Secondary Electron Production at the SNS Storage Ring Collimator*

S.Y. Zhang
AGS Department, Brookhaven National Laboratory, Upton, NY, USA

Abstract

Secondary electron (SE) production is briefly reviewed. If the collimator of the SNS storage ring allows proton beam scraping to take place, the electron yield might be quite large.

At the AGS Booster, by steering the Au^{31+} ion beam into the electrostatic inflector, beam scraping effect on SE production is studied.

The results of this experiment can be translated into the situation of proton beam scraping at the SNS collimator. It seems sufficient to support a new look of the SNS ring collimator design.

Secondary Electron Production

In secondary electron emission, the electronic stopping (Coulomb collision) is dominant if the projectile velocity is larger than the Bohr velocity $2.18 \times 10^8 \text{cm/s} (\beta = 0.0073)$. If the primary ion, proton, or electron have the same velocity, the kinetics of the collision is very similar [1,2]. The Seiler model shows that the peak SE production energy of projectile is around $E_k \approx 0.9 \text{MeV} / u(\beta = 0.044)$. Also according to this model, the SE production rate at the SNS beam energy, $E_k \approx 1.0 \text{GeV} / u(\beta = 0.875)$, is about 10% of the peak yield.

Since the electronic stopping power of the target is approximately proportional to q^2, where q is the charge state of the projectile, it was believed that the SE yield Y also has a q^2 dependence [5,6]. However, experimental results have shown that it is more likely a $q^{1.7}$ dependence [7].

Probably the most profound factor in SE emission is the projectile scraping effect. Only the excited electrons near the surface have a chance to escape, and a major part of stopping power of a grazing projectile is deposited on the surface. In [3], this dependence is estimated as a factor $(\cos \theta)^{-n}$, where n perpendicular incident has an angle $\theta = 0$, and a range of the index $0.8 \leq n \leq 1.5$ is indicated. The complication of this mechanism, both theoretically and experimentally, in fact prohibits any accurate account on this factor.

Following an experimental observation, in [8], it was calculated that $Y \approx 200$ for a grazing proton at the PSR of LANL, $\beta = 0.841$. The electron collection there seems in agreement with this yield.

If the collimator of the SNS storage ring allows proton beam scraping to take place, the electron yield will probably be around 200. Note that this yield is about 1,300 times higher than the yield that has been theoretically and experimentally confirmed, without the functioning of the scraping effect.

To be more confident with the necessity to eliminate proton beam scraping on the surface of the collimator, an experiment was performed at the AGS Booster to study the beam scraping effect on the SE production.

Experiment at the AGS Booster

By horizontally steering the Au^{31+} ion beam into the electrostatic inflector, which guides the ion beam from the Tandem transfer line into the Booster orbit, a situation of beam scraping on the inflector surface at different angles is created. Since the projectile energy and charge state effects on the SE production are known, this scraping study could be a useful reference for the SNS collimator electron production.

The inflector has a horizontal aperture 17mm, and is normally charged at $24KV$. The capacitance at the inflector is about $300pF$, and the charging resistance is $1M\Omega$. The anode of the inflector is grounded, therefore, the cathode carries a voltage of $-24KV$. By steering the ion beam into the cathode, the electrons there may escape from the surface, then these electrons are expelled by the cathode. By observing the cathode voltage, therefore, the secondary electron emission can be estimated.

The gold ions from the Tandem to Booster transfer line (TTB) carry a positive charge of 31. The kinetic energy is $E_k \approx 0.9 \text{MeV} / u(\beta = 0.044)$, which happens to be the peak production energy of SE.
In a normal running condition, the Tandem to Booster transfer line horizontal dipole 29T DH2 upstream the inflector was set at \(-0.55\,\text{A}\). The beam full width half magnitude (FWHM) size was 4\,\text{mm}. It is believed that during 670\,\mu\text{s} multturn injection period, beam scraping at either the anode or the cathode causes a voltage drop at the inflector. This voltage decline is almost invisible at low intensity, and it is about 300\,\text{V} at the high intensity injection. After the stacking, the inflector voltage is recovered by the charging current of the power supply. The high intensity of gold beam injection usually implies more than \(3 \times 10^9\) ions per pulse.

By setting the DH2 current at \(-3.76\,\text{A}\), \(-3.96\,\text{A}\), and \(-4.16\,\text{A}\), the detected inflector voltage variation is shown in Fig.1. For convenience, the voltage has been offset by \(-24\,\text{KV}\). We observe that at the end of injection period, the inflector cathode voltage is raised by 2\,\text{KV}, 8.6\,\text{KV}, and 7\,\text{KV}, respectively. In other words, the cathode voltage becomes \(-22\,\text{KV}\), \(-15.4\,\text{KV}\), and \(-17\,\text{KV}\) at the end of stacking, respectively.

\[
V_2 = V_{2,0} + \frac{1}{C} \int \left(\frac{V_1 - V_2}{R} - I \right) dt
\]

(1)

where \(V_{2,0} = -24\,\text{KV}\) is the static cathode voltage. Using the detected \(V_2\), we find \(I\), which is then used to get the SE yield. This is,

\[
I(t) = \frac{V_1 - V_2}{R} - C \cdot \frac{dV_2}{dt}
\]

(2)

By fitting to \(V_2\), we find that both the rising and falling of this voltage are exponential. The time constant of the rising is \(\tau_{\text{rise}} = 2 \times 10^{-4}\,\text{sec.}\), and the falling time constant is \(\tau_{\text{fall}} = 3 \times 10^{-4}\,\text{sec.}\). This is shown in Fig.2, where the amplitude of \(V_2\) is normalized to unity. The falling time constant confirms that \(R = 1\,\text{M}\Omega\) and \(C = 300\,\text{pf}\),

\[
\tau_{\text{fall}} = RC = 3 \times 10^{-4}\,\text{sec.}
\]

(3)

On the other hand, the fit of the rising voltage, during the stacking period, requires \(I\) to be time dependent.

\[
I(t) = \frac{V_1 - V_2}{R} - C \cdot \frac{dV_2}{dt}
\]

Fig.1. Beam Scraping Induced Voltage on the Inflector

Fig.2. Time Constants of the Rising and Falling Voltage on the Inflector Cathode

A simple model is used to explain the results. A constant voltage source, at \(V_1 = -24\,\text{KV}\), charges the inflector through \(R = 1\,\text{M}\Omega\). The inflector itself is represented by a capacitance of \(C = 300\,\text{pf}\), and its voltage is \(V_2\). The ion beam generated SE production is modeled as a current source \(I\). At the beginning of stacking, we have \(V_1 = V_2 = -24\,\text{KV}\) and \(I = 0\). Once the ion beam is steered into the cathode, \(I \neq 0\). The inflector cathode voltage rises, which in turn induces the charging current through \(R\). At the end of the stacking, once again \(I = 0\). The inflector cathode voltage is recovered by the charging current. The following equation can be used to describe this model.
DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.
1. Electrostatic potential that deflects the projectile. In our case, the inflector voltage has been dropped significantly during stacking. In fact, shortly after the beginning of stacking, most ions in the beam have been completely deflected and hit the anode.

2. Electron-depletion effect. At 13.3 mA, the electrons escape the surface at a rate of \(8.3 \times 10^{16}\) per second. Depending on the thickness of the electron exciting layer, depletion might take place.

\[Y_1 = 9.3 \times 10^4 \quad (4) \]

To translate this yield into the SNS situation, we take the SE production rate at 1 GeV as 10% of that in the experiment. Also we assume the projectile charge state dependence as \(q^{17} = 31^{17} = 343\). Then, the SE yield shown in (4) is,

\[Y_2 = \frac{Y_1}{10 \times 343} = 27 \quad (5) \]

This yield is smaller than the one estimated in [8], however, it is much larger than the one observed in experiments without scrapping effect. For instance, see [9]. Note also that the early estimate of the SNS collimator SE yield was 0.25 to 2, depending on the collimator edge angle [10].

Conclusion

The experiment performed at the AGS Booster, using Au\(^{31+}\) ion beam to scrape on the electrostatic inflector, has shown the significance of the scraping effect on the secondary electron production. The result of this experiment seems sufficient to support a new look at the SNS ring collimator design [11].

Recent study performed at the BNL Tandem has confirmed the glancing effect of SE production. Using the serrated plate with a sawtooth surface, the SE production reduced dramatically [12].

Acknowledgment

The author would like to thank L.A. Ahrens, C.J. Gardner, and A.V. Soukas for valuable discussions and help in the experiment.

References

11. H. Ludewig, private communication.