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Abstract. Linear stability of electron skin-size drift modes in collisionless tokamak discharges
has been investigated in terms of electromagnetic, kinetic integral equations in which neither ions
nor electrons are assumed to be adiabatic. A slab-like ion temperature gradient mode persists in
such a short wavelength regime. However, toroidicity has a strong stabilizing influence on this
mode. In the electron branch, the toroidicity induced skin-size drift mode previously predicted
in terms of local kinetic analysis has been recovered. The mode is driven by positive magnetic
shear and strongly stabilized for negative shear. The corresponding mixing length anomalous
thermal diffusivity exhibits favourable isotope dependence.

1. Introduction

In recent reflectometer studies of density fluctuations in JET (Joint European Torus),
it has been observed that after formation of an internal transport barrier (ITB), low
frequency, long wavelength modes are suppressed while high frequency, short wavelength
modes are not [1]. The significant reduction in the ion thermal diffusivity concurrently
observed is attributed to the suppression of long wavelength modes by the velocity shear.
The electron thermal diffusivity still remains large and it has been speculated that the
electron thermal loss is caused by short wavelength modes.

In this paper, results of tokamak stability analysis of short wavelength [(kip;)° >

~Y

1, (kip,)? < 1] drift type modes based on a fully kinetic, electromagnetic integral equa-
tion code will be reported. The familiar kinetic ion density perturbation
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does not approach adiabatic form for w falling in the regime wp; < |w| < w.; even if
A = (kip;)* > 1. The electron response
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is not adiabatic either because the condition w, wp. < kjvr, tends to be violated as both
the mode frequency w and wp, increase. A new type of instability may emerge in which
both ions and electrons participate in nonadiabatic manner and the electron/ion mass
ratio is expected to manifest itself in the growth rate. In order to handle electron and
ion kinetic resonances and the parallel gradient operator kj = —i—==5 in a satisfactory
manner, a high resolution, fully kinetic, electromagnetic integral equation code has been
developed [2] following the method developed by Rewoldt and co-workers [3]. Short wave-
length drift modes propagating in both the electron and ion diamagnetic drifts have been
identified. The ion mode has recently been reported [4] and in this paper, the electron
mode will mainly be described.
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2. Formulation

We consider a high temperature, low 3 tokamak discharge with eccentric circular magnetic
surfaces. The frequency regime of interest is wy < w S Wee, Where wy(e) is the trapped
ion (electron) bounce frequency. The magnetosonic perturbatlon (A ) is ignored in light
of the low 3 assumption and we employ the two-potential (¢ and Aj) approximation
to describe electromagnetic modes. The basic field equations are the charge neutrality
condition and parallel Ampere’s law,

ni(¢, A)) = ne(¢, 4)), V4 = _4_7TJH(¢> Ap), (3)

where the density perturbations are given in terms of the perturbed velocity distribution

functions f; and f. as n; = [ fidv, n. = [ fedv, and the parallel current by J =
e [v(fi — fo)dv. The distribution functions f; and f. are given by

fi = —%éfzm + 9i(v,0)Jo(Ni), fe= ;—y_qsfl\le + ge(v,0) Jo(Ae), (4)

where g; . are the nonadiabatic parts that satisfy
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Here, 0 is the extended poloidal angle, ¢ is the scalar potential, A is the parallel vector
potential, Jy is the Bessel function with argument A; . = kv, /we; e, Wpi e are the magnetic
drift frequencies defined by
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Wi are the diamagnetic drift frequencies,
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L;' = —d(Inng)/dr is the inverse density gradient scale length, and 7,, = dInT; . /dInng
are the temperature gradient parameters.

For circulating particles, g; (j = i, e) can be integrated as
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where

B,(0,0') = /9 L

[un]

Substitution of perturbed distribution functions into charge neutrality and parallel Am-
pere’s law yields

Z( Sy / (05 (6) + g, (6)] Jg(Aj)dv) 0, (12)

V2 A (0 Z ‘, / o [ (6) — g (8)] JolA,)dv. (13)

where [dv = 27 fo vydv fo dv”. This system of inhomogeneous integral equations,
subject to the charge neutrality condition k& < kp.; (Debye wavenumber), has been
solved by employing the method of Fredholm in which the integral equations are viewed
as a system of linear algebraic equations.

3. Results of Stability Analysis

Figure 1 (a) shows the mode frequency (wr + i) /w.e as a function of the ion finite
Larmor radius parameter b, = (kgp,)? = /1./M/Q;) when L,/R = 0.2, s = 1,
g=15n,=mn=25and 8, =, =0. 1% (low (3 case). The instability sets in at by ~ 2
or (kgc/wpe)? ~ 2.2 for the assumed parameters. This is consistent with the local kinetic
analysis reported earlier [5]. The instability requires a finite (electron) temperature
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gradient as shown in Fig. 1 (b) where 1, = 7, is assumed. (The instability does not require
a finite ion temperature gradient 7,. 1, alone is actually weakly stabilizing.) Dependence
of w on the magnetic shear parameter s is depicted in Fig. 1 (c) for the mode b; = 6 when
n, = n; = 2.5. (Other parameters are unchanged from those in Fig. 1 (b).) It is evident
that the instability is driven by positive magnetic shear, but it is strongly stabilized by
negative shear. Dependence of the mode frequency and growth rate on the safety factor g is
shown In Fig. 2 (a). The instability exists only in toroidal geometry. This is demonstrated
in Fig. 2 (b) by varying the magnitude of the magnetic drift frequency wp; = 2¢,w,; where
e, = L,/R. For small ¢, (i.e., in slab geometry), the instability disappears. Too strong
toroidicity (large €,,) also deactivates the instability because the ion dynamics tends to be
adiabatic if wp; ~ w,; > w and bs > 1. Stabilization at large €, seen in Fig. 2 (b) is thus
an expected result. The mode is distinct from the conventional 7, mode which is operative
at even shorter wavelength (k| ,oe)2 < 1 where ions are adiabatic. Dependence of the mode
frequency and growth rate on the plasma f factor is shown in Fig. 2 (¢). The predominantly
electrostatic mode shown in Figs. 1 and 2 is subject to finite 3 stabilization. For 5 factor
relevant to high performance tokamaks S ~ 1 %, the mode becomes highly retarded
and the mode frequency and growth rate become comparable to the ion acoustic transit
frequency |w| =~ ¢s/qR. In this case, it is expected that isotope effect manifests itself and
growth rate should decreases with the mass of hydrogen isotopes. This is demonstrated
in Fig. 3. In Fig. 3 (a), dispersion relations for hydrogen (H) and tritium (T) discharges
are shown. w is normalized by the electron transit frequency wr. = \/T./m./qR and the
wavenumber by the inverse skin depth, ky — ckg/wpe. It is clearly seen that the maximum
growth rate rapidly decreases with the ion mass. Electron thermal diffusivity y, estimated
from the mixing length theory, x, = 7/ (w? +~+?) /k? , is shown in Fig. 3 (b) in units of
wre(c/wpe)?. Favourable isotope effect in the thermal diffusivity is apparent.

In the local analysis [5], the role of magnetic shear could not be clarified. In the case of
skin size ion mode [4], the shear is destabilizing also with the growth rate approximately
proportional to \/H . This is expected from the slab nature of the skin-size 7, instability
in which magnetic shear enters through the parallel operator k. In contrast, the electron
mode is driven only by a positive shear and strongly suppressed by negative shear. This
may be explained qualitatively by the shear dependence of the electron magnetic drift
frequency. The norm of wp, = 26, wse[cos O + (s — asin ) sin ] can become negative for
s < 0 and extended eigenfunctions [7].

4. Conclusions

In summary, stability of collisionless tokamaks against skin-size (k; =~ wy./c) drift modes
has been investigated in terms of fully kinetic, electromagnetic integral equations. The
electron drift mode previously predicted in terms of local kinetic dispersion relation has
been confirmed. Neither electrons nor ions are adiabatic and the growth rate and resultant
mixing length anomalous electron thermal diffusivity exhibit favourable isotope effect.
Some features of the instability, e.g., stabilization in negative shear and favourable isotope
effect) are consistent with the general confinement properties of tokamaks [6].

*This research is sponsored by the Natural Sciences and Engineering Research Council
of Canada and by Canada Research Chair Program.
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