Transient Heat Transfer for Forced Convection Flow of Helium Gas

Q. S. LIU and K. FUKUDA

Dept. of Nuclear Eng., Kobe University of Mercantile Marine, 1-1, 5-chome, Fukae-Minami-machi, Higashinadaku, Kobe 658-0022, Japan
Tel: +81-78-431-6299, Fax: +81-78-431-6299, e-mail: qsliu@cc.kshosen.ac.jp

Keywords: Transient heat transfer, Forced convection, Helium gas

Abstract

The knowledge of forced convection transient heat transfer at various periods of exponential increase of heat input to a heater as a database for understanding the transient heat transfer process in a high temperature gas cooled reactor (HTGR) due to an accident in excess reactivity.

The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of $Q_0 \exp(t/\tau)$. It was clarified that the heat transfer coefficient approaches the steady-state one for the period over 1 s, and it becomes higher for the period of shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady state and transient heat transfer were developed based on the experimental data.

Introduction

The understanding of forced convection unsteady state heat transfer process or transient heat transfer phenomenon is necessary when various problems, which relate to technological safety of nuclear reactor are analyzed (Wang, 1996, Izumi S., et al., 1991). The unsteady state heat transfer has not been solved though many...
solutions and experiments were reported concerning the steady state heat transfer. In this research, the case where the reactor power rises in the exponential function by the reactivity excess is assumed in the gas-cooled nuclear reactor. The forced convection transient heat transfer of helium gas flowing perpendicular to the horizontal cylinder heater was experimentally studied at various rising speed of heat input added to the heater exponentially.

Experimental Apparatus

Schematic diagram of experiment apparatus

Figure 1 shows the schematic diagram of the experiment apparatus. The experiment apparatus is composed of gas compressor (2), flow meter (5), test section (6), surge tank (3), (8), cooler (7), the heat input control system, and the data measurement and processing system. The vacuum pump was used to degas the loop and test section. The gas circulates by compressor, and the fluctuations of gas flowing and pressure due to compressor are removed with the surge tank. Moreover, the gas temperature inside the loop was cooled with the cooler, and the gas temperature was kept constant. Flowing rate in the test section was measured with the turbine meter, and the pressure was measured with the pressure transducer. The temperature of the

![Schematic diagram of experimental apparatus](image)

Fig.1 Schematic diagram of experimental apparatus.

![Test section](image)

Fig.2 Test section
turbine meter exit and the temperature near test section heater were measured by chromel-alumel thermocouples with a precision of \(\pm \) 1 K.

Test section and test heater

Figure 2 shows a vertical cross-sectional view of test section. The test section was mounted horizontally along the center part of the circular test channel, which is made of the stainless steel (10.7 mm in the inside diameter). Platinum cylinder with the diameter of 1.0 mm was used as the test heater. The test heater was 109.4 mm in length; it was connected to the copper electrode by which the support combined. The test heater was annealed and its electrical resistance versus temperature relation was calibrated in water, and washed with a trichloroethylene liquid before using it in the experiment.

Heat input control system

Figure 3 is an outline drawing of the heat input control system. The amplifier gain of each circuit in the heat input system and the shape of waves of the input heat generation rate and the current interception for upper limited temperatures can be set with the personal computer through the analog to digital (A/D) converter. Changeable low-voltage power supply is used as the power supply for heating. Heat generation rates of the test heater are calculated by the analogue computer, they are compared with a corresponding reference signal to the demand heat generation rate. The voltages of these signals are amplified, and the single of heat generation rate is fed back to the amplifier to minimize the difference with the reference signal. Moreover, the temperature of the test heater is calculated by the analogue computer, when the temperature and heat generation rate of the test heater reaches the values set before, the current of the power supply is instantaneously intercepted.

Measurement and data processing system

Figure 4 shows the double bridge circuit used for the measurement. The test heater is a branch of the double bridge circuit. Electric equilibrium was taken at the temperature of the fluid at each experiment before the experiment beginning. When the experiment starts, the electric current flows through the test heater, and the temperature of the test section rises, then the double bridge circuit becomes non-equilibrium. The output voltages of the bridge, \(V_T \), together with the voltage of drops across the potential taps of the heater, \(V_R \), across the standard resistance, \(V_i \), and liquid temperature single from the thermocouple at test section, \(V_L \), are amplified and passed to the analog-to-digital converter of a digital computer. The data was processed by the computer. The A/D converter is 12 bit A/D. (synchronization 20° s/...
4CH of sampling simultaneously, 5° s of conversion time for one channel).

The resistance of the test heater under the measurement is given by the next equation.

\[R_s = \frac{R_1 R_3}{R_2} \frac{V_r}{I} \frac{R_1}{R_2} \quad (1) \]

The average temperature of the test heater is calculated from the previously calibrated resistance-temperature relation. The heat generation rate of the test heater is given by the next expression.

\[\Phi = \frac{V_r}{R_s} \frac{V_r T}{R_s} \quad (2) \]

The heat flux is calculated by the following equation.

\[q = \frac{D}{4} \frac{\Phi}{c_h} \frac{d T_a}{d t} \quad (3) \]

Here, \(h \), \(c_h \), \(D \), and \(T_a \) are the density, specific heat, diameter, and the average temperature of the test heater, respectively. The test heater surface temperature can be calculated from unsteady heat conduction equation of the next expression by assuming the surface temperature of the test heater to be the same.

For the cylindrical test heater,

\[T \frac{\Phi}{c} \left(\frac{2}{r} \frac{T}{a} \frac{1}{r} \frac{T}{t} \right) \quad (4) \]

Boundary conditions are as follows,

\[T \left|_{r=0}^{T} \right. = 0 \quad , \quad T \left|_{r=r}^{T} = q \right. \]

\[T_a \left(\frac{2}{r} \frac{T}{2} \frac{r}{d r} \right) = \frac{2}{R^2} k_0 r d r \frac{\Phi}{c} \quad (5) \]
Here

\(\dot{Q} \) (W): Internal heat generation rate (measurement value)

\(T_a \) (K): Average temperature of test heater (measurement value)

\(q \) (W/m\(^2\)): Heat flux on surface of test heater (measurement value)

\(a \) (m\(^2\)/s): Thermal diffusivity

\(\lambda \) (W/m EK): Thermal conductivity

When the experimental data were processed, the physical properties of the fluid were calculated based on the following film temperature, which was used as a temperature of the representative.

\[
T_f = \frac{T_s + T_i}{2}
\]

Here, \(T_s \) and \(T_i \) are the test heater surface temperature, and the flowing gas temperatures respectively.

Experiment Method

The experiments were carried out according to the following procedure. As a preliminary experiment, the relation between electric resistance of the test heater and the temperature was first measured in the thermostat using a precise double bridge, and the result was expressed by the following relation.

\[
R = R_0 (1 + \alpha T + \beta T^2)
\]

Here, \(T \) is the averaged temperature, \(R \) is the measured resistance at temperature of \(T_a \), \(\alpha \), \(\beta \) and \(\gamma \) are temperature coefficients which are \(3.98 \times 10^{-3} \), \(5.88 \times 10^{-6} \) for high purity platinum respectively. In this experiment, the next expression was obtained from the measurement result.

\[
R = 14.52(1 + 3.771915 \times 10^{-3} T - 0.5880 \times 10^{-6} T^2)
\]

Next, the test heater was installed in the test section. The helium gas was filled to the test loop after the test loop was degassed by a vacuum pump. The working fluid was circulated by driving compressor. Flowing rate is sequentially lowered from maximum stream flow in stages.

The regulation of the flowing rate was carried out by using the by-pass vales of the test section and the by-pass valve of the compressor. After the pressure was confirmed to be stable at each flow velocity in the loop, the electric current was supplied to the test heater, and the heat generation rate was raised exponentially, then the test heater surface temperature and the heat flux accompanying the passage of the time were measured.
Experiment Result and Discussion

Experiment conditions

The experimental conditions are shown in Table 1. The heat generation rate was raised with exponential function \(Q = Q_i \exp(t / \tau) \). Here, \(Q \): heat generation rate, \(w/m^3 \); \(Q_i \): initial heat generation rate, \(w/m^3 \); \(t \): time, s; and \(\tau \): period of heat generation rate, s.

Time-dependence of heat generation rate, surface superheat, and heat flux

Figure 5 and Fig.6 show the time-dependence of heat generation rate, surface superheat, and heat flux at the heat generation rate rising periods of 420 ms and 1.6 s respectively under flow velocity of 38.8 m/s (Reynolds number 1.66 \(\times \) 10\(^5\)). It is understood that surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function.

Table 1 Experimental conditions

<table>
<thead>
<tr>
<th>Fluid</th>
<th>He</th>
<th>Liium gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>500</td>
<td>kPa</td>
</tr>
<tr>
<td>Fluid temperature</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Test heater diameter</td>
<td>1.0mm</td>
<td></td>
</tr>
<tr>
<td>Heat generation period ()</td>
<td>50 ms (\times) 20 s</td>
<td></td>
</tr>
<tr>
<td>Velocity</td>
<td>3.0</td>
<td>m/s (\times) 38.8 m/s</td>
</tr>
<tr>
<td>Reynolds number</td>
<td>1.3 (\times) 10(^4) (\times) 1.7 (\times) 10(^5)</td>
<td></td>
</tr>
</tbody>
</table>

Fig.5 The relation of \(\dot{Q}, q, \Delta T \) with \(t/\tau \) at the period of 420 ms.
Heat transfer coefficient in the transient heat transfer process

Heat transfer coefficient of \(h \) is defined as shown in the next equation.

\[
h = \frac{q}{\Delta T}
\]
(9)

Figure 7 shows heat transfer coefficients versus time under a pressure of 500 kPa with flow velocity of 38.8 m/s at the periods of 1.6 s and 420 ms. The heat transfer coefficient approach constant values from a high initial value when the time passes over a certain time. It was understood that the heat transfer coefficients approach asymptotic values similarly at all periods. These asymptotic values will be used as the transient heat transfer coefficients.
Relation between heat transfer coefficient and the period of heat generation rate

Fig. 8 shows the relation between the heat transfer coefficient and the period of heat generation rate at a surface superheat of 150 °C. The heat transfer coefficient becomes constant when the period is longer than 1 s, and the heat transfer process is almost in the steady state in this area. On the other hand, the heat transfer coefficient increases when the period becomes shorter than 1 s. This shows that the heat transfer process is in the unsteady state, and the heat transfer in this area has received greatly the influence of the temperature gradient within temperature boundary. It is understood that the coefficient of heat transfer increases with flow velocity as shown in the figure.

Fig. 8 Heat transfer coefficients at various periods.

Fig. 9 Steady-state heat transfer at various Reynolds numbers.
Steady state heat transfer

Figure 9 shows the relation between the Nusselt number and the Reynolds number for the periods ranging from 1.0 s to 20.0 s. They are shown on $Nu_t / Pr_f^{0.4}$ versus Re_f graph. The number of Pr_f is about 0.68 in the range of this experiment. The Nusselt number is not influenced by the period, and increases with flow velocity. The following empirical equation was obtained by the method of least squares. It was shown by the solid line in figure to compare with the experimental data.

$$ Nu_{st} = 0.026Re_f^{0.5}Pr_f^{0.4} $$ \hspace{1cm} (10)

Here, Nu, h, l, Re_f, U, Pr_f:
- h (W/m2K): heat transfer coefficient
- l (m): length of heater
- Pr_f (W/mK): thermal conductivity of fluid
- U (m/s): flow velocity
- Pr_f (m^2/s): kinematic coefficient of viscosity of fluid

Transition (unsteady) heat transfer

Figure 10 shows the relation between the Nusselt number and the Reynolds number in the transient heat transfer. The short dashes line shows the data at the periods more than 1 s for the comparison. The Nusselt number is affected both by the period and flow velocity. It is asymptotic in the steady state heat transfer for longer period than 1 s. The effect of flow velocity becomes weak by the decreasing of gradient of the data for smaller periods.

The following empirical formula was obtained based on the experimental data.

$$ Nu_t = aRe_f^bPr_f^{0.4} $$ \hspace{1cm} (11)

Here, $a = 0.026 + 1.1 \times 10^{-3} - 2.6$, $b = 0.50 - 0.035 - 0.75$

Parameter a and b were obtained as a function of as shown in Fig.10.

Relation between Nu_t/Nu_{st} and period

Figure 11 shows the ratio of transient Nu_t and steady state Nu_{st} at various periods with the flow velocity as a parameter. The transient heat transfer approaches the steady state one for higher flow velocity at the same period. The heat transfer shifts to the steady state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. The following empirical equation was obtained based on the experimental data. It was shown in the solid line in figure.

$$ Nu_t = Nu_{st}(1+0.04 - 1.25) $$ \hspace{1cm} (12)
Conclusions

The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of $Q_0 \exp(t/\tau)$. It was clarified that the heat transfer coefficient...
approaches the steady-state one for the period over 1 s, and it becomes higher for the period of shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady state and transient heat transfer were developed based on the experimental data.

References