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Abstract

The boundary element method has become a popular tool for the solution of Maxwell’s
equations in electromagnetism. It discretizes only the surface of the radiating object and
gives rise to linear systems that are smaller in size compared to those arising from finite ele-
ment or finite difference discretizations. However, these systems are prohibitevely demanding
in terms of memory for direct methods and challenging to solve by iterative methods. In this
paper we address the iterative solution via preconditioned Krylov methods of electromag-
netic scattering problems expressed in an integral formulation, with main focus on the design
of the preconditioner. We consider an approximate inverse method based on the Frobenius-
norm minimization with a pattern prescribed in advance. The preconditioner is constructed
from a sparse approximation of the dense coefficient matrix, and the patterns both for the
preconditioner and for the coefficient matrix are computed a priori using geometric infor-
mation from the mesh. We describe the implementation of the approximate inverse in an
out-of-core parallel code that uses multipole techniques for the matrix-vector products, and
show results on the numerical scalability of our method on systems of size up to one million
unknowns. We propose an embedded iterative scheme based on the GMRES method and
combined with multipole techniques, aimed at improving the robustness of the approximate
inverse for large problems. We prove by numerical experiments that the proposed scheme
enables the solution of very large and difficult problems efficiently at reduced computational
and memory cost. Finally we perform a preliminary study on a spectral two-level precondi-
tioner to enhance the robustness of our method. This numerical technique exploits spectral
information of the preconditioned systems to build a low rank-update of the preconditioner.
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1 Introduction

The analysis of wave propagation phenomena is gaining an increasing interest in recent years in
the simulation of many challenging industrial processes, ranging from the prediction of the Radar
Cross Section (RCS) of arbitrarily shaped 3D objects like aircrafts, the study of electromagnetic
compatibility of electrical devices with their environment, the design of antennas and absorbing
materials, and many others. All these simulations are very demanding in terms of computer
resources, and require fast and efficient numerical methods to compute an approximate solution
of Maxwell’s equations. Standard discretization schemes like the finite-element or the finite-
difference method can be used to discretize Maxwell’s equations and give rise to very large and
sparse linear systems to solve. However, the discretization of large 3D domains requires the
use of effective absorbing boundary conditions to truncate the computational domain previous
to the discretization phase, and may suffer from grid dispersion errors which occur when a
wave has a different phase velocity on the grid compared to the exact solution. Alternatively,
using the equivalence principle Maxwell’s equations can be recast in the form of four integral
equations that relate the electric and magnetic fields to the equivalent electric and magnetic
currents on the surface of the object. For homogeneous or layered homogeneous dielectric
bodies, integral equations are discretized on the surface of the object and at the discontinuous
interfaces between two different materials. The resulting linear systems are much smaller than
those generated by differential equation methods. However, a global coupling of the induced
currents in the problem results in dense matrices, and the solution cost associated with these
dense matrices has precluded until a recent past the popularity of integral solution methods in
electromagnetism. Nowadays, owing to the impressive development in computer technology and
to the introduction of fast methods which require less computational cost and memory resources,
a rigorous numerical solution of many of these applications has become possible.

In this paper, we consider the solution of scattering problems expressed in an integral for-
mulation. Amongst integral formulations, we concentrate on the electric-field integral equation
(EFIE) that is the most general for electromagnetic scattering problems as it can handle fairly
general geometries, and thus is widely used in industrial simulations. It expresses the electric
field E outside the object in terms of the induced current J on the surface of the object. In the
case of harmonic time dependency it reads

E(x) = −

∫

Γ

∇G(x, x′)ρ(x′)d3x′ −
ik

c

∫

Γ

G(x, x′)J(x′)d3x′ + EE(x) (1)

where EE is the electric field due to external sources, and G is the Green’s function for scattering
problems:

G(x, x′) =
e−ik|x−x′|

|x− x′|
. (2)

The EFIE provides a first-kind integral equation which is well known to be ill-conditioned. It
can be converted into matrix equations by the Method of Moments (MoM) [20]. The surface of
the object is modelled by a triangular faceted mesh, and the unknown current J on the surface
is expanded into a set of basis functions Bi, i = 1, 2, ..., N which have local support [26]. The
current expansion is introduced in (1), and the discretized equation is applied to a set of test
functions to obtain a linear system

Ax = b (3)
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whose unknowns are the coefficients of the expansion, representative of the vectorial flux
across each edge in the triangular mesh. The entries of A are expressed in terms of surface
integrals and when discretized using m-point Gauss quadrature formulae they assume the form

Akl =
m

∑

i=1

m
∑

j=1

ωiωjG(xki
, ylj )Bk(xki

) · Bl(ylj ). (4)

The coefficient matrix A is dense, complex, symmetric, non-hermitian for EFIE.

Direct solution methods are often the method of choice for solving systems (3) in an in-
dustrial environment because they are reliable and predictable both in terms of accuracy and
cost. The factorization can be performed once and then is reused to compute a solution for
all excitations. In industrial simulations objects are illuminated at several, slightly different
incidence directions, and hundred of thousands of systems with the same coefficient matrix and
a different right-hand side have often to be solved for the same application. For the solution
of large-scale problems, direct methods are unfeasible even on large parallel platforms because
they require storage of n2 single or double precision complex entries of the coefficient matrix and
O(n3) floating-point operations to compute the factorization. Some direct solvers with reduced
computational complexity have been introduced for the case when the solution is sought for
blocks of right-hand sides (see e.g. [1, 11]) but the computational cost remains a bottleneck for
large-scale applications.

The use of preconditioned Krylov solvers can be an alternative to direct solution methods,
provided we have fast matrix-vector products and robust preconditioners. Active research ef-
forts have been recently devoted to fast methods to perform fast matrix-vector products with
O(n log(n)) computational complexity, including strategies for parallel distributed memory im-
plementations. These methods, generally referred to as hierarchical methods, were introduced
originally in the context of the study of particle simulations and can be effectively used on
boundary element applications. However, it is now established that iterative solvers have to be
used with some form of preconditioning to be effective on challenging problems, like those arising
in industry. In this paper, we focus on the design of the preconditioner, and consider an approx-
imate inverse preconditioner based on Frobenius-norm minimization with a pattern prescribed
in advance. In Section 2 we describe the implementation of the preconditioner within an out-of-
core parallel code that uses the Fast Multipole Method for the matrix-vector product, and we
report on results on the numerical scalability of the preconditioner on a large industrial model
problem. In Section 3 we propose an embedded iterative scheme based on the GMRES method
aimed at improving the robustness of the preconditioner on large applications, and illustrate
the efficiency and the cost of the proposed scheme on systems up to one million unknowns. In
Section 4 we perform a preliminary study on a spectral two-level preconditioner to enhance the
robustness of our preconditioner. This numerical technique exploits spectral information of the
preconditioned systems to build a low rank-update of the preconditioner. Finally, in Section 5
we drop some conclusions from this work.

2 Preconditioning Boundary Integral Equations

The design of robust preconditioners for boundary integral equations can be challenging.
Simple preconditioners like the diagonal of A, diagonal blocks, or a band can be effective only
when the coefficient matrix has some degree of diagonal dominance depending on the integral
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formulation [31]. Block diagonal preconditioners are generally more robust than their point-
wise counterparts, but may require matrix permutations or renumbering of the grid points to
cluster the large entries close to the diagonal. Incomplete factorizations have been successfully
used on nonsymmetric dense systems in [30] and hybrid integral formulations in [24], but on
the EFIE the triangular factors computed by the factorization are often very ill-conditioned
due to the indefiniteness of A [6]. Approximate inverse methods are generally less prone to
instabilities on indefinite systems, and several preconditioners of this type have been proposed
in electromagnetism (see for instance [2, 33, 29, 10, 23]). Owing to the rapid decay of the discrete
Green’s function, the location of the large entries in the inverse matrix exhibit some structure.
In addition, only a very small number of its entries have large magnitude compared to the others
that are much smaller. It means that a very sparse matrix is likely to retain the most relevant
contributions to the exact inverse. This desirable property can be effectively exploited in the
design of robust approximate inverses in electromagnetism.

2.1 Frobenius-norm minimization preconditioner

In this section we describe an approximate inverse preconditioner based on Frobenius-norm
minimization. The original idea, due to Benson and Frederickson, is to compute the sparse
approximate inverse as the matrix M which minimizes ‖I −MA‖F (or ‖I − AM‖F for right
preconditioning) subject to certain sparsity constraints [3, 16]. The Frobenius norm is usually
chosen since it allows the decoupling of the constrained minimization problem into n independent
linear least-squares problems, one for each column of M (when preconditioning from the right)
or row of M (when preconditioning from the left). The independence of these least-squares
problems follows immediately from the identity:

‖I −MA‖2

F = ‖I −AMT ‖2

F =
n

∑

j=1

‖ej −Amj•‖
2

2 (5)

where ej is the jth canonical unit vector and mj• is the column vector representing the jth row
of M . In the case of right preconditioning, the analogous relation

‖I −AM‖2

F =
n

∑

j=1

‖ej −Am•j‖
2

2 (6)

holds, where m•j is the column vector representing the jth column of M . Clearly, there is
considerable scope for parallelism in this approach. The main issue is the selection of the
nonzero pattern of M , that is the set of indices

S = { (i, j) ⊆ [1, n]2 | mij = 0 }. (7)

The idea is to keep M reasonably sparse while trying to capture the “large” entries of the inverse,
which are expected to contribute the most to the quality of the preconditioner. Two different
approaches can be followed for this purpose, that is an adaptive technique that dynamically
tries to identify the best structure for M , and a static technique, where the pattern of M is
prescribed a priori based on some heuristics. Adaptive strategies can solve fairly general or hard
problems but tend to be very expensive. The use of effective static pattern selection strategies can
greatly reduce the amount of work in terms of CPU-time, and improve substantially the overall
setup process, introducing significant scope for parallelism. On boundary integral equations the
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discrete Green’s function (2) decays rapidly far from the diagonal, and the inverse of A may
have a very similar structure to that of A. The discrete Green’s function can be considered as
a row or as a column of the exact inverse depicted on the physical computational grid. In this
case a good pattern for the preconditioner can be computed in advance using graph information
from Ã, a sparse approximation of the coefficient matrix constructed by dropping all the entries
lower than a prescribed global threshold [21, 2, 5]. When fast methods are used for the matrix-
vector products, all the entries of A are not available in memory and the pattern can be formed
exploiting the near-field part of the matrix that is explicitely computed and available in the
FMM [23].

Since we work in an integral equation context, relevant information for the construction of
the pattern of M can be extracted from the mesh. When the object geometries are smooth, only
the neighbouring edges in the mesh can have a strong interaction with each other, while far-
away connections are generally much weaker. Thus an effective pattern for the jth column of the
approximate inverse can be computed by selecting in the mesh edge j and its qth level nearest-
neighbours. Three levels can generally provide a good pattern for constructing an effective sparse
approximate inverse. Using more levels increases the computational cost but does not improve
substantially the quality of the preconditioner [5]. When the object geometries are not smooth
or have disconnected parts, far-away edges in the mesh can have a strong interaction with each
other and be strongly coupled in the inverse matrix. In this case a more robust pattern for the
preconditioner can be computed using physical information, that is selecting for each edge all
those edges within a sufficiently large geometric neighbourhood. In [5] we compared pattern
selection strategies based both on algebraic and mesh information on a large set of problems,
and found that those exploiting geometric information are the most effective to capture the
large entries of the inverse. We refer to the Frobenius-norm minimization method described in
this section and computed using a static pattern strategy based on geometric information as the
FROB preconditioner.

The construction of FROB costs O(n2) arithmetic operations. This cost can be significantly
reduced if the preconditioner is computed using as input a sparse approximation Ã of the dense
coefficient matrix A. On general problems, this approach can cause a severe deterioration of the
quality of the preconditioner. In an integral equation context it is likely to be more effective
because the boundary element method generally introduces a very localized strong coupling
among the edges in the underlying mesh. It means that a very sparse matrix can still retain the
most relevant contributions from the singular integrals that give rise to dense matrices. If the
sparsity pattern of M is known in advance, the nonzero structure for the jth column of M is
automatically determined, and defined as

J = {i ∈ [1, n] s.t. (i, j) ∈ S}.

The least-squares solution involves only the columns of Ã indexed by J ; we indicate this subset
by Ã(:, J). When Ã is sparse, many rows in Ã(:, J) are usually null, not affecting the solution
of the least-squares problems (5). Thus if I is the set of indices corresponding to the nonzero
rows in Ã(:, J), and if we define by Â = Ã(I, J), by m̂j = mj(J), and by êj = ej(J), the actual
“reduced” least-squares problems to solve are

min‖êj − Âm̂j‖2, j = 1, ..., n. (8)

Usually problems (8) have much smaller size than problems (5) and can be effectively solved by
dense QR factorization. In [2] the same nonzero sparsity pattern is selected both for A and M ;
in that case, especially when the pattern is very sparse, the computed preconditioner may be
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poor on some geometries. Selecting more entries in M than in Ã can enable to compute a more
robust preconditioner, and the additional cost in terms of CPU time is negligible because of the
complexity of the QR factorization used to solve the least-squares problems [5]. Increasing the
number of rows, that is the number of entries of Ã, is much cheaper in terms of overall CPU
time than increasing the density of the preconditioner, that is the number of columns in the
least-squares problems.

2.2 Implementation of the preconditioner in the FMM context

The Fast Multipole Method (FMM), introduced by Greengard and Rokhlin in [19], provides
an algorithm for computing approximate matrix-vector products for electromagnetic scattering
problems. The method is fast in the sense that the computation of one matrix-vector product
costs O(n log n) arithmetic operations instead of the usual O(n2) operations, and is approximate
in the sense that the relative error with respect to the exact computation is around 10−3 [12, 32].
The storage is reduced from O(n2) to O(n log n). Owing to these desirable properties its use in
combination with iterative solvers is mandatory for the solution of large problems.

The basic idea of the algorithm is to compute interactions amongst degrees of freedom in the
mesh at different levels of accuracy depending on their physical distance. Single and multilevel
variants of the FMM exist and, for the multilevel algorithm, there are adaptive variants to
handle efficiently inhomogeneous discretizations. In the hierarchical multilevel algorithm, the
3D obstacle is entirely enclosed in a large rectangular domain, and the domain is divided into
eight boxes (four in 2D). Each box is recursively divided until the size of the smallest box is
generally half of a wavelength. A tree-structured data is used at all levels. In particular, only
non-empty cubes are indexed and recorded in the data structure. The resulting tree is called
the oct-tree and its leaves are generally referred to as the leaf-boxes. The oct-tree provides a
hierarchical representation of the computational domain partitioned by boxes: each box has one
parent in the oct-tree, except for the largest cube which encloses the whole domain, and up
to eight children. Obviously, the leaf-boxes have no children. The near-field interactions, that
is those amongst degrees of freedom within neighbouring boxes, are computed from (4) using
the regular expression of the discrete Green’s function. The neighbourhood of a box is defined
by the box itself and its 26 adjacent neighbours (eight in 2D). The far-field contribution from
far away cubes is computed approximately. More precisely, for each far away box multipole
coefficients are computed from (4) using truncated series expansion of the Green’s function

G(x, y) =
P

∑

p=1

ψp(x)φp(y), (9)

which separates the Green’s function into two sets of terms, ψi and φj , that depend on the
observation point x and the source point y, respectively. In (9) the integer P is generally very
small, and the origin of the expansion is near the source point y while the observation point x
is far away. Multipole coefficients are computed for all cubes starting from the lowest level of
the oct-tree, that is from the leaf-boxes, and then recursively for each parent cubes by summing
together multipole coefficients of their children. For each observation cube, an interaction list
is defined which consists of those cubes that are not neighbours of the cube itself but whose
parent is a neighbour of the cube’s parent. Multipole coefficients of far-away boxes are sommed
together to compute local coefficients for the observation cube, and the total effect of the far
field from cubes that are in the interaction list are computed from the local coefficients. All the
other interactions are computed hierarchically on a coarser level traversing the oct-tree. Both
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the computational cost and the memory requirement of the algorithm are of order O(n log n).
Further information on the algorithmic steps and recent theoretical investigations of the FMM
can be found in [12, 32], and also in [18, 34] for discussions on parallel implementation issues.

The box-wise decomposition of the domain naturally leads to an a priori pattern selection
strategy for M and Ã in the FMM based on geometric information, that is on the spatial distri-
bution of its degrees of freedom. We will adopt the following criterion: the nonzero structure of
each column of the preconditioner is defined by retaining all the edges within a given leaf-box
and those in one level of neighbouring boxes, and the structure for the sparse approximation of
the dense coefficient matrix is defined by retaining the entries associated with edges included in
the given leaf-box as well as those belonging to the two levels of neighbours. The approximate
inverse has a sparse block structure; each block is dense and is associated with one leaf-box.
Indeed the least-squares problems corresponding to edges within the same box are identical
because they are defined using the same nonzero structure and the same set of entries of A. It
means that we only have to compute one QR factorization per leaf-box. In our implementation
we use a different partitioning to assemble the approximate inverse and the approximate mul-
tipole coefficient matrix. The size of the smallest boxes in the partitioning associated with the
preconditioner is a user-defined parameter that can be tuned to control the number of nonzeros
computed per row, that is the density of the preconditioner. According to our criterion, the
larger the size of the leaf-boxes, the larger the geometric neighbourhood that determines the
sparsity structure of the columns of the preconditioner. Parallelism can be exploited by assigning
disjoint subsets of leaf-boxes to different processors and performing the least-squares solutions
independently on each processor. We refer to [32] for a complete description of the parallel code
that we used.

2.3 Numerical scalability of the preconditioner

In this section we are interested to study the numerical scalability of the Frobenius-norm
minimization preconditioner. The optimal behaviour would be to get constant solution time
when the problem size and the number of processors increase proportionally. It means that the
amount of computation on each processor and the number of iterations should remain constant
for increasing problem size. We show results on an Airbus aircraft (see Figure 1), a real life
model problem in an industrial context.

In the numerical experiments, the surface of the object is always discretized using ten
points per wavelength; larger discretizations are obtained by increasing the frequency of the
illuminating wave. In Table 1, we report on the number of matrix-vector products required by
the GMRES method to converge to an accuracy of 10−3 on the normwise backward error ||r||

||b|| ,
where r denotes the residual and b the right-hand side of the linear system. This tolerance is
accurate for engineering purposes, as it enables to detect correctly the radar cross section of the
object. The symbol ‘–’ in the tables means no convergence after 2000 iterations. We also report
on the parallel elapsed time to build the preconditioner and to solve the linear system. All the
runs have been performed in single precision on eight processors of a Compaq Alpha server.
The Compaq Alpha server is a cluster of Symmetric Multi-Processors. Each node consists of
four Alpha processors that share 512 Mb of memory. On that computer the temporary disk
space that can be used by the out-of-core solver is around 189 Gb. The Airbus aircraft is very
difficult to solve because the mesh has many surface details and the discretization matrices can
become ill-conditioned. On small and medium problems, the number of GMRES iterations in
Table 1 increases linearly with the problem size, the solution time nearly quadratically. On the
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Figure 1: Mesh associated with an Airbus aircraft discretized with 15784 triangles

largest test case, discretized with one million unknowns, GMRES exceeds the memory limit on
64 processors. In this case the use of large restarts does not enable to get convergence within
2000 iterations except on a small mesh of size 94704.

Size Density FROB Time FROB
GMRES(∞) GMRES(120)

Iter Time Iter Time

94704 0.28 11m 746 2h 9m 1956 3h 13m
213084 0.13 31m 973 7h 19m +2000 7h 56m
591900 0.09 1h 30m 1461 16h 42m∗ +2000 1d 57m

1160124 0.02 3h 24m M.L.E.∗ N.A. +2000 > 4d∗

Table 1: Number of matrix-vector products and elapsed time in seconds required to converge
on an aircraft Airbus on 8 procs on the Compaq machine, except those marked with ∗, that
have been run on 64 procs. Illuminating direction (φ, θ) = (30o, 30o). Tolerance for the iterative
solution = 10−3. Acronyms: N.A. ≡ not available, M.L.E. ≡ memory limits exceeded.

3 Improving the preconditioner robustness using embedded it-

erations

The numerical results shown in the previous section indicate that the FROB preconditioner
tends to become less effective when the problem size increases, especially on difficult systems.
By its nature the sparse approximate inverse is inherently local because each degree of freedom
is coupled to only a very few neighbours. When the exact inverse is dense the compact support
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Outer solver −→ FGMRES, FQMR

Do k=1,2, ...
• M-V product: FMM with high accuracy

• Preconditioning : Inner solver (GMRES, TFQMR, ...)

Do i=1,2, ...

• M-V product: FMM with low accuracy

• Preconditioning : MFrob

End Do
End Do

Figure 2: Inner-outer solution schemes in the FMM context. Sketch of the algorithm.

used to define the preconditioner may not allow an exchange of global information and on large
problems the lack of global approximation may have a severe impact on the convergence. In our
implementation the overall number of computed nonzeros decreases for increasing values of the
frequency. When the preconditioner become very sparse, information related to the far-field are
completely lost. In this case some suitable mechanism has to be introduced to recover global
information on the numerical behaviour of the discrete Green’s function.

In this section we describe an embedded iterative scheme, combined with multipole tech-
niques, that is designed to meet the goals of robustness, scalability and parallelism of the iterative
solver. The basic idea is to carry out a few steps of an inner Krylov method for the precondi-
tioning operation. The overall algorithm results in an inner-outer scheme (see Figure 2), and its
efficiency relies on two main factors, that is: the inner solver has to be preconditioned so that
the residual in the inner iterations can be significantly reduced in a few number of steps, and
the matrix-vector products within the inner and the outer solvers are carried out at different
accuracy. The motivation that naturally leads us to consider inner-outer schemes is to try to
balance the locality of the preconditioner with the use of the multipole matrix. Experiments
conducted in [17] with inner-outer schemes combined with multipole techniques on the potential
equation were unsuccesful. In that case no preconditioner was used in the inner solver. The
desirable feature of using different accuracy for the matrix-vector products is enabled by the use
of the FMM. In our scheme, highly accurate FMM is used within the outer solver that is used
to actually solve the linear system, and a lower accurate FMM within the inner solver that is
used as preconditioner for the outer scheme. More precisely, the FMM accuracy is “high” for
the FGMRES iteration (the relative error in the matrix-vector computation is around 5 · 10−4

compared to the exact computation) and “medium” (the relative error is around 10−3). In fact,
we solve a nearby system for the preconditioning operation. This enables us to save considerable
computational effort during the iterative process.

3.1 Numerical results

In this section we carry out experiments using the FGMRES method [27] as the outer solver with
an inner GMRES iteration [28] preconditioned with the Frobenius-norm minimization method
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described in Section 2. For the GMRES and FGMRES methods, we consider the implementa-
tions described in [15] and [14], respectively. The analysis of the convergence history of GMRES
gives us some clues to the numerical behaviour of the proposed scheme. The residual of GM-
RES tends to decrease very rapidly in the first few iterations independently of the restarts,
then decreases much more slowly, and finally tends to stagnate to a value that depends on the
restart; the larger the restart, the lower the stagnation value. It suggests that a few steps in
the inner solver can be very effective for obtaining a significant reduction of the initial residual.
A different numerical behaviour has been observed for other Krylov methods as inner solver, as
the TFQMR solver [4]. The residual in the beginning of the convergence is nearly constant or
decreases very slowly. The use of this method as an inner solver is ineffective. Large restarts of
GMRES do not enable a further reduction of the normwise backward error in the beginning of
convergence. Thus small restarts should be preferred in the inner GMRES iterations. Amongst
the various possibilities, we select FGMRES(30) and GMRES(60) on the Airbus aircraft, that
seem to give the optimal trade-off.

We show the results of experiments on the Airbus aircraft in Table 2. We report on the
number of inner and outer matrix-vector products and the elapsed time needed to achieve con-
vergence using a tolerance of 10−3 on eight pocessors on the Compaq machine. For comparison,
in the tables we also show results obtained with the restarted GMRES method. The compar-
ison in the tables is fair because GMRES has exactly the same storage requirements as the
combination FGMRES/GMRES. In fact, for the same restart value, the storage requirement
for the FGMRES algorithm is twice that for the standard GMRES algorithm, as it stores the
preconditioned vectors of the Krylov basis.

The combination FGMRES/GMRES remarkably enhances the robustness of the precondi-
tioner especially on large problems. It can be seen that GMRES(120) does not converge after
2000 iterations even on quite small problem.

Size Density FROB Time FROB
GMRES(120)

FGMRES(30,60)
precfmm(high,medium)

Iter Time Iter Time

94704 0.28 11m 1956 3h 13m 23+1320 2h 30m
213084 0.13 31m +2000 N.A. 30+1740 6h 10m
591900 0.09 1h 30m +2000 N.A. 57+3300 1d 9h 45m

1160124 0.02 3h 24m +2000 N.A. 51+2940 16h 41m∗

Table 2: Number of matrix-vector products and elapsed time in seconds required to converge
on an aircraft Airbus. The tests have been run on 8 procs on the Compaq machine, except
those marked with ∗, that have been run on 64 procs. Illuminating direction (φ, θ) = (30o, 30o).
Tolerance for the iterative solution = 10−3. Acronyms: N.A. ≡ not available.

4 Spectral low-rank updates

It is well known that the convergence of Krylov methods for solving the linear system of-
ten depends to a large extent on the eigenvalue distribution. In many cases, it is observed
that “removing” the smallest eigenvalues can greatly improve the convergence. Many of the
preconditioners proposed in the literature succeed in clustering most of the eigenvalues of the
preconditioned matrix MA (for left preconditioning) far from the origin. Such a distribution is
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highly desirable to get fast convergence of Krylov solvers. However, a few eigenvalues can be
left close to zero and they potentially can significantly degrade the convergence. In order to
tackle this difficulty we propose a refinement technique based on the introduction of low-rank
corrections computed from spectral information associated with the smallest eigenvalues of MA.
Roughly speaking, the proposed technique consists in solving exactly the preconditioned system
in the low dimensional space spanned by the eigenvectors associated with the eigenvalues closest
to the origin. This is then used to update the preconditioned residual. We consider the solution
of the linear system

Ax = b, (10)

where A is a n× n unsymmetric complex nonsingular matrix, and x and b are vectors of size n.
The linear system is solved using a preconditioned Krylov solver and we denote by M1 the left
preconditioner, meaning that we solve

M1Ax = M1b. (11)

We assume that the preconditioned matrix M1A is diagonalizable, that is:

M1A = V ΛV −1, (12)

with Λ = diag(λi), where |λ1| ≤ . . . ≤ |λn| are the eigenvalues and V = (vi) the associated right
eigenvectors.

Proposition 1 Let W be such that Ãc = WHAM1Vε has full rank, M̃c = M1VεÃ
−1
c WH and

M̃ = M1 + M̃c. Then AM̃ is similar to a matrix whose eigenvalues are

{

ηi = λi if |λi| > ε,

ηi = 1 + λi if |λi| ≤ ε.

For more details on this technique and its application to left preconditioning or symmetric
definite situation, we refer to [8].

In the sequel, we illustrate the benefit of using this approach when computing a complete
monostatic radar cross section. In this framework, many linear systems having the same coef-
ficient matrix but different right-hand sides have to be solved. For the Airbus calculation 181
linear systems have to be solved. In Figure 3 we depict the convergence history of full GMRES
when the number of shifted eigenvalues is varied for two specific right-hand sides. On the left,
we consider a right-hand side that is easily solved by GMRES; on the right a right-hand side
that is more difficult to solve. In these graphs, FROB denotes the Frobenius norm minimization
preconditioner and SpU(k) the FROB preconditioner with a rank-k spectral update. In both
cases, it can be observed that the more eigenvalues are shifted, the better the convergence is.

The gain in iteration number is even larger if a restart is used for GMRES. This behaviour
is illustrated in Figure 4.

Using these technique, for a complete monostatic radar cross section calculation enables us
to save a large number of iterations. In Figure 5, we depict the number of full GMRES iterations
for each of the right-hand side associated with the various angles of the illuminating wave. It
can be observed that the saving is significative.

In the experiments reported in this paper the eigenvalues calculation were performed in
a preprocessing phase using Arpack [25]. The extra cost of this preprocessing is negligible.
The complete solution time on 32 processor Compaq Alpha server (EV 6.8, 1 Ghz) took 46
hours using the FROB preconditioner and reduced to 20 hours when using the spectral low
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(a) “easy” right-hand side
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(b) “difficult” right-hand side

Figure 3: Convergence history of full GMRES varying the number of shifted eigenvalues
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Figure 4: Convergence history varying the restart on a “difficult” right-hand side

rank correction (including the eigencalculation). Similar gain have been observed on other test
problems [13].

We shall mention that those preconditioning techniques are still effective when used for
accelerating the convergence of Krylov solvers designed for handling multiple rigth-hand sides.
Such Krylov solvers are for instance Block-GMRES or Seed-GMRES, we refer to [22] for details
and illustration of this claim.

5 Concluding remarks

In this paper, we present the parallel scalability and the numerical scalability of the solver for
solving large problems with up-to a few million unknowns. We discuss two techniques to intro-
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Figure 5: # iterations for the 181 right-hand sides

duce multi-level mechanisms for improving its robustness and its scalability. The first approach
is based on inner-outer iterations with variable accuracy in the fast multipole calculation [7].
The inner Krylov iterations, preconditioned with the approximate inverse technique, implement
a less accurate but faster multipole approximation and enable some global information about
the overall solution to be recovered in few iterations. This approximate solution is then used
to precondition the outer FGMRES iterations. The robustness of the resulting solver is demon-
strated on large problems arising both from academic and from industrial applications such as
those involved in aircraft design. In particular, on objects discretized using more than a million
unknowns, this new scheme reduces the elapsed time to solve a problem on a sphere by almost
one order of magnitude, and enables us to compute the solution on an aircraft while classical
approaches fail. The second approach is based on low-rank update of the preconditioner [8]
similar in structure to the one studied in domain decomposition [9]. Here the idea is to exploit
information related to the smallest eigenvalues to make a low-rank update of the preconditioner.
This update enables us to shift the smallest eigenvalues of the original preconditioned system
close to one and results in faster convergence of the Krylov solvers. The resulting precondi-
tioner has been successfully applied to significantly speed-up various Krylov solvers. For solving
symmetric non-Hermitian systems, such as those involved in certain BEM formulations in elec-
tromagnetism, we also derive a symmetric version that is particularly efficient on our problems.
We show that the extra computation for this spectral information can become quickly unim-
portant if many linear systems with the same coefficient matrix but different right-hand sides
have to be solved [4, 13]. We have shown numerical experiments on parallel distributed mem-
ory computers to highlight the efficiency of the implementation as well as the efficiency of the
resulting numerical schemes for solving large industrial test problems.

Finally we mention that more details can be found in some recent PhD manuscript [4, 22, 32].
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