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Abstract

We consider the brane universe in the background of the topological AdS-Schwarzschild black

holes. The induced geometry of the brane is that of a flat or an open radiation dominated FRW-

universe. Just like the case of a closed radiation dominated FRW-universe, the temperature and

entropy are simply expressed in terms of the Hubble parameter and its time derivative when the

brane crosses the black hole horizon. We propose the modified Cardy-Verlinde formula which is

valid for any values of the curvature parameter k in the Friedmann equations.
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Verlinde made an interesting proposal [1, 2] that the Cardy formula [3] for a two-dimensional

conformal field theory (CFT) can be generalized to an arbitrary spacetime dimensions and such

generalized formula, called the Cardy-Verlinde formula, is closely related to the Friedmann

equation at the moment when the cosmological bounds on the thermodynamic quantities of the

holographic dual theory are saturated. This result is later shown to hold for the holographic

duals to various bulk backgrounds [4, 5, 6, 7, 8, 9, 10, 11]. The quantum effects to the Cardy-

Verlinde formula were studied in Refs. [12, 13, 14]. In this note, we consider the brane universe

in the bulk background of the AdS-Schwarzschild black holes with the event horizon having zero

and negative curvatures, the so-called topological black holes. (Cf. Some aspects of the brane

cosmology in such bulk background were explored also in Refs. [15, 16].) The brane universes

under consideration are therefore flat and open universes. We propose the modified Cardy-

Verlinde formula which holds for any values of the curvature parameter k in the Friedmann

equations. We show that even for flat and open brane universes the proposed cosmological

bounds on the temperature and entropy of the holographic dual theory are saturated and thereby

simply expressed in terms of the Hubble parameter and its time derivative when the brane crosses

the horizon of the AdS-Schwarzschild black hole.

It is believed that black holes in asymptotically flat spacetime should have spherical horizon

[17, 18]. However, when a spacetime has negative cosmological constant, a black hole can have

non-spherical horizon. Four-dimensional black hole solutions whose horizon is an arbitrary genus

Riemann surface were studied in Refs. [19, 20, 21, 22, 23, 24]. In Ref. [25], such black hole

solutions were generalized to arbitrary spacetime dimensions. The solution has the following

form:

^ s = -h{a)dt2 +——da2 + a2^ij{x)dxldx^,
At I Li I
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where 7^ is the horizon metric for a constant curvature manifold Mn with the volume Vol(Mn) =

J dnXy/j, Gn+2 is the (n + 2)-dimensional Newton's constant, M is the ADM mass of the black

hole and L is the curvature radius of the background AdS spacetime. The horizon geometry

of the black hole is elliptic, flat and hyperbolic for k = 1,0,-1, respectively. The Bekenstein-

Hawking entropy and the Hawking temperature of the black hole are

q^Vol(M) h'{aH) (n + l)a2
H + (n - l)kL2

4 G n + 2 ' 4TT AKLHH ' l j

where a# is the horizon, defined as the largest zero of h(a), and the prime denotes the derivative

w.r.t. o. As for the k = — 1 case, the requirement of positivity of temperature enforces an

inequality on the value of an, namely that a# > LyJ{n — l ) / (n + 1).

We consider an n-brane moving in the background of the above AdS-Schwarzschild black



hole. The metric on the brane is given by the induced metric

h(a) -
daY

h{a) \dtj

In terms of a new time coordinate r, called the cosmic time, satisfying

dtz +aIiijdx1dx]. (3)

the brane metric (3) takes the standard Robertson-Walker form

ds2
n+l = -dr2 + a2(T)-yijdxzdxJ, (5)

with the cosmic scale factor a. The equation of motion for the brane action can be translated

into [2]

dr h(ay {)

where the parameter o is related to the brane tension. From Eqs. (4,6), we obtain the following

Friedmann equation for the radiation dominated brane universe:

2 _ un+1M k

by fine-tuning the brane tension to a — 1/L so that the cosmological constant term in the

Friedmann equation vanishes. Here, H = aja is the Hubble parameter, where the overdot

denotes the derivative w.r.t. T. Taking the r-derivative of Eq. (7), we obtain the second

Friedmann equation
• _ n + lun+lM k
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According to the AdS/CFT correspondence, thermodynamic quantities of the CFT at high

temperature can be identified with the corresponding thermodynamic quantities of the bulk AdS

black hole [26]. Since the standard GKPW prescription [27, 28] does not fix the overall scale of

the boundary metric, we are free to re-scale the boundary metric to be of the following form:

2 \L2

dsCFT — lim —TTC
a->oo a

Since the CFT time is rescaled by the factor L/a w.r.t. the AdS time, the energy E and the tem-

perature T of the CFT are rescaled by the same factor w.r.t. the corresponding thermodynamic

quantities of the AdS black hole:
T 1 r „.. ur i

(10)

= -dt2 + L27ljdxidxJ. (9)

E M^ r r f(n + l ) ^ + ( n l )
a a Aira [ L a

whereas the entropy S of the CFT is given by the Bekenstein-Hawking entropy (2) of the AdS

black hole without re-scaling. Note, in terms of the energy density p = E/V and the pressure

p = p/n of the CFT within the volume V = anVol(Mn), the Friedmann equations (7,8) take

the following standard forms:
rr2_ 167TG k



where G = (n — l)Gn+2/L is the Newton's constant on the brane. From these Friedmann

equations, we obtain the energy conservation equation p = nH(p + p).

The Friedmann equations (11,12) can be respectively put into the following forms, resembling

the formulas for the CFT:

SH = ^-a^EBH(2E-kEBH), (13)

kEjBH = n{E+pV-THSH), (14)

in terms of the Hubble entropy SH and the Bekenstein-Hawking energy EBH-, where

HV V H
E ( l ) TH =- — . (15)4Gr o7rGaz ZTriz

The first Friedmann equation (11) can be also rewritten as the following relation among the

Bekenstein entropy SB — ̂ Ea, the Bekenstein-Hawking entropy SBH = {n — 1 )4^ and the

Hubble entropy SH-

SH = 2SBSBH - kS2
BH. (16)

We consider the moment at which the brane crosses the black hole horizon a = a#, defined

as the largest root of h(a) = 0, i.e.,

" " ' =0. (17)

From Eqs. (7,17), we see that

H2 = — at

The entropy 5 remains constant during the cosmological evolution, but the entropy density,

varies with time. From Eqs. (18,19), we see that the entropy density at a = ajj is given in terms

of H at a = an in the following form:

s = (n-1)— at a = aH, (20)
4(jr

which implies

S = SH at a = aH. (21)

From the temperature expression T = h''L/(4"7ra#) at a = an along with the formula H2 =

a2 — h(a)/a2 (which follows from Eqs. (4,6)), we see that the CFT temperature at a = an can

be expressed in terms of H and H in the following way:

TT

T a t a = aH- (22)



Eq. (14) along with Eqs. (21,22) implies

Ec = kEBH at a = aH, (23)

where Ec is the Casimir energy defined as

-TS). (24)

So, for any values oik, the thermodynamic quantities of the CFT take the forms simply expressed

in terms of the Hubble parameter and its time derivative when the brane crosses the black hole

horizon.

The above thermodynamic quantities of the CFT satisfy the first law of thermodynamics,

TdS = dE+pdV, (25)

which can be expressed in terms of the densities as

da
Tds = dp+ n{p + p— Ts)—, (26)

(Ji

making use of dV — nVda/a. If the entropy and energy are assumed to be purely extensive,

then the combination p+p -Ts is always zero. For the conformal system under consideration,

the combination is not always zero due to the subextensive contribution. To find the expression

for the combination, we express the energy density of the CFT in the following way:

(27)y 167rGn+2o«+1 \L • aH.

and make use of the equation of state p = p/n, which is valid for CFTs. The resulting expression

is

~(p + p-Ts) = k-t, (28)
2 or

where the Casimir quantity 7 is given by

n(n — l)aJlf

In other words, the Casimir energy of the CFT is given by

n_ (30)

So, the Casimir energy is positive [negative] for k = 1 [k = — 1] and zero for k = 0. The entropy

density (19) of the CFT can be expressed in terms of 7 and p as

By making use of Eq. (20), we can show that the entropy density expression (31) at a = an (i.e.,

when the brane crosses the black hole horizon) exactly reproduces the first Friedmann equation



(11). Furthermore, by making use of Eqs. (20,22), we can show that Eq. (28) reproduces the

second Friedmann equation (12) when a = an- This result implies that for any values of k the

Friedmann equations know about the thermodynamic properties of the CFT.

Since the Casimir energy (30) is negative and zero respectively for the k = —1,0 cases, the

Cardy-Verlinde formula proposed in Ref. [1] is not valid for these cases. We can nevertheless

infer the modified Cardy-Verlinde formula which is valid for any k from cosmological formulas

(13,14). We have shown that S = SJJ and EQ = kEsH when a = aji- So, from the cosmological

Cardy formula (13) we can infer the following modified form of the Cardy-Verlinde formula,

valid for any k:

S = ]/~Sc(2E-Ec), (32)

which is just Eq. (13) with a — a# reexpressed in terms of Sc and Ec- Since Ec is zero and

negative respectively for k = 0, — 1, we here choose to define the Casimir entropy 5c first and

then define Ec in terms of Sc in the following way:

_ 2TT
be = —

n

kn

a=aH

(33)

where EBH is defined in Eq. (15). So, the Casimir entropy of the CFT is given by

which is positive for any k, in accordance with an interpretation of Sc as a generalization of

the central charge to arbitrary spacetime dimensions. Note, the definition of Ec in Eq. (33) is

compatible with another definition (24) of Ec- This is due to the fact that Eq. (14) and Eq.

(24) coincide when a = ajj. since S = SH and T — TH when a = an- The modified formula

(32) expresses that the entropy 5 has negative [positive] contribution from the Casimir effect

for the k = 1 [k = — 1} case and no Casimir effect contribution for the k = 0 case. The modified

Cardy-Verlinde formula (32) can be rewritten as the following relation among S, Sc and SB '•

S2 = 2SBSC - kSc. (35)

This relation has the same form as the relation (16) among the cosmological entropy bounds,

except that the roles of SJJ and SBH are respectively taken over by S and Sc- These two

relations coincide when a = a#.

We have seen that for any values of k the thermodynamic quantities of the CFT take the

simple forms that saturate the cosmological bounds, which are originally conjectured [1] for

the k = 1 case, only. We argue that such conjectured cosmological bounds hold even for the

k = —1,0 cases. First of all, the criterion for distinguishing between a weakly and a strongly

self-gravitating universe becomes modified when k ̂  1. If we choose to define the universe to

be weakly [strongly] self-gravitating when the total energy E is less [greater] than EBH (defined



as the energy required to form a black hole with the size of the entire universe), then from the

first Friedmann equation (11) we see that the criterion on H is modified to

E < EBH <& SB < SBH for Ha < y/1 - k

E > EBH <$ SB> SBH for Ha > \/2-k. (36)

We propose that for general values of k the cosmological bound on Sc conjectured in Ref. [1]

continues to hold:

Sc < SBH- (37)

For the strongly self-gravitating case, from Eqs. (36,37) we have Sc < SBH < SB- From Eq.

(35) we see that S is a monotonically increasing function of Sc in the interval Sc < SB for

any values of k. So, S reaches its maximum value when Sc = SB and therefore Sc = SBH, for

which case S = SH as can be seen from Eqs. (16,35). The conjectured cosmological bound (37)

on Sc for the strongly self-gravitating case therefore implies the Hubble entropy bound for any

values of k:

S <SH for Ha > y/2-k. (38)

The criterion (36) on H for the strongly self-gravitating universe along with the first Friedmann

equation (7) implies a71"1 < u)n+\M/2. So, from the explicit expression (10) for T, we infer the

following cosmological bound on the temperature of the CFT:

T > TH for Ha > y/2-k. (39)

These cosmological bounds (38,39) are saturated at the moment when the brane crosses the

black hole horizon, as shown in Eqs. (21,22), respectively.
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