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Abstract

We present a new numerical method for radiation transport equations well adapted to ICF
calculations. It consists in a dynamic coupling, in space and frequency variables, between a
full transport description and di�usion approximation of the radiative transfer equation. This
method has been introduced in the 2D radiation hydrocode FCI2. Results are compared with
full Monte-Carlo simulations of a simpli�ed laser cavity.
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Introduction

At the present time, scienti�c computing is the one of the main tools for an accurate design
of Inertial Con�nement Fusion (ICF) targets. In the indirect drive con�guration, it requires
the numerical simulation of radiation transport: laser energy is �rst converted to X-ray in a
gold wall and then transferred to the fusion target through an hohlraum �lled with gas. The
emission region is moving in the gold wall which is rapidly expanding into the hohlraum so that
the radiative transfer equations have to be coupled with hydrodynamic motion.

One of the di�culties is to compute the non-isotropic irradiation on the capsule and to
control them by an appropriate balance between the energy of the di�erent laser beams. Hence
an approximate description of radiation transport is not relevant and a transport method has
to be chosen. On the other hand, transport method are known to be more or less ine�cient in
optically thick regions: for instance in the gold wall before it is su�ciently heated and ablated
to become optically thin. In these regions, di�usion approximation of the transfer equations is
an accurate description of the physical phenomenon; moreover it is much more cheaper to solve
numerically than the full transport equations. This is why we introduced an hybrid method
for radiation transport where the lower part of the energy spectrum is treated in the di�usion
approximation whereas the higher part is treated by a transport method.

This method has been introduced in a 2D ICF hydrocode FCI2 and its results have been
compared with the standard method, i.e. full transport.

The paper is organized as follows: in next section, we shall briey describe the FCI2 code
and give the physical background. In third section, we will introduce the hybrid method. We
will then give some numerical results on a simpli�ed ICF calculation. Several issues are still to
be addressed: at last, we shall briey discuss these problems.

ICF calculations and ICF hydrocode

The goal of ICF is to use laser energy to bring a target in the conditions where fusion reaction
occurs. More precisely, the ultimate goal is obtain to high gain targets, i.e. to get more fusion
energy than the laser energy used to ignite the target.

In the indirect drive con�guration, laser energy is not transferred directly into the target but
�rst converted into X-ray: the target is a small Deuterium-Tritium sphere of 1 mm radius put in
the center of a hohlraum �lled with gas and the X-ray conversion take place in a cylindrical gold
wall of 50 �m thickness. The whole cavity is a cylinder approximatively 1.2 cm long and 0:3
cm radius (see �gure below) An accurate description of all physical phenomenons which occur
in the cavity requires the use of numerical simulation. The FCI2 [3] hydrocode has been used
for several years at the CEA for laser studies. It is a lagrangian code with Arbitrary Lagrangian
Eulerian capabilities, ux-limited thermal (ionic and electronic) conduction and ray-tracing for
laser description. It is coupled with non-equilibrium atomic physics package for opacities. Radi-
ation transport is usually solved by a Monte-Carlo method either Implicit Monte-Carlo (IMC)
[4] or Symbolic Implicit Monte-Carlo (SIMC) [6].

In an ICF calculation, the main part of CPU is used to solve the radiative transfer equations:
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Figure 1: ICF cavity: DT fuel (blue), Helium gas (green), Ablator (red) and Gold wall (pink)

it consists in an integro-di�erential equation in phase space coupled with energy-balance equation
which writes as (neglecting hydrodynamic motion)8>><
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where radiative intensity I� depends on frequency �, direction ~
, space position x and time t.
c is the speed of light, �� the emission-absorption opacity, T the matter temperature, E(T ) the
internal energy and the Planck function B�(T ) is given by

B�(T ) =
2h�3

c2
1

exp(
h�

kT
)� 1

:

Despite the rapid progress of deterministic algorithms (see [1] for a recent contribution), Monte-
Carlo methods are still very popular for solving radiative transfer equations. This is especially
the case for 2D and 3D problems because the number of unknowns becomes rapidly prohibitive.

When �� is large, we have
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with Er = aT 4 and �R is the Rosseland mean of �� (see [5] for details). Because equation (3)
is much cheaper to solve than equation (1) it is highly desirable to solve the di�usion equation
as soon as the approximation is justi�ed: this is the purpose of hybrid methods.

Hybrid Method

The principle of hybrid method is to solve equation (1) in one part of the domain and equa-
tion (3) in another part. For stationary problems, when photon mean-free path is somewhat
constant, it is possible to decide which equation is relevant in any given part of the simulation.
This is no longer the case in ICF problems.

In particular, the gold wall is initially cold and hence optically thick. When laser beams hit
the wall, a heat conduction wave travels toward the exterior and the gold becomes progressively
transparent: a �xed boundary between di�usion approximation and transport description is not
appropriate.

Another important issue is the variation of �� with respect to the spectral variable �. In a
fully ionized plasma �� behaves as ��3; in gold, the variation is much more complicated but ��
is, at �rst approximation, decreasing with respect to � (except for some speci�c frequencies). It
means that approximation (2) may be justi�ed only at low frequencies.

In [2], we have introduced a new hybrid method based on the notion of spectral cut-o�. We will
only give the main features of the method and refer to [2] for more details. After spectral dis-
cretization, the continuous variable � takes its value in some discrete set \K = (k0; k1; : : : ; kN).
The spectral cut-o�, is a function k(x; t) with values in \K such that:

� For k � k(x; t), we approximate Ik with the help of (2) with the Planck function at some
temperature Tt which may di�er from the matter temperature T .

� For k > k(x; t), we do not make any approximation and solve the transport equation.

When introducing k(x; t) into (1) we arrive at:

8>>>>>>>>><
>>>>>>>>>:

@tIk + c~
:rIk + c�k(Ik �
Bk(T )

4�
) = 0; k > k(x; t)

@t

0
@ X
k�k(x;t)

Bk(Tt)

1
A+ c

X
k�k(x;t)

�k(Bk(Tt)�Bk(T )) = div

0
@ X
k�k(x;t)

c

3�k
rBk(Tt)

1
A

@tE(T ) + c

Z X
k>k(x;t)

�k(
Bk(T )

4�
� Ik)d~
+ c

X
k�k(x;t)

�k(Bk(T )�Bk(Tt)) = 0;

(4)

With this formulation, transport and di�usion formulation occur at the same space location. A
generalized Marshak condition appears a discontinuity of the function x 7! k(x; t). (see �gure
(2).

So far, we have not yet speci�ed the numerical algorithms which will be used to solve
the transport and the di�usion equation. We could have the choice between deterministic or
stochastic method for transport equation (di�usion equation is solved using a �nite volume
approximation). In coupling di�usion approximation and transport description, the di�cult
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Figure 2: Transport-di�usion interface

part comes from the need for an implicit time discretization of the emission-absorption term. It
appears that Symbolic Monte-Carlo method is a good candidate for system (4). It consists in
computing the linear operator (i.e. the matrix) M and the vector S such that
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matrix M is called the Monte-Carlo matrix and is obtained by solving the transport equations
of (4) by a Monte-Carlo method (see [6]). Putting this expression in the third equation we arrive
at a non-linear di�usion-like equation which is solved by Newton's method.

At each step of Newton's algorithm, the Monte-Carlo matrix is added to usual di�usion
matrices for radiative (and thermal) conductions: we �nally arrive at a non-symmetric linear
system to invert. It can be proven that this problem is well posed but one issue is the sparsity
of the matrix (see next section).

Simpli�ed ICF calculation

To test and validate our method, we used a simpli�ed Laser cavity. Main di�erences between a
full simulation are:

� The target (ablator and fuel) is replaced by a vacuum and we impose the law of displace-
ment of the boundary.

� We do not take into account the plastic window which usually close the cavity, preventing
the helium gas to leave the hohlraum.
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Figure 3: Geometry at t=0 ns (top) and t=20 ns (bottom)

� We use only equilibrium values for Equation of state and opacity.

So we only concentrate on the behavior of the radiative intensity as the wave enters the gold wall.
One important quantity is the so-called temperature cavity, i.e. the mean radiative temperature
in the gas, because it accounts for the incoming radiative energy emitted by gold and power
losses through gold wall and laser entry holes.

Full Monte-Carlo Simulation

Figure (3) shows the evolution of the cavity and the radiative temperature from 0 to 20 ns (i.e.
the duration of laser pulse). We observe the large mesh distortion due to the expansion of the
gold plasma into the gas.

The mesh size is very small in gold at the interface (�rst cell is 4:10�8 cm thick at the be-
ginning of the simulation and 10�2 cm thick at the end). Temperature is very high and density
very low hence cells are optically thin and the Monte-Carlo treatment is always accurate at the
boundary between gas and gold. However, in the interior of the wall, the mesh size is much
higher, the temperature lower and the density higher: Monte-Carlo treatment is questionable.
At exterior interface temperature remains low so that opacity remains large and cells remain
optically thick: Monte-Carlo treatment is no longer correct but as it does not a�ect the tempera-
ture inside the cavity it is not important. Figure (4) represents the evolution of the optical depth
of three distinct gold cells (at the interior boundary, in the middle and at the exterior boundary).
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Figure 4: Evolution of optical depth of cells in gold

Hybrid Monte-Carlo simulation

The basic ingredient for using the Hybrid Monte-Carlo method is a criterion for the choice of
the spectral cut-o�. This criterion should be based on the comparison of one typical length scale
and one typical mean-free path. The simplest criterion is the following:

k(x; t) = minfk; 8k0 > k; �k0(x; t)L(x; t)< Cg (5)

where L(x; t) is the cell size and C some given number. If C = 0 then k(x; t) = N and the
di�usion approximation is applied everywhere and everytime. If C = +1 then k = 0 and we
recover full transport description. It is important that the results remain stable even for a large
variation of C because this constant is quite arbitrary. In the following simulations, C takes the
values C = 1; C = 3 and C = 10. We represent at time t = 15 ns the fraction of radiative
energy which is represented by Monte-Carlo particles in gold (see �gure (5)) and its evolution
with respect to time.

S We observe that this value increases when C increases: a larger part of the gold is treated
by the transport method. The extension of the region where di�usion is applied for low fre-
quencies and transport for high frequencies remains small. We observe also that the boundary
between transport and di�usion treatment is regular (there is no small \transport" region em-
bedded in a larger \di�usion" region).

When looking at the cavity temperature, the di�erences between full Monte-Carlo and
hybrid Monte-Carlo with three di�erent values of the criterion C are small (see �gure (6)).
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Figure 5: fraction of radiative energy represented by Monte-Carlo particles and its evolution
with respect to time for three values of the criterion

Hence, although the Monte-Carlo treatment of the whole gold wall could appear unjusti�ed
when looking at optical depths, it seems that it does not a�ect the radiative energy which is
emitted in the cavity.

Performances

In this section, we will compare the bene�ts and the drawbacks of hybrid Monte-Carlo compared
to full Monte-Carlo with respect to computational issues. We will concentrate on the criterion
C = 1. This discussion only applies to full Monte-Carlo with Symbolic Monte-Carlo method: in
the IMC method of [4] extra collision events appear that may become the dominant part of the
tracking in the cold part of gold so the method is less e�cient than SIMC for this kind of problem.

First, we emphasize the fact that, for a given number of Monte-Carlo particles to track,
Hybrid Monte-Carlo requires more arithmetic operations due to collisions at transport-di�usion
interfaces. Moreover, there is some extra computational time spent for the calculation of the
frequency cut-o� at each time-step and in every-cell and an extra di�usion matrix to assemble.
On the other hand, a signi�cant part of the domain is treated only in the di�usion approximation
so the number of particles tracked is lower in the hybrid case. Finally the inversion of the linear
system and Newton's algorithm for the non-linear di�usion equation requires a di�erent number
of iterations (it appears that this number is usually higher for the Hybrid method). Finally, we
�nd that the total CPU1 cost are approximatively equal for the two methods (see �gure (7):

1The results were obtained on one single alpha processor.
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Figure 6: Radiative temperature in the cavity for full Monte-Carlo and hybrid Monte-Carlo with
three di�erent values of the criterion

this is of course strongly problem-dependent.

An important issue is the sparsity of the Monte-Carlo matrix. For a given column j, the
number of non-zero terms in the matrix is equal to the number of cells visited by particles issued

from cell j this is bounded by
c�t

�x
where �t is the time step and �x the typical mesh around

cell j. The time step is usually constrained by a CFL condition which writes as cs
�t
�x

� 1 where
cs is the speed of sound waves. So we see that the number of non-zero terms is only bounded by
c

cs
which is very large. However, we notice that, when opacity is large, particles are absorbed

very close to their originating cell so that the number of cells is small and, when opacity is small,
particles can travel very far without being absorbed so that the number of cells may becomes
large but on the other hand the whole matrix becomes strongly diagonally dominant so there is
no problem with the inversion of the linear system (problems arise rather from memory storage).
We represent in �gure (8) the evolution of the density of the Monte-Carlo matrices for full and

hybrid method (the density is de�ned as number of non-zero terms
(mesh size)2 ): we observe that no storage

problem occurs, the density decreases toward the end of the simulation because of decreasing
time step.

Because a non-negligible part of gold is treated in the di�usion approximation when and
where it is a correct approximation, Monte-Carlo oscillations are lower in the hybrid simulation
than in full Monte-Carlo (see �gure (9). As the CPU time is similar in both cases, we can
conclude that, for this kind of simulation, the �gure of merit is better with the hybrid method
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Figure 7: Numbers of iteration for conjugated gradient and inversion of linear system, integrated
number of particles tracked and total CPU time (in hours) as a function of time

Figure 8: density of Monte-Carlo matrices as a function of time
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Figure 9: temperature along a gold section at t = 18ns at gold/gas interface, in the middle of
gold and in the wave front (blue: hybrid, black: full MC)

than with full Monte-Carlo.

Miscellaneous

We want now to list some issues that will have to be addressed in the future.

Choice of the criterion.
An important issue for the robustness of the method is to �nd a criterion that really detects
when di�usion approximation is valid. For this study, we took the simplest possible (5)
but we could consider many other choices. For example, the characteristic length scale
could be related to the gradient length

L(x; t) �
T

jrT j
:

Some speci�c algorithm can also be considered to take into account opacity lines. Finally,
if the choice of the spectral cut-o� only depends on a local criterion, it may make the
number of transport-di�usion coupling interfaces large because of Monte-Carlo oscillations
( a small di�erence in temperature between two cells could create an arti�cial coupling
interface between the cells): it may be e�cient to introduce a local smoothing of the
spectral cut-o� to prevent this.

Coupling with remapping.
When remapping the lagrangian mesh (which happens when using Arbitrary Lagrangian
Eulerian method), it is necessary to reconstruct the cut-o� function from the new local
variables. Some Monte-Carlo particles may become located in a di�usion region and some
Monte-Carlo regions may contain no Monte-Carlo particle. In this case, particles must be
killed or created under the constraint of conservation of radiative energy. The drawback
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is that important information about the anisotropy of the distribution may be lost. A
solution could be to adapt the remeshing algorithm so that it does not a�ect the boundary
between two cells whose spectral cut-o� are too di�erent.

Parallelization.
Monte-Carlo methods are relatively easy to parallelize on shared memory processors. When
using domain decomposition and distributed memory, it is necessary to deal with particles
escaping from one domain to another one. Because the number of Monte-Carlo events
in each domain is evolving with time, load balancing is a di�cult task. The situation is
still more complicated with hybrid method since the domain on which Monte-Carlo events
occur is evolving with time.

Conclusion

In this paper, we have presented a �rst realistic application of a new Hybrid Monte-Carlo method
for the numerical simulation of radiative transfer equations. A simpli�ed laser cavity was used
as a test problem to compare the Hybrid method with full Monte-Carlo simulation. It appears
that, for a given computational cost, results are slightly better (in term of smaller Monte-Carlo
oscillations) for the hybrid method. More important, the use of Hybrid method remove some
doubts about the use of a Full Monte-Carlo method in regions where Monte-Carlo behaves
poorly. These results have to be con�rmed for other con�gurations.

Some important work remains to be done either from a numerical point of view (choice of
spectral cut-o� criterion, coupling with A.L.E.) as well as for computational issues (paralleliza-
tion). At last examination of the density of the Monte-Carlo matrix makes us con�dent in the
extension of the method to three-dimensional con�gurations.
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