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1. INTRODUCTION 
 
The monitoring of occupational radiation exposure in neutron fields is mainly done with passive 
detection systems like track detectors, albedo dosimeters or film dosimeters with foil-filters. [1, 
2] These dosimetric systems have a response that strongly depends upon neutron energy. Thus, 
for low energy and thermal neutrons albedo dosimeters have a good response [3] while track 
detectors have good efficiency to fast neutrons [4]. 
 
At regular basis dosimeters are calibrated with a neutron field whose energy distribution is 
different to that where dosimeters are utilized resulting in wrong dose assessment [5]. Dose 
quantities like personal dose equivalent Hp(10), recommended by ICRP, requires of personal 
dosimeters with larger neutron detection efficiency [6]. 
 
Neutron dosimeters are also utilized as multi-element systems where each element has a 
particular response to neutrons. Usually these dosimeters have better detection efficiency in a 
wider energy range allowing a better dose assessment. [2] This is achieved using the integral 
counts, obtained by the active detector, that are weighted by factors that belong to each element 
[7] or using the integral counts to unfold the neutron spectrum that is multiplied by neutron 
fluence-to-dose conversion coefficients. With the neutron spectrum information different dose 
quantities, like Hp(10), H*(10), can be estimated [8]. 
 
With the Bonner spheres spectrometer (BSS), also known as multi-spheres spectrometer, neutron 
spectrum from thermal up to several MeV can be obtained, [9] this is a thermal neutron detector 
that is located at the center of a high-density polyethylene sphere whose diameters are 2, 3, 5, 8, 
10, 12, 16 and 18 inches [10]. Modifications in moderating spheres have been realized to increase 
the BSS's response to neutrons with higher energies [11-13]. 
 
The weight, time consuming procedure, the need to use an unfolding procedure and the low 
resolution spectrum are the BSS drawbacks. The BSS response matrix, the count rates and the 
neutron spectrum are related through the Fredholm integro-diferential equation, whose discrete 
version is. [14] 
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where Cj is the jth detector's count rate; Ri, j is the jth detector's response to neutrons at the ith 
energy interval; Φi is the neutron fluence within the ith energy interval; and m is the number of 
spheres utilized. 
 
Equation (1) is an ill-conditioned equations system with an infinite number of solutions. To 
unfold the neutron spectrum, Φ(E), several methods are used, Monte Carlo [15], regularization 
[16], parameterization and iterative procedures [17]. Each of them has difficulties that motivate 
the development of complementary procedures [14, 18, 19]. Recently methods based upon 
maximum entropy [20], genetic algorithms [21, 22] and artificial neural nets [2, 5, 23, 24] have 
been utilized. Artificial neural networks (ANN) require the use of detectors whose response 
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functions are independent. The application of neural networks to unfold actual neutron spectra 
still has some problems and the need of more investigation has been suggested [23]. 
 
Neural networks are nonlinear black-box model structures that can be used with conventional 
parameter estimation methods. [1] Neural network techniques are widely recognized as powerful 
modeling tools [25]. A neural network is a massively parallel distributed processor that has a 
natural propensity for storing experiential knowledge, previously acquired through a learning 
process, making it available for use [26]. 
 
A neural network simulates a highly interconnected, parallel computational structure with many 
individual processing elements, or neurons. It learns through an iterative process of adjustments 
applied to its synaptic weights and thresholds. A defined set of rules for the solution of a learning 
problem is the learning algorithm [2, 24]. 
 
In general a neural network consists of a set of input nodes that link directly to a series of output 
nodes or indirectly through one or more hidden layers [26]. The use of an artificial neural 
network requires the training of the network and the test of the trained network. During training a 
set of synaptic weights are obtained. 
 
In aim of this study was to use artificial neural networks to unfold neutron spectra from the count 
rates obtained from a Bonner spheres spectrometer. 

 
 

2. MATERIALS AND METHODS 
 

With Monte Carlo code MCNP 4C [27] a point-like neutron source in an empty space was 
modeled and the neutrons were transported from the source to a detector located at 10 cm to 
modify its energy structure distribution. This procedure was carried out for one hundred and 
twenty nine spectra, 105 spectra were obtained from literature [28, 29] and 24 were built as 
monoenergetic and few energy groups spectra: 13 spectra has a single peak, 3 has two peaks, 2 
has three peaks, 3 has four peaks, 2 have five peaks and one spectrum has six peaks. 
 
From 105 spectra obtained from IAEA, a set is originally defined from thermal to 435 MeV in 55 
energy groups [28] while, other set is defined from thermal to 630 MeV in 60 energy groups [29]. 
Using MCNP 4C code those spectra were converted from thermal to 400 MeV in thirty-one 
energy groups defined in the BUNKIUT unfolding code [30]. 
 
Re-binned spectra were normalized to 1 cm-2 and the expected count rates in a Bonner sphere 
spectrometer were calculated using the UTA4 response matrix. This, is for a BSS with a 0.4 Ø x 
0.4 cm-2 6LiI(Eu) scintillator as thermal neutron [10, 18]. The count rates were utilized as inputs 
in a neural network while the respective neutron spectra were utilized as the network output 
during the neural network training. 
 
After several trials, where the amount of hidden layers and neurons in those layers, the artificial 
neural network that gave acceptable results was 7:21:42:140:200:400:31. Feed forward back 
propagation algorithm with variable learning rate was used as the learning function. The logistic 
function (logsig) was used as transfer function that is the most common function used in ANN 
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[25]. The ANN was trained and tested using Matlab® code [31]. From the training process a set of 
synaptic weights are obtained, these and the ANN topology is used to calculate the neutron 
spectra by feeding the ANN with just the 7 count rates obtained with the 0, 2, 3, 5, 8, 10 and 12 
inches-diameter Bonner spheres. 
 
The network was tested using nine spectra, four are form the set utilized during training and five 
were not used along the ANN training. From this last group two belong to actual cases and three 
were obtained from mathematical functions: the Watt's fission, Evaporation and Fusion spectra. 
This set was considered appropriate to test the ANN performance because has a variety of 
spectra. The χ2-test was applied to compare the original spectra with those unfolded with the 
ANN. Other way to compare the original and ANN unfolded spectra was through the unfolded-
to-original total fluence ratio. 

 
 

3. MATERIALS AND METHODS 
 

In figures 1 to 4 are shown the results obtained with the set of neutron spectra used along the 
ANN training, while in figures 5 to 9 are shown those obtained with neutron spectra that were not 
used along the ANN training. 
 
In figures 1 and 2, the original and the unfolded neutron spectra, of 241AmF and 252Cf/D2O 
neutron sources are shown. The total fluence ratios are 1.0145 and 1.0227 respectively. In figures 
3 and 4, the actual and unfolded spectra of neutrons produced during solar flare and the ideal 
spectrum with three peaks respectively. Here, the total fluence ratios are 0.9995 and 1.0202 
respectively. 
 
Caorso nuclear reactor and Microtron, original and ANN unfolded, neutron spectra are shown in 
figures 5 and 6, their respective total fluence ratios are 1.1505 and 0.9719. In figures 7, 8 and 9 
are the expected and the ANN unfolded spectra of Evaporation, Fusion and Watt´s fission neutron 
spectra whose total fluence ratios are 0.9913, 1.0101 and 0.9962 respectively. 
 
In the case of monoenergetic spectra this ANN gives good results that are better to those reported 
by Cordes et al., [5]. They, and Fehrenbacher et al., [2] used similar training algorithm but a 
simplest network, 6:16:10:6. Although 273 spectra were used during training they reported large 
deviations in some spectra that were poorly represented in the training set.  
 
For 30 degrees of freedom and α = 0.05 the critical χ2-value is 18.4927. The χ2-calculated value 
for each spectrum is shown in table I. 
 

Table I.- Calculated χ2 -values 
Spectrum χ2 Spectrum χ2 Spectrum χ2 

241AmF 4.4132E(-4) Three peaks 0.0293 Evaporation 0.3247 
252Cf/D2O 1.1614E(-3) Caorso 0.1354 Fusion 3.1692(-3) 
Solar flare 2.9367E(-3) Microtron 0.0912 Watt´s fission 1.249 

 
All values are less than χ2 critical-value; therefore there is a not a significant difference between 
the expected neutron spectra and those unfolded by ANN. 
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So far neutron spectra unfolded with Artificial Neural Networks are better compared with those 
unfolded using Genetic algorithms. [21, 22]. 

 
 

4. CONCLUSIONS 
 
Artificial neural networks technology has been utilized to unfold the neutron spectra from Bonner 
spheres spectrometer count rates. One hundred twenty nine neutron spectra and their count rates 
were used during the ANN training. The trained network was tested with 9 neutron spectra; 
during testing network performance was compared with the few results reported in literature 
where different networks are used. 
 
The use of ANN to unfold neutron spectra from the count rates measured with the Bonner sphere 
spectrometer is an alternative procedure in neutron spectrometry. Once the network has been 
trained the neutron spectrum is obtained without the need of a matrix response and an initial 
guess spectrum, overcoming the problems associated with such ill-conditioned problem. 
 
Comparing the results reported in literature, where neutron spectrometry was performed by 
different measuring methods and using ANN, the set of neutron spectra used during training have 
strong influence in the unfolded spectra's quality, as a secondary factor the network architecture 
was found, however more extensive studies should be realized in order to obtain an optimal ANN 
topology. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Comparison between ANN output and the 
           original neutron spectrum of 241AmF. 
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Figure 2.  Comparison between ANN output and the 
               original neutron spectrum of 252Cf/D2O. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Comparison between ANN output and the 
              original neutron spectrum of Solar flare. 
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Figure 4.  Comparison between ANN output and the original spectrum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.  Comparison between ANN output and the original 
        neutron spectrum of Caorso nuclear reactor. 
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Figure 6.  Comparison between ANN output and the 
                 original neutron spectrum of a Microtron. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.  Comparison between ANN output and the 
             original Evaporation neutron spectrum. 
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Figure 8.  Comparison between ANN output and the 
     original Fusion neutron spectrum. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Comparison between ANN output and the 
    original Fission neutron spectrum. 
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