at the axis of structure at diffusion (leaving and

returning to an axis of structure). Let's mark that this equation describes the diffusion problem

with a non-conserving number of particles.

To find the solution at arbitrary values of the coordinate y we use another direct approach.

Let's use a mixed (s, k,y)-representation :

\s + D\k 8{y) — D2-^-TT]P(S, k,y) = 6(y) (11)
ay*

Let's find the solution (11) in the form :

G(s,k,y)=g(s,k)ezp(-\\y\) (12)



After necessary calculations one has :

Using Fourier transformations , we obtain :

h V27ri3

To obtain this expression the following identity was used:

I oo ^

exp(—ar)dT — — (15)
o a

The distribution of particles on an axis of structure is described by the same expression at y=0.

Let's note that the complete number of particles on an axis of structure decreases or in other

words this diffusion problem is the one with a non-conserving number of particles:

<G>= f G(x, o, t)dx = - ^ = (16)

Taking into account last remark to calculate the displacement along an axis of structure:

>= ^ ^ = D.K (17)

Let's return to the equation for G(x,0,t). As follows from (13) in (s, k) - representation it

has the form:

/ H ^ + Dik2]p{s, k) = 0 (18)

It is easy to see that this equation consists of the Fourier representation of the fractional deriva-

tive on time [16],[17],[18]. So we recover the diffusion equation for a density of particles on an

axis of the structure in the form (10).

So the consideration of random walks on comb structure shows that the problem with anoma-

lous diffusion and with non-conserving number of particles should be described by the diffusion

equation with temporal derivative of the fractional order.

3 Multidimensional case.

Let's generalize these results for a multidimensional case. First let's begin with a three-

dimensional comb structure. Such a structure is formed by attaching the additional fingers

to the existing two-dimensional comb structure that points in the direction parallel to the Z

axis. Hence in the three-dimensional case displacements in the .^-direction are possible only

along the intersections of the planes y = 0 and z = 0. In other words the diffusion coefficient

is not zero , i.e. Dxx = D\8{y)6{z). Accordingly , a displacement in the y-direction is possible



only if z = 0, and a displacement along z axis is ordinary. Thus, we have the following diffusion

tensor:
/ D1S(y)8(z) 0 0

D = 0 D2S(y) 0
0 0 D3

So the corresponding diffusion equation in the mixed (s,k,y,z) - representation is :

2 S ( ) S ( ) D 6 ( ) ^ D[s + Dlk
2S(y)S(z) -

Let's find a solution for (19) in the form:

, k, y,z)=0

p{s,k,y,z) = g(s,k)exp(-X2\y\ - X3\z\)

(19)

(20)

Substituting (20) into Eq. (19) yields the following formulas for the parameters A2 and A3 and

the function g(s, k) :

2A3.D3
A3 = s/D3, A2 =

g(s,k) =

Consequently for the mean-square displacement along the x and y axes we then have :

(21)

(22)

Hence in the N-dimensional case the diffusion tensor is described by the matrix :

D =

D16(x2)...S{xN) 0 . . . \
0 D25{xz)...8(xN) . . .

0
0 . . . DN )

Accordingly we find a solution for the N-dimensional diffusion problem in the form

p(s,k,x2,x3...,xN) =g(s,k)exp{-X2\x2\ - )

Here the parameters AJV are linked through the formulas:

(23)

(24)

and the function g{s,k) is defined in the expression (21). The formulae (23) and (24) give

the complete solution of the multidimensional problem. For instance it is easy to calculate the

mean-square displacement along the main axis of the structure:

<- Y2 (+\ •>, /1/2(7V-1) {Or\

For the next lateral finger the mean-square displacement is

(26)



...And for the axis, from which only fingers of infinite length emerge, we have

< X%{t) > ~ t1/2 (27)

Thus random walks on a multidimensional comb structure is of a hierarchical nature and there

are many variants of behavior of the mean-square displacements along the axes of the structure.

4 Continuous-time random walks.

The above problem of a random walk on an iV-dimensional comb structure is connected to the

problem of diffusion in a medium with traps ( continuous -time random walk). The difference

between the two problems consists in that in diffusion in a medium with traps the particles

do not disappear, but only delay at each site with a certain probability. The total number of

diffusing particles is conserved [19], [20]. For a comb structure the transition to the problem

with a continuous distribution over delay time occurs if we study the following quantity:

G{x,t) = J G{x,y,t)dy (28)

According to (13) the function G(x,t) is described by the equation :

[ s + D 1 k s ] G = i

Hence in the case of a medium with traps the diffusion equation has the form of the continuity

equation for a medium with temporal dispersion:

dp{x,t) dJ
dt dx

where

= 0 (30)

Ld_ fdp(x:T) dr
hdx] dr U-rl1/2 ( '2D2dxJ dr \t-r\1/2

Diffusion is still anomalous with the exponent 0 = 2. Let's consider the three-dimensional case

and examine the Green function averaged over the y and z axes , i.e. the function G(s, k) =

/ / G(s,k,y,z)dydz . According to (23), for this function, we have the equation:

[8 + Dlk?(^)W]G = 1 (32)

Hence the diffusion equation has the form of the continuity equation with a diffusion current:

d f dp(x, T) dr
J ~~fe / dr |f-r|3/4 (33^

Further we study the Green function averaged over one coordinate z :



Accordingly, the motion along the axis y = 0 is described by the equation:

[s^4 + ADk2{s)^2}G = 0 (35)

where A = const.

The number of particles on the y = 0 axis is not conserved because particles are also in the

dead ends . As result of this the diffusion current contains a fractional temporal derivative of

order 1/2. So in the N-dimensional case the equation for the function Gm, averaged over the m

coordinates has the form:

[ap+ s"k?]Gm{s,k) = 0 (36)

where ft = (N - m + l)/4 and v = (N - m - l)/4

5 Transition to usual diffusion at finite lengths of fingers.

Up to this point we have studied comb structures with infinitely long fingers. Transition to usual

diffusion due to the finite length of fingers is studied below. The reflecting boundary conditions

are used as boundary conditions :

J(y = ±L) = 0 (37)

Thus random walks on the comb structure with finite length of fingers is described by equation

(6) and boundary conditions (37). The solution of the homogeneous equation (6) with boundary

conditions (37) is well known:

^ , ^ v-* / Dotirrnr)2. .miry, , s
GL(y,t) = J2 exP(— L2 )cos(-jf-) (38)

m=0

Thus, we receive the integral equation for concentration:

p(x, y,t) = I GL(V ~y',t- t')D18{y') d2p(X
dJ' ^ dy'dt' (39)

It has the most simple form in (s,k,y) - representation:

., . Djk2^ p(k,o,s)
p{k, y,s) = — 2^ cos(rmry/L) (40)

L o s + (~T>

At y = 0 one obtains the closed equation for p(k,0,s):

k(s,L)P(s,k) = -D1k
2p(s,k) (41)

Here the operator K is equal:

Here cotan(x) is the hyperbolic function. At infinite length of fingers one obtains the result

(18), obtained above:

K(oo, L) = 2y/slh (43)



On asymptotic large times we obtain the usual diffusion equation with a diffusion coefficient,

depending on the length of the fingers :

n t2

[s + const-7—]p(s, k) = 0 (44)
Li

The structure, which we studied before , had a finger of equal length L. Now we consider a

case when N fingers have various lengths Li,L,2, ...L^ and that this pattern repeats periodically.

The distance between the sites on the structure's axis is a. To understand how a random walk

on a such structure may be described we analyze the case of two lengths L\ and L2. We write

the second derivative with respect to the coordinate x in the finite-difference form and introduce

the notations K\ = K(s, L = Li), K2 = K[s, L = L2) and also denote the particle concentration

by Fi at the point on the axis to which a finger of length L\ is attached. (F2 is introduced in a

similar way.) Then the following system of equations , describing the behavior of the particles

on the axis may be written:

KxF^x) = ~(F2(x + a) + F2(x - a) - 2Fl(x))

K2F2{x) = ^{Fx{x + a) + Fx{x ~a)~ 2F2{x)) (45)

or in the k-representation:

(Ki -2D1/a
2)Fi{k) + 2D1/a

2cos{ka)F2{k) = 0 (46)

(K2-2Di/a2)F2(k) + 2D1/a
2cos(ka)F1(k) = 0 (47)

Setting the determinant of this equation to zero we can find the dispersion relationship between

the parameters s and k or in other words, the analog of the diffusion equation in the (s,k)-

representation:

Ti(s)T2(s) - C2cos2(ka) = 0 (48)

where T(s) = K(s) — C, and C = 2D\/a2. Prom Eq.(48) with equal finger lengths and as a —> 0

we obtain Eq.(lO) as expected.

Thus to describe random walks on N fingers of differing length we must set up a system of

N equations. Such a system emerges because diffusion strongly depends on what finger ( and

what length) are involved in the random walk of a particle. The above analysis suggests that in

the case of a comb structure with N fingers, the determinant takes the form:

T\ exp(ika) . . . . . . exp(-ika)
exp(-ika) T2 exp(ika)
0 exp(-ika) T% exp(ika)

exp(ika) . . . . . . exp(-ika) T^



Thus instead of the ordinary diffusion equation we have the N-channel diffusion equation or

instead of a simple dispersion law s = Dk2, valid for ordinary diffusion, we have the equation of

N-th order. Moreover according to (42) the form of operator depends on the relation between

the parameter s and the diffusion time U = D/L2 along the finger.

Let's analyze the solutions of N-channel equations by qualitative reasonings. Suppose that

finger lengths differ substantially and consequently the hierarchy of times related to the diffusion

along these fingers appears. Over short times the diffusion is anomalous and as time increases

it is replaced by ordinary diffusion with a diffusion coefficient, depending on the length of the

particular finger:

< X2(t) >~i1/2, t«ti«...«tn (49)

<X2{t)>~D1t/Lm, tm«t«tm+i (50)

6 Diffusion on random comb structure.

In this section the diffusion on the comb structure with a random distribution of fingers over

lengths is studied. It is believed that this model better describes the random walks on percolation

clusters. In accordance with the above results the concentration of diffusing particles is satisfied

to equation (39) . So one represents the procedure of the averaging over a random distribution

of fingers in the following form:

< p(x,y,t) >= JGL{y -y',t- if)D15(yt)dfip^J^)dy'dydt'f(L)dL (51)

Here < p{x,t) > is the averaged concentration , f(L) is the function of the distribution of

fingers over the lengths. But to solve the considered problem and to find the solution of (51) it

is necessary to make additional assumptions. The simplest of them are considered below.

6.1 "Consequent" way of averaging

Let's insert in (51) the average value of < GL > instead of the unknown exact Green function,

which is the solution of (51). This approach also supposes also that a diffusing particle passes

through fingers in consequent way and that it diffuses along i finger before goes to next i+1 finger.

It is equivalent to the consequent connection of resistors in the conductivity problem, so let's call

it the "consequent" averaging on configurations of finger lengths. Let's calculate the averaged

Green function for some distributions at the "consequent" averaging over configurations.

A. Let's consider the Gauss distribution:

In this case the following expression for the average Green function, which is used in formula

(51), is obtained:

< GL{T) >=TlY\ / exp(-D2Trn27r2/L2 - L2/L2
0)dL/L0

L m=oJ

10



-I OO

~ — ^ exp(—2\/D2TTtm/Lo) ~ [(1 — exp(—2TTII/D2T/LQ)LO]~1 (52)

Here the integral is calculated by the method of the fastest descent . From (52) it is easy to

find the asymptotic behavior of the averaged Green function at different values of the parameter

T = t-t':

G ( T ) ~ \ 1/Lo) iir»Ll/D2

Correspondingly, in the s -representation (Laplace -representation) one has:

( 1 / 2 ifG(s) >= y G(r)esp(,r)dr ~ | ^ .f

From this formula and (51) it is easy to find asymptotic dependences of rms on times: anomalous

on the small times and usual Dit/Lo at big times.

B. Let's consider a power distribution of fingers over lengths:

/(0 = 4rM<7<2

In accordance with formula (51) we have:

oo
/ exp(—D2T{miT/L) — (1 +^y)lnL)dL

2 r 7 / 2 +1) (53)

TO=O
OO

m=l

In the Laplace s-representation one has

< G(s) >~ (s-1 + Cs^'W2) (54)

Here C is a constant . So at small values of the parameter s (corresponding to big times) and

at values 7 < 2 one has the following asymptotic diffusion equation:

p(s,k)=0 (55)

Consequently rms is equal to

< X2(t) >~ t(2"T)/2 (56)

Let's note that the value 7 = 2 is critical for the change of the diffusion character. The transition

to a new anomalous diffusion dependence is caused by the infinity value of the average finger

length at the values 7 < 2:

<L>= f If (l)dl = 00

At the values 7 > 2 the average length is finite, so the diffusion has a usual character. Formally

this transition occurred due to the member m = 0 in the sum (53).

11



As noted above this approach of the averaging corresponds to the consequent connection of

resistors, so from the Einstein relation

a = q2nD/kT

one obtains the expression for the effective length :

Le=<l> (57)

Here Le is determined by the formula : De = D\/Le. For a case of power distribution over

lengths Le = oo and as a result of this a new power anomalous diffusion behavior appears.

6.2 "Parallel" way of averaging.

Further consider the assembly of comb structures,which have fixed finger length, and suppose

that the probability of the structure with fixed length I is described by the same distribution

function over finger lengths. This approach corresponds to the parallel connection of resistors.

In this case according to (41) one has the Green function for the problem with fixed length of

finger:
roo

Gt(s,k)= exp(~Dxk2T - K(sJ)T)dT (58)
Jo

The averaging over finger lengths is very simple in this case:

<G(x,t)>= jGi(x,t)f(l)dl =

f [exp[
 xl ^ ^ T + st =-]drdsf(l)dl (59)

A. One can easily find arbitrary moments of the average Green function with Gauss distri-

bution function. After necessary calculations one has that the rms depends in an anomalous

way at small times and in usual way at big times:

<X ( i )>~ | {mt/Lo)-i iit»Ll/D2

B. Let's calculate the average Green function for a case of the power distribution:

< G(x,t) >= f Gi{x,t)f(l)dl -

l i / ^ f (60)
Note that the Green function < G > is not normalized for a unit, namely:

<G(x , f )>~*~ 7 / 2 (61)

From (60) and (61) ones calculates rms along structure axis:

< x2(t) >=< x2G(x,t) > / < G(x,t) >~ Di4r (62)
JL>2

12



Note that at this averaging the diffusion on random comb structure has the same index 6 = 2

, as in the case of comb structure with infinite length of fingers. It is connected of that the

effective length at "parallel" averaging is determined by the relation:

ive —< - >

and has a finite value for power distribution also.

In the general case effective length must has value, which is limited by these values:

< y >~l< Le<<l >

7 Microscopic description of diffusion on the random comb model:
effective medium approximation.

Below we use the microscopic approach to study random walks on comb structure, developed in

[12]. They are characterized by two types of functions: first g(xi,x',t) is the probability density

to reach the point X on the structure axis after time t , if it was in the point X' at the moment

t = 0. The set of probability density <f>i{y,t) to find a particle at the i fingers at the moment t

belong to the second type [12],[13]. For convenience let's use the Laplace images of the functions.

The function g is described by the equation for x = ai,i = 0, ±1, ±2..., a is a distance between

fingers:

sg = D 0 + S(x - x') (63)

and the function ip is described by the equation:

stp = L
dy2

with reflecting boundary conditions :

^ = 0 (65)

In the points of the backbone, in which fingers connect to it, the continuity conditions have a

form:

Ji\y=0 = j\x=Xi-0 ~ j\x-Xi+O (67)

where
dpi . dg

= -D^—,ji = -D—
ay ox

The solution of (64) with the reflecting conditions (65) has the form:

/ e / o fs~
<p(s,o) = g(s,Xi,x')[ch(yJ — ) - sh{yJ—)th{kJ~)} (68)

13



So one can write the boundary conditions as follows :

tp{s,o) =g(s,Xi,x'), (69)
r\ I

j\x=xi-o -J\x=Xi+o = ~D~pi = JsDth{k\l jj)g{s,Xi,x) (70)

This relation shows that the equation for the function g(s, Xj, x) may be continued over an axis of

the comb structure, if one uses the 5 - like functions with the power y/{sD)th(liJ-^), introduced

at the points x*. Consequently, one can write the diffusion equation in the form:

fg = D-^ + 8(x-x') (71)

where the evolution operator T is equal to :

T = s + VlD T th(lj-)5(x - Xi) (72)

Further simplification consists of the substitution of the evolution operator for an average mean-

ing < T > :

<T>=s + y/lD lim n Ar
 V (73)

ivtoo 2aN y '
It corresponds to another form of the effective medium approximation (EMA), different from

that described above. At the fixed length of the fingers it is easy to obtain :

,—th{LJ%
<T>=s + VsD ^— (74)

a

One can see that this expression essentially differs from exact solution of this problem - see (42).

Nevertheless it correctly describes an asymptotic diffusion behavior . So we have an anomalous

diffusion at small times ^ > s > ^ and usual at big times :

< X2(t) >~ Dtj (75)
JL/

For a case of the power distribution of fingers one obtains:

th{lJ-)f{l)dl~s + const(-y/2 (76)
V U *-s

Correspondingly we obtain the new anomalous diffusion behavior :

<* 2 ( t ) >-(*)* (77)

8 Drift on the comb structure model.

The appearance of the electrical field leads to an anisotropy of random walks. In weak fields

the anisotropy parameter a(E) << 1 is small and is proportional to a field. Accordingly the

field current equals: J = n^E. In the comb structure the mobility tensor is analogous to the

14



diffusion coefficient. The equation for the diffusion on comb structure and in an electrical field

has the following form:

Let's assume that the field is directed only along an axis of structure E = £(1,0,0). Accord-

ingly,the Green function in mixed (s, A;, y) -representation is equal to:

G(s kvE)- exP(Vs/D2\y\)
G(s, k, y, b.) - 2VW- + D k 2 + .k/iE (79)

After Fourier transformations , we obtain :

G(x,y,t)= - * ^ = = « i (80)
/o

Let's find the first moment of the Green function in a field

(81)

Let's emphasize that the response to a constant electrical field appears as a time-dependent one.

Namely, the velocity decreases with time according to the power way:

< V >= mEy/ir/2t (82)

This result means that in the anomalous diffusion problem with drift it is impossible to find

such an inertial system of the coordinates, which is moved with constant speed and in which

the diffusion remained only as in the usual diffusion case.

Let's consider also the influence of an electrical field on a returning probability. In the usual

diffusion case the drift leads to the exponential reduction of it:

(83)Cln t P\
Lf{o,t;H) — =

In our case it is easy to see that for large time values there is only power reduction of the

probability:

G(o,t;E)~((nEftf/4 (84)

This result can be easily understood. The electrical field acts on particles only when they are

on a structure axis. But most of the time a particle remains on the fingers, outside the axis, so

a more slightly power dependence is obtained.

9 Levy flight diffusion.

As it was discussed above another microscopical model with anomalous diffusion is a model

with Levy flight diffusion. A feature of the Levy flight diffusion is that in each step a particle
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may move for an arbitrarily large distance, so that the root-mean-square displacement per unit

time appears to be infinite [14]. Numerical simulation of diffusion via Levy hops shows that the

points visited by a diffusing particle form spatially well-separated clusters. From more in-depth

consideration one can see that each cluster consists of a set of clusters, so that a structure of

self-similar clusters appears [15]. So one can say that Levy diffusion is a random walk among

self-similar clusters.

The probability distribution function in the Fourier representation has the form:

P(k,t) oc e~AW>it (85)

where A and /x are positive magnitudes, 1 < /J, < 2. Such stable distributions are called Levy

distributions. A more detailed discussion of Levy hops is given in [21].

The study of Levy diffusion is of interest as a microscopical model with unusual diffusion, but

also in connection with some possible applications, for example , to the hopping conductivity

problem in inhomogeneous medium [22].

9.1 Discrete distribution of Levy random walks.

Let us consider a one-dimensional discrete analog of a Levy flight [14]. Let the probability, that a

particle occupies the l-th site after n steps, be Pn{l) and let f(l) be the probability distributions

of hops over lengths. So the master equation for complex diffusion has the form:

oo

Pn+x(l)= £ f(l-m)Pn(m) (86)
m=-co

To simulate a Levy flight the following function is used for /(/):

-"(«,ri»+^) (87)
71 = 0

where 5nim is the Kronecker delta and a and b are the parameters of the Levy flight. Then after

Fourier transformation the structure function for such a random walk is equal to:

X= f f{l)exp(ikl)dl = ]T a~n cos(kbn) (88)
J n=0

Note that the structure function A(A;) satisfies the functional equation:

X(k) = aX(kb) + cos(k) (89)

Hence at k —> 0 the structure function is a power law function with exponent \i = ln(a)/ln(b).

One can establish the non-analytic power-law behavior at k -» 0 by means of a Mellin transfor-

mation, or with the help of Poisson formulae for set summation . For details see [14].
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9.2 Transition from ordinary diffusion to Levy diffusion.

In this section , in addition to Levy hops we allow for ordinary diffusion. The simplest way to

do this is to introduce a finite hop length £ at each step. So we obtain a random walk in which

ordinary diffusion alternates with Levy hops. However, due to the super-linear time dependence

of the rms displacement for Levy diffusion, on small scales (times) the main contribution to the

random walk is provided by ordinary diffusion, while at long times Levy hops contribute most

to the random walks. Accordingly, the hop-length distribution function has the form:

n=0

Hence the structure function is :
oo

A = Y, a~n cos(kbn + jfcf) (91)
n=0

In the limit of small length (b -> 0) this formula turns into the expression corresponding to

ordinary diffusion:

lim \(k, 0 = ^—-^-cos{ki) (92)
6->o a

10 Nonlinear relation between diffusion and conductivity.

10.1 Einstein relation and its generalization.

Below the particle drift or the relation between diffusion and conductivity is studied when

there is Levy diffusion in the system. For the case of usual classical diffusion and linear response

(Ohm's law) this problem was considered by A. Einstein and the well-known Einstein relation was

obtained. However in the case of Levy hops a question about the existence of an Einstein relation

arises. The problem is that the diffusion coefficient, denned in the usual way as D = lim ̂ M,

diverges in a Levy flight diffusion case.

Consequently, there are two possibilities: Either the particle mobility tends to infinity, which

is nonsense from a physical point of view, or the Einstein relation is broken. Below it will be

shown that instead of the Einstein relation a new nonlinear relation between mobility and

diffusion coefficient appears.

Let us recall the well-known Einstein arguments. Let there be in the system the diffusion

Jd = —DVn and the field Jf = /j,En currents. In the equilibrium the diffusion current Jd is

compensated by the field current J/, and the distribution function must have Boltzmann's form:

Jd + Jf = 0, Neq oc e~ulkT (93)

where U is the potential energy, T is temperature, and k is Boltzmann's constant.

Before applying analogous arguments to Levy flights consider the assumptions used in de-

riving the Einstein relation. There are the three following assumptions:
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i) the Boltzmann's statistics

ii) the expression for the diffusion current in the usual classical form

iii) the linear Ohm's law

Let us try to understand which of these assumptions need to be modified. Firstly, the

assumption about Boltzmann's statistics is not essential, since its type is determined by the

statistical properties of the system, and we will retain it. Secondly, the diffusion current has a

different form and we write it in a general operator form:

Jd = -Kn = -iAk\kf'2n (94)

And finally we write the field current as Jj = nV, where V is the drift velocity.

By taking a definition for the derivative of the fractional order in the form of the set [23],

one can get a general formula for the drift velocity:

V = eUIK1 lim(Az + e)^~' J / 4Vexp(--^-) (95)
e->0 kl

where A is the Laplace operator.

In a homogeneous electrical field U = —qEr we recover that the drift velocity depends on

the electric field in a nonlinear way:

n (96)

It should be emphasized that this nonlinearity occurs in arbitrarily weak fields and is a con-

sequence of the unusual character of diffusion. The power of nonlinearity is described by the

critical index of the Levy hop diffusion.

This is a preliminary result, which we obtain below in an exact way.

11 Random walks of Levy and particle drift in the electric field.

Let us now introduce an anisotropy into the random walk on self-similar clusters. By virtue of

the specific nature of Levy hops a particle can move in one hop over an arbitrary distance bn.

For this reason a small anisotropy (1 + a), with a = qEs/kT, when particles move on a small

distance s, becomes exponentially large on large distances bn. Since at each step a diffusing

particle leaves a site, the sum of probabilities W+ and W_ of motions parallel and anti-parallel,

respectively, to the field must be equal to 1:

W+ + W- = 1

Hence we get the expressions for probabilities of motion parallel and anti-parallel to the field:

^ - nJ^S-ar <97)
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Therefore, the structure function A(/c; E) in the case of diffusion via Levy hops in the electrical

field equals:
oo

2A(/c; E) = Y, a~n[cos(kbn) + i sin{kbn){W+ - W-)} (98)

As for usual diffusion the second term contains the drift velocity for small k -> 0:

v = ^MtE) ^ = ^b)n + {w+ + WJ) ^ £{*)*taahiaP) (99)
OK n=0 ° n=0 a

where tanh(x) is the hyperbolic tangent.

Using the Poisson formula we obtain after some calculations the formula for the velocity:

f °° /-oo ra
V{E) = a/2 + a""1 V / tanh(z)z~7mrfz + / ta,nh(z) z'^dz (100)

U=-oo J l Jo J
where the exponent is equal to:

7m = M + 2nim/ In 6.

It is easy to see that for weak fields the second term in brackets is less than the first term. Thus,

in arbitrarily weak electric fields one can get the nonlinear field dependence of velocity (96).

11.1 Transitions from ordinary diffusion to Levy diffusion and from Ohm's
law to nonlinear response.

Anisotropy is introduced into these random walks using the method described above: we replace

the hop length with the quantity bn + £. Thus the structure function in an electric field and for

finite hop length is:

oo

\{k,£tot) = Y, a~n[cos{kbn + k() +isin{kbn + (,){W+ - W-)] (101)
71=0

And after calculations by Poisson's method we obtain the following results: in arbitrarily weak

fields the velocity is nonlinear in the field, eq. (96), and crosses over to linear behavior in strong

fields:

V ~ Ef-», qEZ/kT > 1 (102)

Thus the particle velocity in an electric field has two asymptotic limits in accordance with two

diffusing regimes: Levy hops and ordinary diffusion.

12 Numerical simulations.

Below the results of numerical simulations of diffusion via Levy hops are reported. Let's briefly

explain the algorithm of simulations. Probabilities of left and right walks are determined as

probabilities to have a random value from [0;0.5] and [0.5; 1] correspondingly. The anisotropy of

random walks is simulated by decreasing the length of [0;0.5] for the quantity W_ in anti-parallel

field and increasing [0.5;l] for W+ in a parallel field. The simulations are made at different values
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of the parameters a and b . As the probability decreases rather rapidly we can confine ourselves

to finite terms in the sum (96). For example, at a = 50, b = 10, n = 6 and a = 6, 6 = 3, n = 12.

But we proceed so that at every hop the sum of all probabilities with finite numbers of hops

equals to 1, that is particles do not stay in the site.

The results of random walks , fig. 3, are in accordance with known results [15]. The step-like

dependence of rms as a function of time is easy to understand as follows. The particle diffuses

at nearest sites mainly, making the cluster from visited sites, and hops with small probability

at big distance (at next step) and again diffuses at nearest sites and so on. The electric field

leads to the particle drift. The dependence of the average displacement as a function of the time

is presented in fig.4 at different values of anisotropy. As expected it has a linear dependence

and from this linear dependence it is easy to find the particle velocity by the standard way :

V =< X > /N. The value of the nonlinear dependence index is determined from numerical

simulation data as
, , ln(V/Vo)

^ = 1 + ln(a/aplha0)
 ( 1 0 3 )

The results are presented in fig-5. The main distortion in the simulations is due to the random

character of walks and is founded in the calculations from values of average displacements at

zero fields.

13 Discussion.

We have studied random walks on the comb model and found that the existence of fingers on

comb model - analog of "dead ends" in the current-carrying paths of percolation systems leads

to the anomalous nature of the random walk. We have established that for diffusion problems

, in which the number of particles is not conserved, the generalized diffusion equations must be

the fractal temporal derivative equations : instead of a first temporal derivative , the equation

must contain the fractional-order derivative. Fractional temporal derivatives emerge due to

the random disappearance and reappearance of diffusing particles ( the departure of particles

from axis and their return). Let's stress that in our consideration the fractal temporal diffusion

equations are deduced in an obvious way. The physical sense of fractional temporal derivative

is clear. Usually the fractal diffusion equations are postulated [25], [26] and [18], and questions

about the possibility of its application are arised.

When we examine random walks in a medium with traps, the same problems appear. As

noted earlier, the problem of diffusion in a medium with traps differs from the problem of

diffusion along the axis of a comb structure. The difference lies in the fact that the particles do

not disappear, but delay at each site with a certain probability. The total number of diffusing

particles is conserved. In other words we have the law of mass conservation, expressed by a

continuity equation. However, the anomalous nature of diffusion, due to the capture of particles

by the traps, leads to an unusual expression for the diffusion current with fractional temporal
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derivative. Note that mathematically the generalized diffusion equations in both problems are

different and describe different physical situations. First, in a diffusion along the axis of a comb

structure the number of particles is not conserved. Second, the diffusion currents are different.

The problem of diffusion on the comb model with random distribution of fingers over lengths

is considered in the effective medium approximation. It is widely used in the conductivity

problem of the random inhomogeneous medium and is considered as a general approach. So a

diffusion on the random comb model is studied by EMA. As it was shown the average length

of finger L =< j > - 1 has a finite value in the case of power distribution over lengths and at

" parallel" way of averaging. As a result of this the time dependence of rms remains the same

-the square ones. But in the case of "consequent" way of averaging the average length of finger

is diverged L =< / > = oo and it leads to the change of a diffusion character:

<X2(t) >~ t x - 7 / 2 (104)

Let's note that due to a randomness a diffusing particle moves more rapidly: 1 — 7/2 < 1/2. It

is connected with the existence of short fingers and the diffusing particle rapidly passes these

short fingers and then returns to the axis of the structure to continue the random walks. In the

case of the comb structure with an infinite length of fingers a particle returns to the axis with a

small probability P(t) ~ t"1/2. If the time evolution operator T is substituted by the averaged

meaning ,that one obtains :

<X2{t)>^f12 (105)

but it has a rather paradox physical sense: existence of many short fingers leads to "slow"

diffusion. So a further careful study of diffusion on random comb structure is necessary.

The generalized relation between diffusion and conductivity is obtained for a sub-diffusion

case. It has the form of the well- known Einstein relation for the diffusion coefficient and the

particle mobility, depending on the time.

In the second part of the paper the Levy flight diffusion is considered. The main result

consists of the nonlinear dependence of the particle mobility in weak electric fields. Usually

theoreticians expand the current in powers of the electric field of the electric field:

J = oE + x\E\2E + . . . (106)

Our result essentially differs from those , obtained by such a method. In the microscopical

model of Levy hops we show that current depends on an electric field in a nonlinear way due to

unusual regime of diffusion in space, i.e. there is no linear term, corresponding to Ohm's law,

in the field expansion of the current (106). In other words if there is an usual diffusion in the

system, so the Ohm's law exists , in the case of anomalous diffusion as Levy hops the response

of system has a nonlinear character.

We consider the transition from ordinary diffusion to Levy flight by introducing a finite

displacement length £ at each step. The new parameter qE£/kT, which determines whether the
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particle mobility behaves linearly or nonlinearly, appears in the problem. In other words a new

physical length LE governed by the electric field emerges in such diffusion problems:

LE - g (107)

To appreciate the significance of this quantity we consider an ordinary random walk in an

external electric field. Let's imagine that the medium is partitioned into the blocks of size LE-

Then we study the particle behavior within a single block. With a probability of order unity

the particles leave the block when it moves along the field and does not leave the block when

it moves against the field. Briefly speaking within a block, whose linear size is of order LE,

ordered motion prevails over diffusion. This makes it possible to estimate the particle velocity

to be:

V = — (108)
tE

where ts is the diffusion time for the distance LE- For ordinary diffusion t£ = LE/D and we

have the well-known Einstein relation:

V = q2DE/kT (109)

For a Levy flight diffusion the same estimates give the nonlinear dependence of velocity. And

for the case of two diffusion limits we have two different: linear and nonlinear expressions for

mobility. Recently the deduced nonlinear behavior of the velocity due to the unusual nature

of diffusion was confirmed by the independent numerical simulations of particle drift in the

presence of Levy diffusion [24].

Strictly speaking, the diffusion on clusters has an sub-diffusion character, but the nature is

still not clear. As it was shown above we can distinguish between two limiting sub- and super-

diffusion cases if we know the response of the system of an electric field. An attempt to detect

the mobility nonlinearity by computing modeling was not successful [7], since over a desired

range of fields the electric field in inhomogeneous media induces traps. Such traps are sections

of the current paths , directed against the electric field.

As for experimental results many researches have observed the nonlinear power dependence

of the current in inhomogeneous media with exponents close to anomalous diffusion index and

have different explanations of this phenomenon - see [27], [28]. In our opinion, the nonlinear

behavior may be explained in an universal way as a result of anomalous nature of random

walks in inhomogeneous media. But comparisons of theoretical and experimental results require

further study.
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Figure 1. Comb structure:
the conducting axis (y=0) has fingers going to infinity.

Figure 2. Random comb structure.
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Figure 3. Typical dependence of r.m.s. displacement X 2

from number of hops N.
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Figure 4. The dependence of the average displacement <X>
from number of hops N at different values of anisotropy a.
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Figure 5. The dependence of relation //exp / fit at different

values of anisotropy.
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