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0. Introduction

Transcendental methods of algebraic geometry have been extensively studied since
a very long time, starting with the work of Abel, Jacobi and Riemann in the nine-
teenth century. More recently, in the period 1940-1970, the work of Hodge, Hirze-
bruch, Kodaira, Atiyah revealed still deeper relations between complex analysis,
topology, PDE theory and algebraic geometry. In the last ten years, gauge theory
has proved to be a very efficient tool for the study of many important questions:
moduli spaces, stable sheaves, non abelian Hodge theory, low dimensional topology

Our main purpose here is to describe a few analytic tools which are useful to
study questions such as linear series and vanishing theorems for algebraic vector
bundles. One of the early successes of analytic methods in this context is Kodaira’s
use of the Bochner technique in relation with the theory of harmonic forms, during
the decade 1950-60. The idea is to represent cohomology classes by harmonic forms
and to prove vanishing theorems by means of suitable a priori curvature estimates.
The prototype of such results is the Akizuki-Kodaira-Nakano theorem (1954): if X
is a nonsingular projective algebraic variety and L is a holomorphic line bundle on
X with positive curvature, then H?(X, 25 ® L) = 0 for p+¢ > dim X (throughout
the paper we set 2%, = APT% and Kx = A"T%, n = dim X, viewing these objects
either as holomorphic bundles or as locally free Ox-modules). It is only much later
that an algebraic proof of this result has been proposed by Deligne-Tllusie, via
characteristic p methods, in 1986.

A refinement of the Bochner technique used by Kodaira led, about ten years
later, to fundamental L? estimates due to Hérmander [Hor65], concerning solutions
of the Cauchy-Riemann operator. Not only vanishing theorems are proved, but
more precise information of a quantitative nature is obtained about solutions of
O-equations. The best way of expressing these L? estimates is to use a geometric
setting first considered by Andreotti-Vesentini [AV65]. More explicitly, suppose
that we have a holomorphic line bundle L equipped with a hermitian metric of
weight e =29, where ¢ is a (locally defined) plurisubharmonic function; then explicit
bounds on the L? norm [ |f|?e~2¢ of solutions is obtained. The result is still more
useful if the plurisubharmonic weight ¢ is allowed to have singularities. Following
Nadel [Nad89], we define the multiplier ideal sheaf Z(p) to be the sheaf of germs
of holomorphic functions f such that |f|?e~2¢ is locally summable. Then Z(yp) is
a coherent algebraic sheaf over X and HY(X,Kx ® L ® Z(y)) = 0 for all ¢ >
1 if the curvature of L is positive (as a current). This important result can be
seen as a generalization of the Kawamata-Viehweg vanishing theorem ([Kaw82],
[Vie82]), which is one of the cornerstones of higher dimensional algebraic geometry
(especially of Mori’s minimal model program).
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In the dictionary between analytic geometry and algebraic geometry, the ideal
Z () plays a very important role, since it directly converts an analytic object into an
algebraic one, and, simultaneously, takes care of the singularities in a very efficient
way. Another analytic tool used to deal with singularities is the theory of positive
currents introduced by Lelong [Lel57]. Currents can be seen as generalizations of
algebraic cycles, and many classical results of intersection theory still apply to
currents. The concept of Lelong number of a current is the analytic analogue of
the concept of multiplicity of a germ of algebraic variety. Intersections of cycles
correspond to wedge products of currents (whenever these products are defined).

Besides the Kodaira-Nakano vanishing theorem, one of the most basic “effective
result” expected to hold in algebraic geometry is expressed in the following con-
jecture of Fujita [Fuj87]: if L is an ample (i.e. positive) line bundle on a projective
n-dimensional algebraic variety X, then Kx + (n + 1)L is generated by sections
and Kx + (n + 2)L is very ample. In the last decade, a lot of effort has been
brought for the solution of this conjecture — and it seems indeed that a solution
might finally emerge in the first years or the third millenium — hopefully during
this Summer School! The first major results are the proof of the Fujita conjecture
in the case of surfaces by Reider [Rei88] (the case of curves is easy and has been
known since a very long time, see exercise 7.13), and the numerical criterion for
the very ampleness of 2K x + L given in [Dem93b], obtained by means of analytic
techniques and Monge- Ampere equations with isolated singularities. Alternative al-
gebraic techniques were developed slightly later by Kollar [Kol92], Ein-Lazarsfeld
[EL93], Fujita [Fuj93], Siu [Siu95, 96], Kawamata [Kaw97] and Helmke [Hel97]. We
will explain here Siu’s method because it is technically the simplest method; one of
the results obtained by this method is the following effective result: 2K x + mL is
very ample for m > 2 + (3”T;H). The basic idea is to apply the Kawamata-Viehweg
vanishing theorem, and to combine this with the Riemann-Roch formula in order
to produce sections through a clever induction procedure on the dimension of the
base loci of the linear systems involved.

Although Siu’s result is certainly not optimal, it is sufficient to obtain a nice
constructive proof of Matsusaka’s big theorem ([Siu93], [Dem96]). The result states
that there is an effective value mo depending only on the intersection numbers
L™ and L™ ! - Kx, such that mL is very ample for m > mg. The basic idea is
to combine results on the very ampleness of 2K x + mL together with the theory
of holomorphic Morse inequalities ([Dem85b]). The Morse inequalities are used
to construct sections of m'L — Kx for m' large. Again this step can be made
algebraic (following suggestions by F. Catanese and R. Lazarsfeld), but the analytic
formulation apparently has a wider range of applicability.

In the next sections, we pursue the study of L? estimates, in relation with the
Nullstellenstatz and with the extension problem. Skoda [Sko72b, Sko78] showed
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that the division problem f = )" g;h; can be solved holomorphically with very
precise L? estimates, provided that the L? norm of |f||g|~? is finite for some
sufficiently large exponent p (p > n = dim X is enough). Skoda’s estimates have
a nice interpretation in terms of local algebra, and they lead to precise qualitative
and quantitative estimates in connection with the Bézout problem. Another very
important result is the L? extension theorem by Ohsawa-Takegoshi [OT87, Ohs88],
which was also generalized later by Manivel [Man93]. The main statement is that
every L? section f of a suitably positive line bundle defined on a subavariety Y C X
can be extended to a L? section f defined over the whole of X. The positivity
condition can be understood in terms of the canonical sheaf and normal bundle to
the subvariety. The extension theorem turns out to have an incredible amount of
important consequences: among them, let us mention for instance Siu’s theorem
[Siu74] on the analyticity of Lelong numbers, the basic approximation theorem of
closed positive (1,1)-currents by divisors, the subadditivity property Z(y + ¢) C
I(p)Z() of multiplier ideals [DELOQ], the restriction formula Z(p|y) C Z(p)|y,
.... A suitable combination of these results can be used to reprove Fujita’s result
[Fuj94] on approximate Zariski decomposition, as we show in section 14.

In the last section 15, we show how subadditivity can be used to derive an
approximation theorem for (almost) plurisubharmonic functions: any such function
can be approximated by a sequence of (almost) plurisubharmonic functions which
are smooth outside an analytic set, and which define the same multiplier ideal
sheaves. From this, we derive a generalized version of the hard Lefschetz theorem
for cohomology with values in a pseudo-effective line bundle; namely, the Lefschetz
map is surjective when the cohomology groups are twisted by the relevant multiplier
ideal sheaves.

These notes are essentially written with the idea of serving as an analytic tool-
box for algebraic geometers. Although efficient algebraic techniques exist, our feel-
ing is that the analytic techniques are very flexible and offer a large variety of
guidelines for more algebraic questions (including applications to number theory
which are not discussed here). We made a special effort to use as little prereg-
uisites and to be as self-contained as possible; hence the rather long preliminary
sections dealing with basic facts of complex differential geometry. I am indebted to
L. Ein, J. Kollar, R. Lazarsfeld, Th. Peternell, M. Schneider and Y.T. Siu for many
discussions on these subjects over a period of time of at least one decade. These
discussions have certainly had a great influence on my research work and therefore
on the contents of the present notes.
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1. Preliminary Material

1.A. Dolbeault Cohomology and Sheaf Cohomology

Let X be a C-analytic manifold of dimension n. We denote by AP9T% the bundle
of differential forms of bidegree (p,q) on X, i.e., differential forms which can be
written as

u = Z uI,szI/‘\dEJ.

|=p,|J]=q
Here (21,...,2,) denote arbitrary local holomorphic coordinates, I = (i1,...,%p),
J = (j1,-.-,Jq) are multiindices (increasing sequences of integers in the range

[1,...,n], of lengths |I| = p, |J| = q), and
dzy ::dzil/\.../\dzip, dz ::dzjl/\.../\dEjQ.

Let £P:1 be the sheaf of germs of complex valued differential (p, g)-forms with C>
coefficients. Recall that the exterior derivative d splits as d = d’' + d" where

Our,j
d'u: E 6’ de/\dZI/\dZ],
V4
I|=p, |J|=q1<k<n  F
Our,j

d”u —
[I|=p,|J|=¢,1<k<n

dzZp Ndzr NdzZ g

2k

are of type (p+1, q), (p, g+1) respectively. The well-known Dolbeault-Grothendieck
lemma asserts that any d"-closed form of type (p,q) with ¢ > 0 is locally d"-exact
(this is the analogue for d” of the usual Poincaré lemma for d, see e.g. [H6r66]). In
other words, the complex of sheaves (E7-*,d") is exact in degree ¢ > 0; in degree
q =0, Kerd" is the sheaf 2% of germs of holomorphic forms of degree p on X.

More generally, if F' is a holomorphic vector bundle of rank r over X, there is a
natural d" operator acting on the space C*° (X, AP9T% ® F') of smooth (p, g)-forms
with values in F;if s =", ., saex is a (p, g)-form expressed in terms of a local
holomorphic frame of F, we simply define d”’s := 3 d"s\ ® ey, observing that
the holomorphic transition matrices involved in changes of holomorphic frames do
not affect the computation of d”. It is then clear that the Dolbeault-Grothendieck
lemma, still holds for F-valued forms. For every integer p = 0,1, ..., n, the Dolbeault
Cohomology groups HP4(X, F) are defined to be the cohomology groups of the
complex of global (p,q) forms (graded by q):

(1.1) HPI(X, F) = HY(C™(X, AP*T% ® F)).

Now, let us recall the following fundamental result from sheaf theory (De Rham-
Weil isomorphism theorem): let (£*,d) be a resolution of a sheaf A by acyclic
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sheaves, i.e. a complex of sheaves (£*,§) such that there is an exact sequence of
sheaves

0—Ad Lopd & gty g Oypent ,
and H*(X,£9) =0 for all ¢ > 0 and s > 1. Then there is a functorial isomorphism
(1.2) HY(I'(X,L%)) — HY(X, A).

We apply this to the following situation: let £(F)P? be the sheaf of germs of C'™
sections of AP9T% ® F. Then (£(F)P*,d") is a resolution of the locally free Ox-
module 24 ® O(F) (Dolbeault-Grothendieck lemma), and the sheaves £(F)P*? are
acyclic as modules over the soft sheaf of rings C*°. Hence by (1.2) we get

(1.3) Dolbeault Isomorphism Theorem (1953). For every holomorphic vector bundle
F on X, there is a canonical isomorphism

HPO(X, F) ~ HI(X, 0% @ O(F)). O

If X is projective algebraic and F' is an algebraic vector bundle, Serre’s GAGA
theorem [Ser56] shows that the algebraic sheaf cohomology group HY(X, 2% ®
O(F)) computed with algebraic sections over Zariski open sets is actually isomor-
phic to the analytic cohomology group. These results are the most basic tools to
attack algebraic problems via analytic methods. Another important tool is the the-
ory of plurisubharmonic functions and positive currents originated by K. Oka and
P. Lelong in the decades 1940-1960.

1.B. Plurisubharmonic Functions

Plurisubharmonic functions have been introduced independently by Lelong and
Oka in the study of holomorphic convexity. We refer to [Lel67, 69] for more details.

(1.4) Definition. A function u : 2 — [—00, +00[ defined on an open subset 2 C C*
is said to be plurisubharmonic (psh for short) if

a) u is upper semicontinuous ;

b) for every complex line L C C", uyonr s subharmonic on 2N L, that is, for all
a € 2 and &£ € C* with |€| < d(a,0), the function u satisfies the mean value
inequality

1 2w .
u(a) < —/ u(a + € €) df.
0

- 27
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The set of psh functions on (2 is denoted by Psh((2).

We list below the most basic properties of psh functions. They all follow easily
from the definition.

(1.5) Basic properties.

a) Every function u € Psh({2) is subharmonic, namely it satisfies the mean value
inequality on euclidean balls or spheres:

1
< — dX
w@) < gy [ wE)
for every a € 2 and r < d(a,C). Either v = —oc0 or u € L] on every

connected component of (2.

b) For any decreasing sequence of psh functions uy € Psh({?2), the limit v = lim uy,
is psh on (2.

¢) Let u € Psh(f2) be such that u Z —oco on every connected component of (2. If
(pe) is a family of smoothing kernels, then u % p. is C* and psh on

2. ={z € 2;dz,002) > e},

the family (u * p.) is increasing in e and lim._,o u x p. = u.

d) Let wi,...,up € Psh(£2) and x : R? — R be a convex function such that
X(t1,...,tp) is increasing in each ¢;. Then x(u1,...,up) is psh on 2. In partic-
ular w1 + - - -+ up, max{uq,...,up}, log(e¥ +--- + e¥r) are psh on (2. O

(1.6) Lemma. A functionu € C?(2,R) is psh on 2 if and only if the hermitian form
Hu(a)(§) = X1<j k<n 0%u/0z;0Zk(a) £;€,, is semipositive at every point a € (2.

Proof. This is an easy consequence of the following standard formula

o | s i -uw =2 [F [ Hua+@©no,

mJo b Jig<t
where d\ is the Lebesgue measure on C. Lemma 1.6 is a strong evidence that

plurisubharmonicity is the natural complex analogue of linear convexity. d

For non smooth functions, a similar characterization of plurisubharmonicity can
be obtained by means of a regularization process.
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(1.7) Theorem. If u € Psh(2), u Z —oo on every connected component of (2, then
for all 6 € C?
e = Y 2L gE @)
= A as. SiSk
\<en 0207,

is a positive measure. Conversely, if v € D'(2) is such that Hv(f) is a positive
measure for every £ € C", there exists a unique function u € Psh(£2) which is
locally integrable on (2 and such that v is the distribution associated to . O

In order to get a better geometric insight of this notion, we assume more gener-
ally that u is a function on a complex n-dimensional manifold X. If #: X - Y is
a holomorphic mapping and if v € C?(Y, R), we have d'd" (v o #) = $*d'd"v, hence

H(v o 9)(a,€) = Ho(®(a), #(a).).

In particular Hu, viewed as a hermitian form on T'x, does not depend on the choice
of coordinates (z1,...,2n). Therefore, the notion of psh function makes sense on
any complex manifold. More generally, we have

(1.8) Proposition. If & : X — Y is a holomorphic map and v € Psh(Y), then
vo® € Psh(X). O

(1.9) Example. It is a standard fact that log |2| is psh (i.e. subharmonic) on C. Thus
log | f| € Psh(X) for every holomorphic function f € H°(X,Ox). More generally

log (|f1|** +--- + [ f4]*¢) € Psh(X)

for every f; € H(X,Ox) and a; > 0 (apply Property 1.5d with u; = a; log|f;)-
We will be especially interested in the singularities obtained at points of the zero
variety fi = ... = f, =0, when the o; are rational numbers. O

(1.10) Definition. A psh function u € Psh(X) will be said to have analytic singu-
larities if u can be written locally as

o
U= 510g(|f1|2+---+|fN|2) +w,

where a € Ry, v is a locally bounded function and the f; are holomorphic functions.
If X is algebraic, we say that u has algebraic singularities if u can be written as
above on sufficiently small Zariski open sets, with a € Qy and f; algebraic.

We then introduce the ideal J = J(u/a) of germs of holomorphic functions h
such that |h| < Ce*/® for some constant C, i.e.
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|h| <C(IAl+--+1fnl).

This is a globally defined ideal sheaf on X, locally equal to the integral closure 7
of the ideal sheaf Z = (f1,..., fn), thus J is coherent on X. If (g1,...,gn') are
local generators of 7, we still have

a
u=log (lg1]” +--- +lgn[?) + O(1).

If X is projective algebraic and w has analytic singularities with a € Q4 , then
u automatically has algebraic singularities. From an algebraic point of view, the
singularities of u are in 1:1 correspondence with the “algebraic data” (7, «). Later
on, we will see another important method for associating an ideal sheaf to a psh
function.

(1.11) Exercise. Show that the above definition of the integral closure of an ideal
T is equivalent to the following more algebraic definition: Z consists of all germs h
satisfying an integral equation

h+ah? '+ ... +ag1h+ag =0, ay € IF.

Hint. One inclusion is clear. To prove the other inclusion, consider the normalization
of the blow-up of X along the (non necessarily reduced) zero variety V(Z). O

1.C. Positive Currents

The reader can consult [Fed69] for a more thorough treatment of current theory.
Let us first recall a few basic definitions. A current of degree ¢ on an oriented
differentiable manifold M is simply a differential g-form © with distribution co-
efficients. The space of currents of degree ¢ over M will be denoted by D'Y(M).
Alternatively, a current of degree ¢ can be seen as an element © in the dual space
D, (M) := (D*(M )" of the space DP(M) of smooth differential forms of degree
p =dim M — g with compact support; the duality pairing is given by

(1.12) (@,a) = /M@/\a, a € DP(M).

A basic example is the current of integration [S] over a compact oriented subman-
ifold S of M :

(1.13) ([S], @) = /Sa, dega = p = dimg S.

Then [S] is a current with measure coefficients, and Stokes’ formula shows that
d[S] = (—1)971[dS], in particular d[S] = 0 if S has no boundary. Because of this
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example, the integer p is said to be the dimension of © when © € D, (M). The
current O is said to be closed if d© = 0.

On a complex manifold X, we have similar notions of bidegree and bidimension;
as in the real case, we denote by
DPIX) =D, . (X), n=dmX,
the space of currents of bidegree (p, ¢) and bidimension (n—p,n—q) on X. According
to [Lel57], a current © of bidimension (p,p) is said to be (weakly) positive if for
every choice of smooth (1,0)-forms a4, ...,a, on X the distribution

1.14 ONiag ANag A...Niay, A& is a positive measure.
P P p

(1.15) Exercise. If O is positive, show that the coefficients O ; of © are complex
measures, and that, up to constants, they are dominated by the trace measure

1 i i
oo =OAN=BF =27 011, f= Fd "2 = 5 > dz Az,
P 1555
which is a positive measure.
Hint. Observe that > Oy 1 is invariant by unitary changes of coordinates and that
the (p, p)-forms ic; A1 A ... Aia, A @, generate APPTE, as a C-vector space. O

A current © =i, 1<, Ojrdz; A dzp of bidegree (1,1) is easily seen to be
positive if and only if the complex measure ) ijk@jk is a positive measure for
every n-tuple (Ar,...,\,) € C".

(1.16) Example. If u is a (not identically —oc) psh function on X, we can associate
with u a (closed) positive current @ = i90u of bidegree (1,1). Conversely, every
closed positive current of bidegree (1, 1) can be written under this form on any open
subset 2 C X such that H3z(2,R) = H'(2,0) = 0, e.g. on small coordinate balls
(exercise to the reader). O

It is not difficult to show that a product @1 A ... A @4 of positive currents of
bidegree (1, 1) is positive whenever the product is well defined (this is certainly the
case if all ©; but one at most are smooth; much finer conditions will be discussed
in Section 2).

We now discuss another very important example of closed positive current. In
fact, with every closed analytic set A C X of pure dimension p is associated a
current of integration

(1.17) (4], 0) = /A 0, a€DP(X),

reg
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obtained by integrating over the regular points of A. In order to show that (1.17)
is a correct definition of a current on X, one must show that A.e; has locally finite
area in a neighborhood of Agng. This result, due to [Lel57] is shown as follows.
Suppose that 0 is a singular point of A. By the local parametrization theorem for
analytic sets, there is a linear change of coordinates on C" such that all projections

7r: (21,005 20) W (Zigs-- -5 2i,)

define a finite ramified covering of the intersection A N A with a small polydisk
A in C" onto a small polydisk Ay in CP. Let ny be the sheet number. Then the
p-dimensional area of A N A is bounded above by the sum of the areas of its
projections counted with multiplicities, i.e.

Area(AN A) < Z nrVol(Ay).
The fact that [A] is positive is also easy. In fact
g AQ A ... Ay AT, = | det(ay) | iwy AT A ... Afw, AT,

if aj = ) ajrdwy, in terms of local coordinates (wy,...,wp) on Apeg. This shows
that all such forms are > 0 in the canonical orientation defined by iw; AWy A... A
iw, A Wp. More importantly, Lelong [Lel57] has shown that [A] is d-closed in X,
even at points of Agp.. This last result can be seen today as a consequence of
the Skoda-El Mir extension theorem. For this we need the following definition: a
complete pluripolar set is a set E such that there is an open covering (£2;) of X
and psh functions u; on £2; with EN 2; = uj_l(—oo). Any (closed) analytic set is
of course complete pluripolar (take u; as in Example 1.9).

(1.18) Theorem (Skoda [Sko82], El Mir [EM84], Sibony [Sib85]). Let E be a closed
complete pluripolar set in X, and let © be a closed positive current on X \ E such
that the coefficients Or y of © are measures with locally finite mass near E. Then
the trivial extension © obtained by extending the measures Oy by 0 on E is still
closed on X.

Lelong’s result d[A] = 0 is obtained by applying the Skoda-El Mir theorem to
O = [Areg] 0n X N Aging.

Proof of Theorem 1.18. The statement is local on X, so we may work on a small
open set {2 such that EN 2 = v~1(—0), v € Psh({2). Let x : R — R be a convex
increasing function such that x(¢) = 0 for ¢ < —1 and x(0) = 1. By shrinking 2
and putting vy = x(k~'v % p., ) with ; — 0 fast, we get a sequence of functions
v, € Psh(2) N C*°(£2) such that 0 < vy < 1, v = 0 in a neighborhood of EN 2



Multiplier Ideal Sheaves and Analytic Methods 15

and limvg(z) = 1 at every point of 2\ E. Let § € C°°([0,1]) be a function such
that # =0on [0,1/3],8 =1o0n [2/3,1] and 0 < § < 1. Then § o vy = 0 near EN {2

and f ovy — 1 on 2\ E. Therefore © = limy_, 1 o (8 0 vx)© and

dO = lim O Ad(6oug)

k——+o0

in the weak topology of currents. It is therefore sufficient to verify that @ A d'(6 o vy,)
converges weakly to 0 (note that d""@ is conjugate to d'O, thus d"O will also van-
ish).

Assume first that ©@ € D'™~1.n=1(X). Then © A d'(§ o v;) € D™ 1(2), and
we have to show that

(OANd B ow),a) = (6,0 (v)dvyAa) — 0, VYaeDYO(N).

k—+o0

As v = (O,iy A7) is a non-negative hermitian form on D':°(£2), the Cauchy-
Schwarz inequality yields

(6,18 AT)[” < (0,iBAB) (B,iv A7),  VB,v € D).
Let ¢ € D(£2), 0 <1 < 1, be equal to 1 in a neighborhood of Supp a. We find
(6,0 (ve)d've A@)[* < (O, id'vg A d"vy) (6,0 (vi)?ia A ).

By hypothesis [, ,60 Ala A@ < 400 and 6'(v) converges everywhere to 0 on
2, thus (0,6 (v)%ia A @) converges to 0 by Lebesgue’s dominated convergence
theorem. On the other hand

id'd"vi = 2upid'd" vy, + 2id'v, A d"vy, > 2id'vg A d'vy,,
2(0,yid'vy, A d"vg) < (O, id d"vi).
As ¢ € D(2), vy = 0 near E and dO = 0 on 2 \ E, an integration by parts yields

(0,4id'd"v}) = (0,viid d"y) < C'/ [1O]] < +o0
O~E
where C is a bound for the coefficients of id'd"+). Thus (@, v¥id vy Ad" v) is bounded,
and the proof is complete when @ € D'~ 1»—1,

In the general case @ € D'PP, p < n, we simply apply the result already proved
to all positive currents O Ay € D'~ 1"~1 where v = iy AF A . . AiYp—p—1, AVp_p1
runs over a basis of forms of A"~P~1n=P=IT% with constant coefficients. Then we
get d(© Av) =dO A~ =0 for all such , hence dO = 0. O

(1.19) Corollary. Let © be a closed positive current on X and let E be a com-
plete pluripolar set. Then 150 and 1x. g0 are closed positive currents. In fact,
O = 1x_g0O is the trivial extension of Ox g to X, and 10 =60 — 6. O



16 J.-P. Demailly

As mentioned above, any current © = id'd" u associated with a psh function u is
a closed positive (1, 1)-current. In the special case u = log | f| where f € H°(X,Ox)
is a non-zero holomorphic function, we have the important

(1.20) Lelong-Poincaré equation. Let f € H°(X,Ox) be a nmon-zero holomorphic
function, Zy = 3" m;Z;, m; € N, the zero divisor of f and [Z¢] = Y m;[Z;] the
associated current of integration. Then

i
~00log|f| = 2]

Proof (sketch). It is clear that id'd"log|f| = 0 in a neighborhood of every point
z ¢ Supp(Zy) = J Z;, so it is enough to check the equation in a neighborhood of
every point of Supp(Z;). Let A be the set of singular points of Supp(Zy), i.e. the
union of the pairwise intersections Z; N Z and of the singular loci Z; sing; we thus
have dim A < n — 2. In a neighborhood of any point « € Supp(Zy) \ A there are
local coordinates (21, --.,2,) such that f(z) = 2] where m; is the multiplicity
of f along the component Z; which contains z and z; = 0 is an equation for Z;
near z. Hence : .
%d’d" log |f| = mj%d'd” log |z1| = m;[Z;]

in a neighborhood of z, as desired (the identity comes from the standard formula
1d'd"log|z| = Dirac measure &y in C). This shows that the equation holds on
X ~\ A. Hence the difference ~d'd"log|f| — [Z] is a closed current of degree 2
with measure coefficients, whose support is contained in A. By Exercise 1.21, this
current must be 0, for A has too small dimension to carry its support (A is stratified
by submanifolds of real codimension > 4). O

(1.21) Exercise. Let © be a current of degree g on a real manifold M, such that
both © and dO have measure coefficients (“normal current”). Suppose that Supp ©
is contained in a real submanifold A with codimg A > ¢. Show that © = 0.

Hint: Let m = dimg M and let (x1,...,%m,) be a coordinate system in a neighbor-
hood 2 of a point @ € A such that AN 2 = {z; =... =z, =0}, k > ¢q. Observe
that ;0 = z2;dO = 0 for 1 < j < k, thanks to the hypothesis on supports and on
the normality of @, hence dz; A © = d(z;0) — 2;d0 = 0,1 < j < k. Infer from
this that all coefficients in © =}, _, ©rdz; vanish. O

We now recall a few basic facts of slicing theory (the reader will profitably
consult [Fed69] and [Siu74] for further developments). Let o : M — M’ be a sub-
mersion of smooth differentiable manifolds and let © be a locally flat current on M,
that is, a current which can be written locally as © = U +dV where U, V have L.

loc
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coefficients. It is a standard fact (see Federer) that every current @ such that both
© and dO have measure coefficients is locally flat; in particular, closed positive
currents are locally flat. Then, for almost every =’ € M', there is a well defined
slice @1, which is the current on the fiber o~ 1(z') defined by

Oy = Uro—l(mr) + dVrJ—l(zr).

The restrictions of U, V to the fibers exist for almost all ' by the Fubini theo-
rem. The slices @, are currents on the fibers with the same degree as © (thus
of dimension dim @ — dim (fibers)). Of course, every slice @, coincides with the
usual restriction of © to the fiber if © has smooth coefficients. By using a regular-
ization O, = O % p., it is easy to show that the slices of a closed positive current
are again closed and positive: in fact U, and V; , converge to U, and V in
L} (c7'(z")), thus O, , converges weakly to @, for almost every z'. Now, the

loc
basic slicing formula is

(1.22) /OAaAa*ﬂ: (/ @zr(m”)/\ara—l(zq(x”))ﬁ(w’)
M z'eM’ z'"€o—1(z")

for every smooth form o on M and 8 on M', such that a has compact support and
dega = dim M — dim M’ — deg ©, deg 3 = dim M'. This is an easy consequence of
the usual Fubini theorem applied to U and V in the decomposition @ = U + dV, if
we identify locally o with a projection map M = M'xM" — M' z = (2',2") — 2,
and use a partitition of unity on the support of a.

To conclude this section, we discuss De Rham and Dolbeault cohomology theory
in the context of currents. A basic observation is that the Poincaré and Dolbeault-
Grothendieck lemmas still hold for currents. Namely, if (D'?,d) and (D'(F)?1,d")
denote the complex of sheaves of degree ¢ currents (resp. of (p, ¢)-currents with
values in a holomorphic vector bundle F'), we still have De Rham and Dolbeault
sheaf resolutions

0->R— D", 0— 2% @ O(F) - D'(F)P*.
Hence we get canonical isomorphisms

(1.23) HY . (M,R) = H((T(M,D'"*),d)),
HP(X, F) = H((D(X,D'(F)"*),d")).

In other words, we can attach a cohomology class {©} € H{. (M, R) to any closed
current @ of degree g, resp. a cohomology class {0} € HPY(X,F) to any d"-
closed current of bidegree (p, q). Replacing if necessary every current by a smooth
representative in the same cohomology class, we see that there is a well defined cup
product given by the wedge product of differential forms
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H(M,R) x ... x H™(M,R) — HF-+0m (M R),
({61},...,{61}) — {O1} A ... A {On}.

In particular, if M is a compact oriented variety and ¢1 + . .. + ¢, = dim M, there
is a well defined intersection number

(01} {05} - - - {6} = /M{el}/\ A {Om).

However, as we will see in the next section, the pointwise product @1 A ... A O,
need not exist in general.

2. Lelong Numbers and Intersection Theory

2.A. Multiplication of Currents and Monge-Ampeére Operators

Let X be a n-dimensional complex manifold. We set

1
d° = —(d -d").
2im ( )
It follows in particular that d¢ is a real operator, i.e. d°u = d°u, and that dd® =
%d’ d". Although not quite standard, the 1/2ir normalization is very convenient
for many purposes, since we may then forget the factor 7 or 27 almost everywhere
(e.g. in the Lelong-Poincaré equation (1.20)).

Let u be a psh function and let © be a closed positive current on X. Our desire
is to define the wedge product dd°u A © even when neither v nor @ are smooth.
In general, this product does not make sense because dd°u and © have measure
coefficients and measures cannot be multiplied; see Kiselman [Kis84] for interesting
counterexamples. Even in the algebraic setting considered here, multiplication of
currents is not always possible: suppose e.g. that @ = [D] is the exceptional divisor
of a blow-up in a surface; then D - D = —1 cannot be the cohomology class of
a closed positive current [D]2. Assume however that u is a locally bounded psh
function. Then the current u@ is well defined since u is a locally bounded Borel
function and @ has measure coefficients. According to Bedford-Taylor [BT82] we
define

dd°u A © = dd°(u®)

where dd°( ) is taken in the sense of distribution theory.

(2.1) Proposition. If u is a locally bounded psh function, the wedge product dd°uA©
is again a closed positive current.
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Proof. The result is local. Use a convolution u, = u* p1/, to get a decreasing
sequence of smooth psh functions converging to u. Then write

dd®(u®) = lim dd°(u,0) = dd°u, N O
v—4o0
as a weak limit of closed positive currents. Observe that u,© converges weakly to
u® by Lebesgue’s monotone convergence theorem. O
More generally, if uy, ..., u,, are locally bounded psh functions, we can define
dd‘uy A ... Ndd°u, A O = dd° (ulddcuz A Adduy A 6)

by induction on m. Chern, Levine and Nirenberg [CLN69] noticed the following
useful inequality. Define the mass of a current © on a compact set K to be

6]k = / N
K

whenever K is contained in a coordinate patch and @ = ) Oy ydz; AdZ;. Up to
seminorm equivalence, this does not depend on the choice of coordinates. If K is
not contained in a coordinate patch, we use a partition of unity to define a suitable
seminorm ||@||k. If © > 0, Exercise 1.15 shows that the mass is controlled by the
trace measure, i.e. ||O||x < C [, © A BP.

(2.2) Chern-Levine-Nirenberg inequality. For all compact subsets K, L of X with
L C K°, there ezists a constant Ck,;, > 0 such that

ldd®us A ... A ddum A O]z, < Ciep, [ || oo ) - -« [[ttml |2 (1) 1O

Proof. By induction, it is sufficient to prove the result for m = 1 and u; = w.
There is a covering of L by a family of open balls B;- CCB;j C K contained in
coordinate patches of X. Let (p,p) be the bidimension of O, let 8 = ;—d’ d"|z|?, and
let x € D(B;) be equal to 1 on E;-. Then

||[dd°u A B||, 5 < C/_, ddunO A BPT < C’/ xddu AO A BPL
i B, B;
As O and 3 are closed, an integration by parts yields
1420 A6y < C [ w0 AddXA B < Clullim(ac 16
J BJ‘

where C' is equal to C' multiplied by a bound for the coefficients of the smooth
form dd°x A BP~L. O
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Various examples (cf. [Kis84]) show however that products of (1,1)-currents
dd‘u; cannot be defined in a reasonable way for arbitrary psh functions w;. How-
ever, functions u; with —oo poles can be admitted if the polar sets are sufficiently
small.

(2.3) Proposition. Let u be a psh function on X, and let O be a closed positive
current of bidimension (p,p). Suppose that u is locally bounded on X < A, where
A is an analytic subset of X of dimension < p at each point. Then dd°u A © can
be defined in such a way that dd°u A © = lim, 1 ddu, A O in the weak topology
of currents, for any decreasing sequence (u,),>0 of psh functions converging to u.

Proof. When v is locally bounded everywhere, we have limu, ® = u©® by the
monotone convergence theorem and the result follows from the continuity of dd°®
with respect to the weak topology.

First assume that A is discrete. Since our results are local, we may suppose
that X is a ball B(0,R) C C* and that A = {0}. For every s < 0, the function
u>* = max(u, s) is locally bounded on X, so the product © Add°u>* is well defined.
For |s| large, the function u>® differs from u only in a small neighborhood of the
origin, at which u may have a —oo pole. Let v be a (p—1, p—1)-form with constant
coefficients and set s(r) = liminf|,|_,,_ou(2). By Stokes’ formula, we see that the
integral

(2.4) I(s) :== / ddu* NO Ay
B(0,r)

does not depend on s when s < s(r), for the difference I(s) — I(s') of two such
integrals involves the dd® of a current (u>® — uzs') A © A v with compact support
in B(0,r). Taking v = (dd°|z|?)P~!, we see that the current dd°u A © has finite
mass on B(0,7) \ {0} and we can define (1{0y(dd°u A ©),7) to be the limit of the
integrals (2.4) as r tends to zero and s < s(r). In this case, the weak convergence
statement is easily deduced from the locally bounded case discussed above.

In the case where 0 < dim A < p, we use a slicing technique to reduce the
situation to the discrete case. Set ¢ = p—1. There are linear coordinates (z1,. .., 25)
centered at any point of A, such that 0 is an isolated point of AN ({0} X (C"_q).
Then there are small balls B’ = B(0,r') in C?, B" = B(0,r") in C*"? such that
AN (B' x 9B") = ), and the projection map

7:C" >, 2= (21,--.,20) 2 2 = (21,-.., 2)

defines a finite proper mapping AN(B' x B") — B'. These properties are preserved
if we slightly change the direction of projection. Take sufficiently many projections
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Tm associated to coordinate systems (21,...,2"), 1 <m < N, in such a way that
the family of (g, ¢)-forms

idz NdET AL NP dZ A A

defines a basis of the space of (g,q)-forms. Expressing any compactly supported
smooth (g, ¢)-form in such a basis, we see that we need only define

(2.5) / dd°u NO A f(2',2")idzy NdZL A ... ANidzg NdZy =
B'xB"
/ { £, ) dd°u(z',9) A O, .)}idz1 AdZL A ... Nidz A dz,
’ Bll

where f is a test function with compact support in B’ x B”, and ©(2’, ) denotes
the slice of © on the fiber {z'} x B" of the projection = : C* — C?. Each integral
[ on the right-hand side of (2.5) makes sense since the slices ({z'} x B")N A are
discrete. Moreover, the double integral f B f g 18 convergent. Indeed, observe that
u is bounded on any compact cylinder

Ks.=B((1-9)r") x (F(r") ~B((1- 6)7‘”))
disjoint from A. Take ¢ < § < 1 so small that
Supp f C B((1—8)r') x B((1 —¢e)r").

For all 2’ € B((1 — 8)r'), the proof of the Chern-Levine-Nirenberg inequality (2.2)
with a cut-off function x(z") equal to 1 on B((1 — €)r") and with support in
B((1 —&/2)r'") shows that

/ ddu(z',¢) ANO(Z',e)
B((1—¢&)r")

< Cellul|po (k5. / O, 2") A dd°|2"|?.
Z"eB((1—e/2)r')

This implies that the double integral is convergent. Now replace u everywhere
by w, and observe that lim, f g 18 the expected integral for every 2’ such
that @(z', ) exists (apply the discrete case already proven). Moreover, the Chern-
Levine-Nirenberg inequality yields uniform bounds for all functions w,, hence
Lebesgue’s dominated convergence theorem can be applied to |, - We conclude
from this that the sequence of integrals (2.5) converges when u,, | u, as expected.

O

(2.6) Remark. In the above proof, the fact that A is an analytic set does not play an
essential role. The main point is just that the slices ({2’ } xB")NA consist of isolated
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points for generic choices of coordinates (2',z"). In fact, the proof even works
if the slices are totally discontinuous, in particular if they are of zero Hausdorff
measure H;. It follows that Proposition 2.3 still holds whenever A is a closed set
such that Hap_1(4) = 0. O

2.B. Lelong Numbers

The concept of Lelong number is an analytic analogue of the algebraic notion
of multiplicity. It is a very useful technique to extend results of the intersection
theory of algebraic cycles to currents. Lelong numbers were introduced for the first
time by Lelong in [Lel57]. See also [Lel69], [Siu74], [Dem82a, 85a, 87] for further
developments.

Let us first recall a few definitions. Let @ be a closed positive current of bidi-
mension (p,p) on a coordinate open set 2 C C* of a complex manifold X. The
Lelong number of © at a point z € 2 is defined to be the limit

ge(B(z,7))

v(O,z) = 1_i>m+ v(O,z,T), where v(0,z,r) = Ty

_7‘0

measures the ratio of the area of @ in the ball B(z,r) to the area of the ball of
radius 7 in CP. As 5o = O A I%(wddc|z|2)p by 1.15, we also get

2.7) WO, z,1) = i/ O(2) A (dd°|2[2)P.
B(z,r)

r2p

The main results concerning Lelong numbers are summarized in the following the-
orems, due respectively to Lelong, Thie and Siu.

(2.8) Theorem ([Lel57]).

a) For every positive current O, the ratio v(O,x,r) is a nonnegative increasing
function of r, in particular the limit v(0,x) as r — 0+ always exists.

b) If © = dd°u is the bidegree (1,1)-current associated with a psh function u, then
v(0,z) =sup {y > 0; u(z) < ylog|z —z| + O(1) atz}.
In particular, if u = log|f| with f € H°(X, Ox) and © = dd°u = [Z;], we have

v([Zg], ) = ord,(f) = max{m € N; D®f(z) =0, |a| < m}.

(2.9) Theorem ([Thi67]). In the case where O is a current of integration [A] over an
analytic subvariety A, the Lelong number v([A], z) coincides with the multiplicity
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of A at z (defined e.g. as the sheet number in the ramified covering obtained by
taking a generic linear projection of the germ (A,x) onto a p-dimensional linear
subspace through x in any coordinate patch 2).

(2.10) Theorem ([Siu74]). Let © be a closed positive current of bidimension (p,p)
on the complex manifold X .

a) The Lelong number v(©,x) is invariant by holomorphic changes of local coor-
dinates.

b) For every ¢ > 0, the set E.(0) = {z € X; v(0,z) > ¢} is a closed analytic
subset of X of dimension < p.

The most important result is 2.10 b), which is a deep application of Hérmander
L? estimates (see Section 5). The earlier proofs of all other results were rather
intricate in spite of their rather simple nature. We reproduce below a sketch of
elementary arguments based on the use of a more general and more flexible notion
of Lelong numbers introduced in [Dem87]. Let ¢ be a continuous psh function with
an isolated —oo pole at , e.g. a function of the form ¢(z) =log 3>, ;< n 9;(2)[",
v; > 0, where (g1, ...,gn) is an ideal of germs of holomorphic functions in O, with
g~ 1(0) = {z}. The generalized Lelong number v(0,¢) of @ with respect to the
weight ¢ is simply defined to be the mass of the measure @ A (dd°p)? carried by the
point z (the measure O A (dd®p)P is always well defined thanks to Proposition 2.3).
This number can also be seen as the limit ¥(0, ) = lim;_,_, (O, ¢, ), where

(2.11) WO, 1) = / O A (dd° )P
p(z)<t

The relation with our earlier definition of Lelong numbers (as well as part a) of
Theorem 2.8) comes from the identity

(212) V(@,.’L’,T) = V(@a(pal()gr)a 90(2) = 10g|z - SL'|,

in particular v(0,z) = v(0,log|e — z|). This equality is in turn a consequence of
the following general formula, applied to x(t) = €2 and t = logr:

(2.13) / O A (dd°x 0 p)? = ' (t = O)P / O A (dd°p)?,
e(z)<t

p(z)<t

where x is an arbitrary convex increasing function. To prove the formula, we use a
regularization and thus suppose that @, ¢ and x are smooth, and that ¢ is a non
critical value of ¢. Then Stokes’ formula shows that the integrals on the left- and
right-hand side of (2.13) are equal respectively to
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/ O A (dd°x o go)pil Ad°(x o ), / O A (ddccp)pfl AdCop,
p(z)=t w(z)=t

and the differential form of bidegree (p — 1,p) appearing in the integrand of the
first integral is equal to (X' o ¢)? (dd°p)P~! A d°p. The expected formula follows.
Part b) of Theorem 2.8 is a consequence of the Jensen-Lelong formula, whose proof
is left as an exercise to the reader.

(2.14) Jensen-Lelong formula. Let u be any psh function on X. Then u is integrable
with respect to the measure p, = (dd°o)" 1 A d°p supported by the pseudo-sphere
{o(z) =r} and

r

(1) :/ u(ddccp)"+/ v(dd®u, p,t) dt. O
{p<r}

— 00

In our case, we set ¢(z) = log|z — z|. Then (dd°p)"” = d, and p, is just the
unitary invariant mean value measure on the sphere S(z,e"). For r < ro, Formula
2.14 implies

L (U) — ppo (u) = / v(ddu,z,t) ~ (r —ro)v(dd°u, x) as r — —oo.

To

From this, using the Harnack inequality for subharmonic functions, we get

lim inf _ulz) = lim pr () = v(dd°u, ).
z—=z loglz—xz| ro— 7
These equalities imply statement 2.8 b).
Next, we show that the Lelong numbers (T, ¢) only depend on the asymptotic

behaviour of ¢ near the polar set ¢ ~!(—00). In a precise way:

(2.15) Comparison theorem. Let © be a closed positive current on X, and let p,1 :
X — [—o0,+00] be continuous psh functions with isolated poles at some point
x € X. Assume that

¥(z)

. z
£ :=limsup —= < +00.
2oz P(2)

Then v(0,¢) < Pv(O,¢), and the equality holds if £ = lim/p.

Proof. (2.12) shows that v(0, \p) = Nv(O,p) for every positive constant \. It
is thus sufficient to verify the inequality v(0,) < v(0,¢) under the hypothesis
limsup ¢/ < 1. For any ¢ > 0, consider the psh function

e = max(y — ¢, p).
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Fix r < 0. For ¢ > 0 large enough, we have u. = ¢ on a neighborhood of ¢~1(r)
and Stokes’ formula gives

v(0,¢,1) = v(0,uc,r) 2 v(O, uc).

On the other hand, the hypothesis lim sup /¢ < 1 implies that there exists to < 0
such that u. =9 — ¢ on {u. < to}. We thus get

V(67UC) = V(@7¢_c) = V(67¢)7

hence v(0,1) < v(6, ). The equality case is obtained by reversing the roles of ¢
and ¢ and observing that lim /¢ = 1/1. O

Part a) of Theorem 2.10 follows immediately from (2.15) by considering the
weights ¢(z) = log|m(2) — 7(2)|, ¥(2) = log|7'(z) — 7'(x)| associated to coordi-
nates systems 7(z) = (z1,...,2n), 7'(2) = (21,...,2},) in a neighborhood of z.
Another application is a direct simple proof of Thie’s Theorem 2.9 when 6 = [A]
is the current of integration over an analytic set A C X of pure dimension p.
For this, we have to observe that Theorem 2.15 still holds provided that z is
an isolated point in Supp(©) N ¢~1(—o0) and Supp(©) N~ (—0) (even though
x is not isolated in ¢~!(—o00) or 1~!(—oc)), under the weaker assumption that
lim Supgpp(@)52—2 ¥(2)/$(2) = L. The reason for this is that all integrals involve
currents supported on Supp(@). Now, by a generic choice of local coordinates
2= (z1,...,2p) and 2" = (2p41,...,2,) on (X,z), the germ (A, z) is contained
in a cone |2"| < CJ2'|. If B' C CP is a ball of center 0 and radius 7’ small, and
B" c C*P is the ball of center 0 and radius "’ = Cr’, the projection

pr: AN (B'xB") — B’

is a ramified covering with finite sheet number m. When z € A tends to z = 0, the
functions

¢(2) =log|z| = log(|2']* + 2" *)'/2,  4(2) =log 2.
satisfy lim,_,, ¥(2)/¢(2) = 1. Hence Theorem 2.15 implies
v([Al,z) = v([A],¢) = v([A], ).
Now, formula (2.13) with x(t) = €' yields

v([4],¢,logt) =777 / [A] A (%dd%w)p

{y<logt}
1 P
= t*ZP/ (— pr* ddc|z'|2)
Anflz|<t} V2

- mt*%/ (lddc|z’|2)p =m,
o {2’ |<t} 2
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hence v([A],1) = m. Here, we have used the fact that pr is an étale covering with
m sheets over the complement of the ramification locus S C B’, and the fact that
S is of zero Lebesgue measure in B'.

(2.16) Proposition. Under the assumptions of Proposition 2.3, we have
v(dd°u A O,z) > v(u,z) (O, )

at every point x € X.

Proof. Assume that X = B(0,r) and z = 0. By definition

v(dd°u A O,z) = lim ddu A © A (dd°log |z|)P~t.

r—0 |Z|ST‘
Set v = v(u, z) and
u, (z) = max (u(z), (y —€)log |2| — v)

with 0 < & < 7 (if v = 0, there is nothing to prove). Then u, decreases to u and

dd°u A © A (dd° log|2])?* > limsup [  dd°u, A © A (dd°log |z[)?

|z[<r v—=too Jiz|<r
by the weak convergence of dd°u, A@; here (dd° log |z|)?~? is not smooth on B(0,r),
but the integrals remain unchanged if we replace log|z| by x(log|z|/r) with a
smooth convex function x such that x(¢) = ¢ for ¢ > —1 and x(¢) = 0 for ¢t < —2.

Now, we have u(z) < vlog|z|+ C near 0, so u,(z) coincides with (y —¢)log|z| — v
on a small ball B(0,7,) C B(0,7) and we infer

/ ddu, A O A (dd°log |z|)P~! > (v —¢) / O A (dd°log |z|)P
[z|<r |z[<r

> (v —e)v(0; 2).

Asr €]0,R[ and € € ]0,~[ were arbitrary, the desired inequality follows. O

We will later need an important decomposition formula of [Siu74]. We start
with the following lemma.

(2.17) Lemma. If © is a closed positive current of bidimension (p,p) and Z is an
irreducible analytic set in X, we set

mz =inf{z € Z; v(0,z)}.
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a) There is a countable family of proper analytic subsets (Z}) of Z such that
v(0,z) = mz for all v € Z N\ UZ}. We say that myz is the generic Lelong
number of © along Z.

b) If dim Z = p, then © > mz[Z] and 120 = mz[Z].

Proof. a) By definition of mz and E.(0), we have v(0,z) > myz for every x € Z
and
v(@,z) =mz on Z~ U ZNE.(O).
ceEQ,c>mz

However, for ¢ > mz, the intersection Z N E.(O) is a proper analytic subset of A.
b) Left as an exercise to the reader. It is enough to prove that © > mz[Zyeg] at
regular points of Z, so one may assume that Z is a p-dimensional linear subspace
in C". Show that the measure (@ — mz[Z]) A (dd°|z|?)P has nonnegative mass on
every ball |z —a| < r with center a € Z. Conclude by using arbitrary affine changes
of coordinates that ©® —mz[Z] > 0. O

(2.18) Decomposition formula ([Siu74]). Let © be a closed positive current of bidi-
mension (p,p). Then © can be written as a convergent series of closed positive
currents

+oo
©=> M[Z]+R,
k=1

where [Zy] is a current of integration over an irreducible analytic set of dimen-
sion p, and R is a residual current with the property that dim E.(R) < p for
every ¢ > 0. This decomposition is locally and globally unique: the sets Zy are
precisely the p-dimensional components occurring in the sublevel sets E.(O), and
Ak = mingez, v(0,x) is the generic Lelong number of © along Zj,.

Proof of uniqueness. If © has such a decomposition, the p-dimensional components
of E.(0) are (Z;)x;>c, for v(0,x) = 3 A\jv([Z;], «) + v(R, ) is non-zero only on
U Z; UU E.(R), and is equal to \; generically on Z; (more precisely, v(0,z) = \;
at every regular point of Z; which does not belong to any intersection Z; U Zy,
k # j or to |J E:(R)). In particular Z; and A; are unique.

Proof of ezistence. Let (Z;);>1 be the countable collection of p-dimensional com-
ponents occurring in one of the sets E.(0), c € Q% , and let A\; > 0 be the generic
Lelong number of @ along Z;. Then Lemma 2.17 shows by induction on N that
Ry =0 =3 cj<n AjlZj] is positive. As Ry is a decreasing sequence, there must
be a limit R = limy_, 4o Ry in the weak topology. Thus we have the asserted
decomposition. By construction, R has zero generic Lelong number along Z;, so
dim E.(R) < p for every ¢ > 0. O
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It is very important to note that some components of lower dimension can
actually occur in E.(R), but they cannot be subtracted because R has bidimension
(p,p)- A typical case is the case of a bidimension (n — 1,n — 1) current © = dd°u
with u = log(|f;|" + ...|f~|"™) and f; € H°(X,0x). In general JE.(0) =
N fj_l(O) has dimension < n — 1.

Corollary 2.19. Let ©; = dd°uj, 1 < j < p, be closed positive (1,1)-currents on a
complex manifold X . Suppose that there are analytic sets As D ... D Ap in X with
codim A; > j at every point such that each uj, j > 2, is locally bounded on X \ A;.
Let {Apx}re>1 be the irreducible components of A, of codimension p exactly and
let vjp = mingea, , v(0;,x) be the generic Lelong number of ©; along Ay . Then
O1 N ...NOp is well defined and

+oc
OLA - AOp > vk vk [Apil-
k=1

Proof. By induction on p, Proposition 2.3 shows that @1 A... A O, is well defined.
Moreover, Proposition 2.16 implies

V(O1A...ANOp,z) >v(01,2)...0(0p, &) > Vi ... Vpk

at every point z € Ap . The desired inequality is then a consequence of Siu’s
decomposition theorem. O

3. Hermitian Vector Bundles, Connections and Curvature

The goal of this section is to recall the most basic definitions of hemitian differential
geometry related to the concepts of connection, curvature and first Chern class of
a line bundle.

Let F' be a complex vector bundle of rank r over a smooth differentiable mani-
fold M. A connection D on F is a linear differential operator of order 1

D:C®(M, AT} ® F) —» C®°(M, AT}, @ F)
such that
(3.1) D(f Au) =df ANu+(=1)%8 T f A Du

for all forms f € C®(M, APT},), v € C*(X, AT}, ® F). On an open set 2 C M
where F' admits a trivialization 6 : Fjq =5 2 xC", a connection D can be written

Du~pdu+T Au
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where I' € C*° (2, A'T}, ® Hom(C",C")) is an arbitrary matrix of 1-forms and d
acts componentwise. It is then easy to check that

D*u~g (d['+T'AT)Au on .
Since D? is a globally defined operator, there is a global 2-form
(3.2) O(D) € C*®(M, AT}, ® Hom(F, F))

such that D?>u = ©(D) A u for every form u with values in F.

Assume now that F' is endowed with a C'™ hermitian metric along the fibers
and that the isomorphism Fj; ~ 2 x C" is given by a C* frame (e)). We then
have a canonical sesquilinear pairing
(3.3) C®(M,APTy; @ F) x C®(M,A1T}; @ F) — C*° (M, APT1T} @ C)

(u,v) — {u,v}
given by
{u,v}:ZuA/\@(e)\,eu), u:ZuA@)ex, v:Zvu@)eu.
A

The connection D is said to be hermitian if it satisfies the additional property
d{u,v} = {Du,v} + (—1)98 “{u, Dv}.

Assuming that (ey) is orthonormal, one easily checks that D is hermitian if and
only if I'* = —TI. In this case @(D)* = —O(D), thus

i0(D) € C*(M, A*T}; ® Herm(F, F)).

(3.4) Special case. For a bundle F' of rank 1, the connection form I" of a hermitian
connection D can be seen as a 1-form with purely imaginary coefficients I' = i4
(A real). Then we have O(D) = dI" = idA. In particular iO(F) is a closed 2-form.
The first Chern class of F is defined to be the cohomology class

e1(F)g = { i

1 2

2W(—)(D)} € H2 (M, R).

The cohomology class is actually independent of the connection, since any other
connection D differs by a global 1-form, Dyu = Du + B A u, so that ©(D;) =
O(D) + dB. Tt is well known that c;(F)g is the image in H2(M,R) of an integral

class ¢; (F) € H?(M,Z) ; by using the exponential exact sequence

02Z—=E—E =0,
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¢1(F) can be defined in Cech cohomology theory as the image by the coboundary
map H'(M,E*) — H*(M,Z) of the cocycle {g;x} € H'(M,E*) defining F; see
e.g. [GrH78] for details. O

We now concentrate on the complex analytic case. If M = X is a complex
manifold X, every connection D on a complex C'* vector bundle F' can be split in
a unique way as a sum of a (1,0) and of a (0,1)-connection, D = D'+ D". In a
local trivialization 6 given by a C°° frame, one can write

(3.5) D'u~pdu+TI"Au,
(3.5") D"u~gd'u+T" Au,
with I' = I'" + I'". The connection is hermitian if and only if I = —(I'"')* in

any orthonormal frame. Thus there exists a unique hermitian connection D corre-
sponding to a prescribed (0,1) part D".

Assume now that the bundle F' itself has a holomorphic structure. The unique
hermitian connection for which D" is the d"” operator defined in § 1 is called the
Chern connection of F. In a local holomorphic frame (ey) of E g, the metric is
given by the hermitian matrix H = (hx,), hay = (ex,eu). We have

{u,v} = Zh/\M“A AT, =ul A HT,
A, p

where u! is the transposed matrix of u, and easy computations yield

d{u,v} = (du)' A Ho + (=1)9°8%y! A (dH AT + Hdv)

= (du+H ‘dHAu)' AHD+ (=1)% "t A (do+H 'dH Av)

using the fact that dH = d'H + d'H and H' = H. Therefore the Chern connection
D coincides with the hermitian connection defined by

Du ~g du + H "dHA u,
(3.6)

D' ~yd + Fildlﬁ Ne= Fildl(yo), D" =d".

It is clear from these relations that D2 = D2 = 0. Consequently D? is given by
to D2 = D'D" + D"D', and the curvature tensor ©(D) is of type (1,1). Since
d'd"+d'd =0, we get

(D'D" + D"D'Yu~g H 'dHAd"w+d"(H "dH Au)
=d"(H 'dH) Au.

(3.7) Proposition. The Chern curvature tensor O(F) := O(D) is such that
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i6(F) € C™°(X, A¥'T% @ Herm(F, F)).

If0 : Eyo = 2 x C" is a holomorphic trivialization and if H is the hermitian
matrixz representing the metric along the fibers of Fyo, then

1O(F) ~p id"(H 'dH) on Q. O

Let (z1,...,2n) be holomorphic coordinates on X and let (ex)i<a<r be an
orthonormal frame of F. Writing

iO(F) = E Cikapdz; Ndzp ® 6:{ R ey,
1<5,k<n, 1<A,pu<r

we can identify the curvature tensor to a hermitian form

(3.8) é(F) (o) = Z Cinan€i€xvATy

1<4,k<n, 1<\, u<r

on T'x ® F'. This leads, in a natural way, to positivity concepts, following definitions
introduced by Kodaira [Kod53], Nakano [Nakb5] and Griffiths [Gri69].

(3.9) Definition. The hermitian vector bundle F' is said to be

a) positive in the sense of Nakano if O(F)(1) > 0 for all non-zero tensors T =
er,\a/azj ®Rey€Tx ®F.

b) positive in the sense of Griffiths if O(F)(£®v) > 0 for all non-zero decomposable
tensors E@v € Tx ® F';

Corresponding semipositivity concepts are defined by relazxing the strict inequalities.

(3.10) Special case of rank 1 bundles. Assume that F' is a line bundle. The hermitian
matrix H = (hq11) associated to a trivialization 6 : Fjp ~ 2 x C is simply a positive
function which we find convenient to denote by e=2¢, ¢ € C°(f2,R). In this case
the curvature form @(F) can be identified to the (1,1)-form 2d'd"y, and

i i
%O(F) = ;dld”QO = ddctp

is areal (1,1)-form. Hence F' is semipositive (in either the Nakano or Griffiths sense)
if and only if ¢ is psh, resp. positive if and only if ¢ is strictly psh. In this setting,
the Lelong-Poincaré equation can be generalized as follows: let o € H°(X, F) be a
non-zero holomorphic section. Then
(3.11) dd*log ||| = [Z,] = --O(F).

™
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Formula (3.11) is immediate if we write ||o|| = |6(c)|e”¥ and if we apply (1.20) to
the holomorphic function f = 6(c). As we shall see later, it is very important for
the applications to consider also singular hermitian metrics.

(3.12) Definition. A singular (hermitian) metric on o line bundle F is a metric
which is given in any trivialization 0 : Fig =02 xC by

€l =16¢)| e ™), ze€, (€F,

where ¢ € Li (12) is an arbitrary function, called the weight of the metric with

respect to the trivialization 6.

If ¢' : Flgr — 2’ x C is another trivialization, ¢’ the associated weight and
g € O*(2N ') the transition function, then 6'(§) = g(x) 8(&) for £ € F,, and so
¢ =@ +log|g| on 2N 2. The curvature form of F is then given formally by the
closed (1, 1)-current %@(F) = dd®p on §2; our assumption ¢ € L}, ({2) guarantees
that @(F) exists in the sense of distribution theory. As in the smooth case, 5-O(F)
is globally defined on X and independent of the choice of trivializations, and its
De Rham cohomology class is the image of the first Chern class ¢1(F) € H%(X,Z)

in H} (X, R). Before going further, we discuss two basic examples.

(3.13) Example. Let D = )" «;D; be a divisor with coefficients a; € Z and let
F = O(D) be the associated invertible sheaf of meromorphic functions u such
that div(u) + D > 0; the corresponding line bundle can be equipped with the
singular metric defined by ||ul| = |u|. If g; is a generator of the ideal of D; on
an open set 2 C X then f(u) = qu;‘j defines a trivialization of O(D) over
2, thus our singular metric is associated to the weight ¢ = )" a;log|g;|. By the
Lelong-Poincaré equation, we find

2-6(0(D)) = dd‘p = D],

where [D] = > a;[D;] denotes the current of integration over D. O

(3.14) Example. Assume that o1,...,0N are non-zero holomorphic sections of F'.
Then we can define a natural (possibly singular) hermitian metric on F* by

2
e N? = Z |€*.aj(x)| for ¢* € Fr.
1<j<n

The dual metric on F is given by

61

€l = 0(a1 (@) + ... + [8(on (2))]2
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with respect to any trivialization 6. The associated weight function is thus given
by @(x) = log (X,<;<n [0(cj(2))|*)"/%. In this case ¢ is a psh function, thus
iO(F) is a closed positive current. Let us denote by X the linear system defined by
01,...,0n and by By =) aj_l(O) its base locus. We have a meromorphic map

&5 : X \ Bx - PN, z - (01(x) :02(x) @ ... on(2)).

Then #@(F) is equal to the pull-back over X ~\ By of the Fubini-Study metric
wrs = 2 log(|z1|?> + ... + |2n[?) of PN~ by &5. O

(3.15) Ample and very ample line bundles. A holomorphic line bundle F over a
compact complex manifold X is said to be

a) wvery ample if the map &5 : X — PN associated to the complete linear system

|F| = P(H°(X,F)) is a regular embedding (by this we mean in particular that
the base locus is empty, i.e. Bjp| = 0).

b) ample if some multiple mF, m > 0, is very ample.

Here we use an additive notation for Pic(X) = H'(X,0*), hence the symbol
mF denotes the line bundle F®™. By Example 3.14, every ample line bundle F
has a smooth hermitian metric with positive definite curvature form; indeed, if
the linear system |mF| gives an embedding in projective space, then we get a
smooth hermitian metric on F®™ and the m-th root yields a metric on F such that
#@(F) = %QSTm p|wrs. Conversely, the Kodaira embedding theorem [Kod54] tells
us that every positive line bundle F is ample (see Exercise 5.14 for a straightforward
analytic proof of the Kodaira embedding theorem).

4. Bochner Technique and Vanishing Theorems

We first recall briefly a few basic facts of Hodge theory. Assume for the moment that
M is a differentiable manifold equipped with a Riemannian metric g = ), g;;dz; ®
dz;. Given a g-form u on M with values in F', we consider the global L? norm

lul? = /M u() 2dV, (z)

where |u| is the pointwise hermitian norm and dVj, is the Riemannian volume form.
The Laplace-Beltrami operator associated to the connection D is

A=DD*+ D*D

where
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D*: C®(M, AT}, @ F) —» C°(M, AT} @ F)

is the (formal) adjoint of D with respect to the L? inner product. Assume that M
is compact. Since

A: C®(M, AT, ® F) — C®(M, AT, ® F)

is a self-adjoint elliptic operator in each degree, standard results of PDE theory
show that there is an orthogonal decomposition

C®(M, AT}, ® F) = HY(M,F) & Im A

where H?(M, F) = Ker A is the space of harmonic forms of degree ¢; HI(M, F) is
a finite dimensional space. Assume moreover that the connection D is integrable,
i.e. that D? = 0. It is then easy to check that there is an orthogonal direct sum

Im A =ImD @ Im D*,

indeed (Du, D*v) = (D?u,v) = 0 for all u,v. Hence we get an orthogonal decom-
position
C*°(M, AT}, ® F) = HY(M,F) & Im D & Im D*,

and Ker A is precisely equal to H9(M, F) ® Im D. Especially, the g-th cohomology
group Ker A/Im A is isomorphic to #?(M, F'). All this can be applied, for example,
in the case of the De Rham groups Hg (M, C), taking F' to be the trivial bundle
F = M x C (notice, however, that a nontrivial bundle F' usually does not admit
any integrable connection):

(4.1) Hodge Fundamental Theorem. If M is a compact Riemannian manifold, there
s an isomorphism
Hin(M,C) ~HI(M,C)

from De Rham cohomology groups onto spaces of harmonic forms. O
A rather important consequence of the Hodge fundamental theorem is a proof

of the Poincaré duality theorem. Assume that the Riemannian manifold (M, g) is
oriented. Then there is a (conjugate linear) Hodge star operator

*: AT} ®C — A™ 9T ®C,  m = dimg M

defined by u A v = (u,v)dV} for any two complex valued g-forms u, v. A standard
computation shows that x commutes with A, hence xu is harmonic if and only if u
is. This implies that the natural pairing

(4.2) HEg(M,C) x HEZ (M, C), ({u}, {v}) — /M uAv
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is a nondegenerate duality, the dual of a class {u} represented by a harmonic form
being {*u}.

Let us now suppose that X is a compact complex manifold equipped with a
hermitian metric w = ) w;rdz; A dZj. Let F be a holomorphic vector bundle on
X equipped with a hermitian metric, and let D = D' + D" be its Chern curvature
form. All that we said above for the Laplace-Beltrami operator A still applies to
the complex Laplace operators

AI — DIDI* + DI*DI A” — DIIDII* + DII*DII

with the great advantage that we always have D'? = D"? = (. Especially, if X is a
compact complex manifold, there are isomorphisms

(4.3) HP4(X,F) ~ HP4(X, F)

between Dolbeault cohomology groups H??(X, F) and spaces HP?(X, F) of A"-
harmonic forms of bidegree (p,q) with values in F. Now, there is a generalized
Hodge star operator

*: APITS @ F — A"Pn9T% @ F*,  n = dimc X,

such that u A xv = (u,v)dV,, for any two F-valued (p,q)-forms, when the wedge
product u A xv is combined with the pairing F' x F* — C. This leads to the Serre
duality theorem [Ser55]: the bilinear pairing

(4.4) HPY(X,F) x H" "4 X, F*), ({u},{v}) — / uAv
X

is a nondegenerate duality. Combining this with the Dolbeault isomorphism, we
may restate the result in the form of the duality formula

(4.4') HI(X, 0% @ O(F))* ~ H™1(X, %P @ O(F*)).

We now proceed to explain the basic ideas of the Bochner technique used to
prove vanishing theorems. Great simplifications occur in the computations if the
hermitian metric on X is supposed to be Kdhler, i.e. if the associated fundamental
(1,1)-form

w = iijkdzj A dzZy,

satisfies dw = 0. It can easily be shown that w is Ké&hler if and only if there are
holomorphic coordinates (z1,...,2,) centered at any point zg € X such that the
matrix of coefficients (w;i) is tangent to identity at order 2, i.e.

wik(2) = 6k + O(|2]*)  at xo.
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It follows that all order 1 operators D, D', D" and their adjoints D*, D"*, D"* admit
at zo the same expansion as the analogous operators obtained when all hermitian
metrics on X or F' are constant. From this, the basic commutation relations of
Kahler geometry can be checked. If A, B are differential operators acting on the
algebra C°(X, A**T% ® F'), their graded commutator (or graded Lie bracket) is
defined by

[A,B] = AB — (-1)*BA

where a,b are the degrees of A and B respectively. If C is another endomorphism
of degree ¢, the following purely formal Jacobi identity holds:

(—1)°*[A,[B,C]] + (=1)*[B,[C, A]] + (-1)"*[C,[4, B]] = 0.

(4.5) Basic commutation relations. Let (X,w) be o Kdhler manifold and let L be
the operators defined by Lu = w Au and A = L*. Then

[DII*,L] = iDIJ [D'*,L] = _iDIIJ
[A,D"] = —iD"™, [A,D'] =iD"*.

Proof (sketch). The first step is to check the identity [d"*,L] = id' for constant
metrics on X = C" and F' = X x C, by a brute force calculation. All three other
identities follow by taking conjugates or adjoints. The case of variable metrics
follows by looking at Taylor expansions up to order 1. O

(4.6) Bochner-Kodaira-Nakano identity. If (X,w) is Kdhler, the complex Laplace
operators A' and A" acting on F-valued forms satisfy the identity

A" = A + [iO(F), Al.

Proof. The last equality in (4.5) yields D™ = —i[A, D'], hence
A" =[D",8"] = —i[D", [4,D"].
By the Jacobi identity we get
[D",[4,D']] = [A,[D',D"]] + [D',[D", A]] = [A,0(F)] +i[D', D"],

taking into account that [D', D"] = D? = @(F'). The formula follows. O

Assume that X is compact and that u € C° (X, APIT*X ® F') is an arbitrary
(p, @)-form. An integration by parts yields
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(A'w,u) = [|D"u||* + ||D"u||* > 0

and similarly for A” ) hence we get the basic a priori inequality
(4.7 (|ID"u||? + ||D"*u||? > / (iO(F), Alu, u)dV,,.
X

This inequality is known as the Bochner-Kodaira-Nakano inequality (see [Boc48],
[Kod53], [Nak55]). When u is A”-harmonic, we get

/ ((iO(F), Alu,u) + (Tou,u))dV < 0.
X

If the hermitian operator [iO(F), A] acting on AP?T% ® F' is positive on each fiber,
we infer that 4 must be zero, hence

HP(X,F) = HP4(X,F) =0

by Hodge theory. The main point is thus to compute the curvature form @(F') and
find sufficient conditions under which the operator [iO(F'), A] is positive definite.
Elementary (but somewhat tedious) calculations yield the following formulae: if
the curvature of F' is written as in (3.8) and u = Y uj kadzr AdzZ; Qey, |J| = p,
|[K|=g¢q,1<)\<risa (p,q)-form with values in F, then

(4.8) (i(O(F), Alu,u) = Z CikAp WJ,jS,\ WI, kS,
Gk, J,S

+ § | Cikau UkRK A TR K p
jik AR K

— Y Cipwtsrs Tk
J Ao d K
where the sum is extended to all indices 1 < j, k < n, 1 < A, u < r and multiindices
|R| = p—1,|S| = ¢ —1 (here the notation usxx is extended to non necessarily
increasing multiindices by making it alternate with respect to permutations). It is
usually hard to decide the sign of the curvature term (4.8), except in some special
cases.

The easiest case is when p = n. Then all terms in the second summation of
(4.8) must have j = k and R = {1,...,n} \ {j}, therefore the second and third
summations are equal. It follows that [i©(F'), A] is positive on (n, ¢)-forms under the
assumption that F is positive in the sense of Nakano. In this case X is automatically
Kéhler since

w = TI‘F(IQ(F)) =i Z Cjk,\)\dzj' N dfk = i@(det F)
7.k, A

is a Kahler metric.
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(4.9) Nakano vanishing theorem ([Nak55]). Let X be a compact complex manifold
and let F' be a Nakano positive vector bundle on X. Then

H"(X,F)=HY(X,Kx®F)=0 for every g > 1. O

Another tractable case is the case where F' is a line bundle (r = 1). Indeed,
at each point z € X, we may then choose a coordinate system which diagonalizes
simultaneously the hermitians forms w(z) and i©(F)(zx), in such a way that

wE) =i Y dyAdz,  OF)(@) =i Y vdz Adz

1<j<n 1<j<n

with v1 < ... < ~,. The curvature eigenvalues v; = 7;(z) are then uniquely defined
and depend continuously on x. With our previous notation, we have v; = ¢;j;11 and
all other coefficients c;ia, are zero. For any (p, ¢)-form v = Y  usxdz;s AdZk ® e1,
this gives

GoF) Auuy =Y (Xu+YX - 3 )l

|J|=p,|K|=q J€EJ JEK 1<j<n
(4.10) > (1 H Y Yaoprt == )

Assume that iO(F) is positive. It is then natural to make the special choice
w = 19(F) for the Kahler metric. Then v; = 1 for j = 1,2,...,n and we ob-
tain ([iO(F), Alu,u) = (p + ¢ — n)|u|*. As a consequence:

(4.11) Akizuki-Kodaira-Nakano vanishing theorem ([AN54)). If F is a positive line
bundle on a compact complex manifold X, then

HP(X,F)=HYX,25 ®F)=0  for p+qg>n+1. O

More generally, if F' is a Griffiths positive (or ample) vector bundle of rank r > 1,
Le Potier [LP75] proved that H?4(X,F) = 0 for p + ¢ > n + r. The proof is
not a direct consequence of the Bochner technique. A rather easy proof has been
found by M. Schneider [Sch74], using the Leray spectral sequence associated to the
projectivized bundle projection P(F) — X.

(4.12) Exercise. It is important for various applications to obtain vanishing theo-
rems which are also valid in the case of semipositive line bundles. The easiest case
is the following result of Girbau [Gir76]: let (X,w) be compact Kéhler; assume that
F is a line bundle and that i©(F) > 0 has at least n — k positive eigenvalues at
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each point, for some integer k > 0; show that H?4(X, F) =0forp+q¢>n+k+1.
Hint: use the K&hler metric w. = iO(F) + ew with € > 0 small.

A stronger and more natural “algebraic version” of this result has been obtained
by Sommese [Som78]: define F’ to be k-ample if some multiple mF is such that the
canonical map

¢|mF| XN B‘mp‘ — PN-!
has at most k-dimensional fibers and dim B),,,r| < k. If X is projective and F is
k-ample, show that H»4(X,F)=0forp+q¢>n+k+1.
Hint: prove the dual result HP?(X, F~') = 0 for p+ q < n — k — 1 by induction
on k. First show that F' 0-ample = F positive; then use hyperplane sections Y C X
to prove the induction step, thanks to the exact sequences

0— R @F'RO(-Y) — Q@ F ' — (25 ®F '), — 0,
—1 _ — —
0— V'@ Fy — (% ®F ), — % e F, —0. O

5. L2 Estimates and Existence Theorems

The starting point is the following L? existence theorem, which is essentially due
to Hoérmander [Hor65, 66], and Andreotti-Vesentini [AV65]. We will only outline
the main ideas, referring e.g. to [Dem82b] for a detailed exposition of the technical
situation considered here.

(5.1) Theorem. Let (X,w) be a Kdahler manifold. Here X is not necessarily compact,
but we assume that the geodesic distance é,, is complete on X . Let F' be a hermitian
vector bundle of rankr over X, and assume that the curvature operator A = AR{, =
[iO(F), Ay ] is positive definite everywhere on AP1T% QF, ¢ > 1. Then for any form
g € L*(X, AT ®F) satisfying D"g = 0 and [, (A™'g, g) dV,, < 400, there exists
[ € L*(X,AP171T% @ F) such that D" f = g and

/ |fI? V., S/(A_lg,g)de-
X X

Proof. The assumption that §,, is complete implies the existence of cut-off functions
¥, with arbitrarily large compact support such that |di,| < 1 (take 1, to be a
function of the distance x — 4, (o, z), which is an almost everywhere differentiable
1-Lipschitz function, and regularize if necessary). From this, it follows that very
form u € L?(X,APT% ® F) such that D"u € L? and D"*u € L? in the sense
of distribution theory is a limit of a sequence of smooth forms u, with compact
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support, in such a way that v, — w, D"u, — D"u and D"*u, — D"*u in L?
(just take u, to be a regularization of 1, u). As a consequence, the basic a priori
inequality (4.7) extends to arbitrary forms u such that u, D"u, D"*u € L? . Now,
consider the Hilbert space orthogonal decomposition

L*(X,AP'T% ® F) = Ker D" @® (Ker D")*,

observing that Ker D" is weakly (hence strongly) closed. Let v = v; + v2 be the
decomposition of a smooth form v € DP4(X, F) with compact support according
to this decomposition (vi, v2 do not have compact support in general!). Since
(Ker D")* C Ker D"* by duality and g, v; € Ker D" by hypothesis, we get D"*vy =
0 and

(g, 0)2 = (g, 00)? < /X (A~1g,g)dV, /X (Avy, vn) dV,

thanks to the Cauchy-Schwarz inequality. The a priori inequality (4.7) applied to
u = v yields

/ (Avi,v1) AV, < [|ID" 01| + [ID"v1|* = [|[D"* w1 ||* = || D"*v]|*.
X
Combining both inequalities, we find

(g0 < ( [ (47 g.g0avs) D" ol

for every smooth (p,q)-form v with compact support. This shows that we have a
well defined linear form

w=D"v+— (v,g), L*X,AP" 'T% ® F) > D"*(D"(F)) — C

on the range of D'"*. This linear form is continuous in L? norm and has norm < C

with 12
C= (/X(A_lg,g) de) .

By the Hahn-Banach theorem, there is an element f € L?(X, AP9~'T% ® F) with
[If]] € C, such that (v,g) = (D"™*v, f) for every v, hence D" f = g in the sense
of distributions. The inequality ||f|| < C is equivalent to the last estimate in the
theorem. O

The above L? existence theorem can be applied in the fairly general context of
weakly pseudoconver manifolds. By this, we mean a complex manifold X such that
there exists a smooth psh exhaustion function ¢ on X (4 is said to be an exhaustion
if for every ¢ > 0 the sublevel set X. = ¢~1(c) is relatively compact, i.e. 1(z)
tends to +00 when z is taken outside larger and larger compact subsets of X). In
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particular, every compact complex manifold X is weakly pseudoconvex (take ¢ =
0), as well as every Stein manifold, e.g. affine algebraic submanifolds of CV (take
Y(z) = |z|?), open balls X = B(z,r) (take ¢(z) = 1/(r — |z — 20|%)), convex open
subsets, etc. Now, a basic observation is that every weakly pseudoconvex Kahler
manifold (X,w) carries a complete Kihler metric: let ¢ > 0 be a psh exhaustion
function and set

we = w+eid'd"P? = w + 2e(2iypd'd" Y +id'p A d"p).

Then |d|,, < 1/e and [¢(z) — P(y)| < e 16, (z,y). It follows easily from this
estimate that the geodesic balls are relatively compact, hence ¢, is complete for
every € > 0. Therefore, the I? existence theorem can be applied to each Kahler
metric we, and by passing to the limit it can even be applied to the non necessarily
complete metric w. An important special case is the following

(5.2) Theorem. Let (X,w) be a Kdhler manifold, dim X = n. Assume that X is
weakly pseudoconvex. Let F' be a hermitian line bundle and let

7(z) < ... < Ynl)

be the curvature eigenvalues (i.e. the eigenvalues of iO(F) with respect to the
metric w) at every point. Assume that the curvature is positive, i.e. v1 > 0 ev-
erywhere. Then for any form g € L?*(X,A™9T% ® F) satisfying D"g = 0 and
Jx{On+ -+ 7)) Hgl? AV < +o0, there ewists f € L*(X, AP 1T @ F) such
that D" f = g and

/ \fI2 V., S/('yl+...+'yq)_1|g|2de.
X X

Proof. Indeed, for p = n, Formula 4.10 shows that
<AU,U) Z (71 +...+ 7q)|u|27

hence (A7 u,u) > (71 + ... + ) Hul% O

An important observation is that the above theorem still applies when the her-
mitian metric on F' is a singular metric with positive curvature in the sense of
currents. In fact, by standard regularization techniques (convolution of psh func-
tions by smoothing kernels), the metric can be made smooth and the solutions
obtained by (5.1) or (5.2) for the smooth metrics have limits satisfying the desired
estimates. Especially, we get the following
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(5.3) Corollary. Let (X,w) be a Kdihler manifold, dim X = n. Assume that X is
weakly pseudoconvex. Let F' be a holomorphic line bundle equipped with o singular
metric whose local weights are denoted p € L . Suppose that

loc*
iO(F) =2id'd"p > ew

for some € > 0. Then for any form g € L*(X, A™9T% ® F) satisfying D"g = 0,
there exists f € L*(X, AP971T% ® F) such that D" f = g and

1
/ |f|?e ¢ dV, < —/ lg|>e~2¢ dV,. O
b'¢ qa€ Jx

Here we denoted somewhat incorrectly the metric by |f|?e=2%, as if the weight
o was globally defined on X (of course, this is so only if F' is globally trivial). We
will use this notation anyway, because it clearly describes the dependence of the
L? norm on the psh weights.

We now introduce the concept of multiplier ideal sheaf, following A. Nadel

[Nad89]. The main idea actually goes back to the fundamental works of Bombieri
[Bom70] and H. Skoda [SkoT2a].

(5.4) Definition. Let ¢ be a psh function on an open subset 2 C X ; to ¢ is asso-
ciated the ideal subsheaf I(v) C Og of germs of holomorphic functions f € Ogq
such that |f|>e 2% is integrable with respect to the Lebesgue measure in some local
coordinates near x.

The zero variety V(Z(p)) is thus the set of points in a neighborhood of which
e~ 2% is non integrable. Of course, such points occur only if ¢ has logarithmic poles.
This is made precise as follows.

(5.5) Definition. A psh function ¢ is said to have a logarithmic pole of coefficient
v at a point x € X if the Lelong number

e o(2)
v(p, @) := lim inf log |z — 7|

is non-zero and if v(p,z) =.
(5.6) Lemma (Skoda [Sko72a]). Let ¢ be a psh function on an open set 2 and let

T € (2.

a) If v(p,x) < 1, then e~2% is integrable in a neighborhood of x, in particular
I((p)z = Og’z.
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b) If v(p,z) > n + s for some integer s > 0, then e 29 > Clz — z| 2" 2% in a
neighborhood of x and Z(p), C m?;t;, where mg ; is the mazimal ideal of Og .

c) The zero variety V(Z(p)) of Z(p) satisfies

En(¢) CV(Z(¢)) C Er(p)

where E.(p) = {z € X ; v(p,z) > c} is the c-sublevel set of Lelong numbers
of .

Proof. a) Set ©® = dd°p and v = v(0,x) = v(p,z). Let x be a cut-off function with

support in a small ball B(z,r), equal to 1 in B(z,r/2). As (dd°log|z|)™ = do, we
get

o(z) = /B QRO g ¢ )"

- /B A K(OR(O) Ao € 2| (a og ¢ =)

for z € B(z,r/2). Expanding dd°(xy) and observing that dy = dd°x = 0 on
B(z,r/2), we find

p(z) = /B( )X(C)@(C) Alog|¢ — 2|(dd°log |¢ — z|)™ ! + smooth terms
on B(z,r/2). Fix r so small that
[, XOOE A @ logl¢ — 2™ < v(©,2,7) <1.
By continuity, there exists §,& > 0 such that
1= [ MO8 A @ gl — ) <10

for all z € B(z,¢). Applying Jensen’s convexity inequality to the probability mea-
sure

dpis(0) = I(z) " X(QO) A (dd log ¢ — )™,
we find
—p(2) = /B TGl = (@ +00) =

e 20 < ¢ ¢ — 2|77 ®) dp, (¢).
B(z,r)

dp-(¢) < C1[¢ — 2|~C"=20(¢) A (dd°|¢?)"! = Ca|¢ — 2" doe (),
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we get

e—2cp(z) < 03/ |C _ z|—2(1—6)—(2n—2)da@(§-)7
B(z,r)

and the Fubini theorem implies that e~2¢(%) is integrable on a neighborhood of z.

b) If v(p,x) = v, the convexity properties of psh functions, namely, the convexity
of logr + sup,_, -, ¢(z) implies that

¢(2) < vloglz — z|/ro + M,

where M is the supremum on B(z,ry). Hence there exists a constant C' > 0 such
that e=2¢(*) > C|z — 2|=2" in a neighborhood of z. The desired result follows from
the identity

e} 2 ]
/ 7|Ea¢;z | dV(z) = Const/ (Z|aa|2r2‘°‘|)r2"71727 dr,
By |2* 0

which is an easy consequence of Parseval’s formula. In fact, if v has integral part
[v] = n + s, the integral converges if and only if a, = 0 for |a| < s.

c) is just a simple formal consequence of a) and b). O

(5.7) Proposition ([Nad89]). For any psh function ¢ on {2 C X, the sheaf I(p) is
a coherent sheaf of ideals over (2. Moreover, if {2 is a bounded Stein open set, the
sheaf Z(y) is generated by any Hilbert basis of the L? space H2(12,¢) of holomorphic
functions f on 2 such that [, |f]?e™?? d\ < +00.

Proof. Since the result is local, we may assume that (2 is a bounded pseudoconvex
open set in C". By the strong noetherian property of coherent sheaves, the family
of sheaves generated by finite subsets of H2 ({2, ¢) has a maximal element on each
compact subset of 2, hence H?(f2,¢) generates a coherent ideal sheaf J C Og.
It is clear that J C Z(y); in order to prove the equality, we need only check that
Tz + Z(@)z N msﬂ"j = I(p), for every integer s, in view of the Krull lemma. Let
f € Z(p)z be defined in a neighborhood V of z and let 6 be a cut-off function
with support in V' such that § = 1 in a neighborhood of z. We solve the equation
d"u = g := d"(6f) by means of Hérmander’s L? estimates 5.3, where F is the
trivial line bundle 2 x C equipped with the strictly psh weight

P(2) = ¢(2) + (n+ s)log|z — x| + |2|*.

We get a solution u such that [, [u|?e=2¢|z — z|2("*+$)dX < oo, thus F = 6f — u
is holomorphic, F' € H*(2,¢) and f; — Fy = uy € I(p), N mg ;. This proves the
coherence. Now, .7 is generated by any Hilbert basis of H2 (2, ), because it is well
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known that the space of sections of any coherent sheaf is a Fréchet space, therefore
closed under local L? convergence. O

The multiplier ideal sheaves satisfy the following basic functoriality property
with respect to direct images of sheaves by modifications.

(5.8) Proposition. Let p: X' = X be a modification of non singular complex man-
ifolds (i.e. a proper generically 1:1 holomorphic map), and let ¢ be a psh function
on X. Then

1 (O(Kx) @ I(p o p) = O(Kx) @ L(p).-

Proof. Let n = dimX = dim X’ and let S C X be an analytic set such that
p:X'\NS8" = X\ S is a biholomorphism. By definition of multiplier ideal sheaves,
O(Kx)®Z(yp) is just the sheaf of holomorphic n-forms f on open sets U C X such
that i"” fAfe ¢ L} .(U). Since ¢ is locally bounded from above, we may even
consider forms f which are a priori defined only on U \ S, because f will be in
L% .(U) and therefore will automatically extend through S. The change of variable
formula yields

[ieaFer = [t apgeten
U u=H(U)

hence f € I'(U,O(Kx) ® Z(p)) iff u*f € I'(uw (U), O(Kx+) ® Z(p o u)). Proposi-
tion 5.8 is proved. O

(5.9) Remark. If ¢ has analytic singularities (according to Definition 1.10), the
computation of Z(p) can be reduced to a purely algebraic problem.

The first observation is that Z(p) can be computed easily if ¢ has the form
¢ = Y ajloglg;| where D; = gj_l(O) are nonsingular irreducible divisors with
normal crossings. Then Z(y) is the sheaf of functions h on open sets U C X such

that
/ 112 T 195122 dV" < +oo.
U

Since locally the g; can be taken to be coordinate functions from a local coordinate
system (21, ..., 2,), the condition is that h is divisible by ] g;nj where m;—a; > —1
for each j, i.e. m; > |a;] (integer part). Hence

I(p) = O(=|D]) = O(= Y _|o;]D;)

where |D| denotes the integral part of the Q-divisor D = )" a; D;.
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Now, consider the general case of analytic singularities and suppose that
¢ ~ 2log (|fi|*> + --- + |fn|?) near the poles. By the remarks after Defini-
tion 1.10, we may assume that the (f;) are generators of the integrally closed
ideal sheaf J = J(p/a), defined as the sheaf of holomorphic functions A such
that |h| < Cexp(p/a). In this case, the computation is made as follows (see also
L. Bonavero’s work [Bon93], where similar ideas are used in connection with “sin-
gular” holomorphic Morse inequalities).

First, one computes a smooth modification p : X = X of X such that weJ is
an invertible sheaf O(—D) associated with a normal crossing divisor D = )" \;D;,
where (D;) are the components of the exceptional divisor of X (take the blow-up
X' of X with respect to the ideal 7 so that the pull-back of J to X' becomes
an invertible sheaf O(—D’), then blow up again by Hironaka [Hir64] to make X'
smooth and D' have normal crossings). Now, we have K = p*Kx + R where
R = )" p;D; is the zero divisor of the Jacobian function J,, of the blow-up map.
By the direct image formula 5.8, we get

I(p) = s (O(K g — p* Kx) @ I(p o p)) = i (O(R) @ Z(ip 0 ).

Now, (f; o ) are generators of the ideal O(—D), hence

popun~ay Alog|gl

where g; are local generators of O(—D;). We are thus reduced to computing multi-
plier ideal sheaves in the case where the poles are given by a Q-divisor with normal
crossings »_ aX;D;. We obtain Z(p o u) = O(— >_|aA;]|D;), hence

I(p) = 05 (D _(pj — LaX;])D;). =

(5.10) Exercise. Compute the multiplier ideal sheaf Z(yp) associated with ¢ =
log(|z1|** + ... + |zp|®?) for arbitrary real numbers a; > 0.

Hint: using Parseval’s formula and polar coordinates z; = r;e!%, show that the
problem is equivalent to determining for which p-tuples (81, ..., 0p) € NP the inte-
gral

/ P2 e rydry L rpdr, / oo e gy,
[0,1]7 [0,1]? bt Ay b b

T Y
is convergent. Conclude from this that Z(p) is generated by the monomials
2P ..z,/f" such that Y (8, + 1)/ap > 1. (This exercise shows that the analytic
definition of Z(y) is sometimes also quite convenient for computations). O
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Let F be a line bundle over X with a singular metric h of curvature current
On(F). If ¢ is the weight representing the metric in an open set 2 C X, the
ideal sheaf Z(y) is independent of the choice of the trivialization and so it is the
restriction to (2 of a global coherent sheaf Z(h) on X. We will sometimes still
write Z(h) = Z(p) by abuse of notation. In this context, we have the following
fundamental vanishing theorem, which is probably one of the most central results
of analytic and algebraic geometry (as we will see later, it contains the Kawamata-
Viehweg vanishing theorem as a special case).

(5.11) Nadel vanishing theorem ([Nad89], [Dem93b]). Let (X,w) be a Kihler weakly
pseudoconver manifold, and let F be a holomorphic line bundle over X equipped
with a singular hermitian metric h of weight p. Assume that i@y (F) > ew for some
continuous positive function € on X. Then

HY(X,0(Kx + F)®1Z(h)) =0 for all ¢ > 1.

Proof. Let L£? be the sheaf of germs of (n,q)-forms u with values in F and with
measurable coefficients, such that both |u|?e=2% and |d"u|?e~2% are locally inte-
grable. The d" operator defines a complex of sheaves (£*,d") which is a resolution
of the sheaf O(Kx + F) ® Z(p): indeed, the kernel of d" in degree 0 consists of
all germs of holomorphic n-forms with values in F' which satisfy the integrability
condition; hence the coefficient function lies in Z(yp); the exactness in degree ¢ > 1
follows from Corollary 5.3 applied on arbitrary small balls. Each sheaf £ is a C*°-
module, so £* is a resolution by acyclic sheaves. Let ¥ be a smooth psh exhaustion
function on X. Let us apply Corollary 5.3 globally on X, with the original metric
of F multiplied by the factor e~X°¥, where x is a convex increasing function of
arbitrary fast growth at infinity. This factor can be used to ensure the convergence
of integrals at infinity. By Corollary 5.3, we conclude that H?(I'(X,L*)) = 0 for
q > 1. The theorem follows. O

(5.12) Corollary. Let (X,w), F' and ¢ be as in Theorem 5.11 and let x1,...,xN be
isolated points in the zero variety V(Z(p)). Then there is a surjective map

HYX,Kx +F) — P OEx + L)o; ® (0x/Z(p))
1<GEN

Tj

Proof. Consider the long exact sequence of cohomology associated to the short
exact sequence 0 — Z(yp) - Ox — Ox/Z(p) — 0 twisted by O(Kx + F), and
apply Theorem 5.11 to obtain the vanishing of the first H' group. The asserted
surjectivity property follows. O
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(5.13) Corollary. Let (X,w), F and ¢ be as in Theorem 5.11 and suppose that the
weight function ¢ is such that v(p,x) > n + s at some point © € X which is an
isolated point of Fy1(¢). Then H*(X, Kx + F) generates all s-jets at x.

Proof. The assumption is that v(p,y) < 1 for y near z, y # x. By Skoda’s lemma
5.6 b), we conclude that e 2% is integrable at all such points y, hence Z(p), = Ox,y,
whilst Z(p), C mf{i by 5.6 a). Corollary 5.13 is thus a special case of 5.12. O

The philosophy of these results (which can be seen as generalizations of the
Hormander-Bombieri-Skoda theorem [Bom70], [Sko72a, 75]) is that the problem of
constructing holomorphic sections of K x + F' can be solved by constructing suitable
hermitian metrics on F' such that the weight ¢ has isolated poles at given points z;.

(5.14) Exercise. Assume that X is compact and that L is a positive line bundle
on X. Let {z1,...,2n} be a finite set. Show that there are constants a,b > 0
depending only on L and N such that H°(X,mL) generates jets of any order s at
all points z; for m > as +b.

Hint: Apply Corollary 5.12 to F = —Kx + mL, with a singular metric on L of
the form h = hge~%¥, where hg is smooth of positive curvature, € > 0 small and
(%) ~ log|z — z;| in a neighborhood of z;.

Derive the Kodaira embedding theorem from the above result:

(5.15) Theorem (Kodaira). If L is a line bundle on a compact complex manifold,
then L is ample if and only if L is positive. O

(5.16) Exercise (solution of the Levi problem). Show that the following two prop-
erties are equivalent.

a) X is strongly pseudoconvex, i.e. X admits a strongly psh exhaustion function.

b) X is Stein, i.e. the global holomorphic functions H°(X,Ox) separate points
and yield local coordinates at any point, and X is holomorphically convex (this
means that for any discrete sequence z,, there is a function f € H°(X, Ox) such
that |f(2,)] = o). O

(5.17) Remark. As long as forms of bidegree (n, q) are considered, the L? estimates
can be extended to complex spaces with arbitrary singularities. In fact, if X is a
complex space and ¢ is a psh weight function on X, we may still define a sheaf
Kx(p) on X, such that the sections on an open set U are the holomorphic n-forms
f on the regular part U N X, satisfying the integrability condition in” fAfe %% €
Ll (U). In this setting, the functoriality property 5.8 becomes

loc
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px (Exi (p o)) = Kx(p)

for arbitrary complex spaces X, X' such that u : X' — X is a modification. If
X is nonsingular we have Kx(p) = O(Kx) ® Z(p), however, if X is singular,
the symbols Kx and Z(p) must not be dissociated. The statement of the Nadel
vanishing theorem becomes H4(X, O(F) ® Kx(p)) = 0 for ¢ > 1, under the same
assumptions (X Kéhler and weakly pseudoconvex, curvature > ew). The proof
can be obtained by restricting everything to X;eg. Although in general X,e, is not
weakly pseudoconvex (e.g. in case codim Xging > 2), X;eg is always Kahler complete
(the complement of a proper analytic subset in a K#hler weakly pseudoconvex
space is complete Kéhler, see e.g. [Dem82a]). As a consequence, Nadel’s vanishing
theorem is essentially insensitive to the presence of singularities. O

6. Numerically Effective Line Bundles

Many problems of algebraic geometry (e.g. problems of classification of algebraic
surfaces or higher dimensional varieties) lead in a natural way to the study of
line bundles satisfying semipositivity conditions. It turns out that semipositivity
in the sense of curvature (at least, as far as smooth metrics are considered) is not
a very satisfactory notion. A more flexible notion perfectly suitable for algebraic
purposes is the notion of numerical effectivity. The goal of this section is to give
a few fundamental algebraic definitions and to discuss their differential geometric
counterparts. We first suppose that X is a projective algebraic manifold, dim X =
n.

(6.1) Definition. A holomorphic line bundle L over a projective manifold X is said
to be numerically effective, nef for short, if L-C = [, c1(L) > 0 for every curve
CcX.

If L is nef, it can be shown that L? - Y = [, ¢1(L)? > 0 for any p-dimensional
subvariety Y C X (see e.g. [Har70]). In relation to this, let us recall the Nakai-
Moishezon ampleness criterion: a line bundle L is ample if and only if L? - Y > 0
for every p-dimensional subvariety Y. From this, we easily infer

(6.2) Proposition. Let L be a line bundle on a projective algebraic manifold X, on
which an ample line bundle A and a hermitian metric w are given. The following
properties are equivalent:

a) L is nef;
b) for any integer k > 1, the line bundle kL + A is ample;
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c) for every e >0, there is a smooth metric h, on L such that i@, (L) > —ew.

Proof. a) = b). If L is nef and A is ample then clearly kL + A satisfies the Nakai-
Moishezon criterion, hence kL + A is ample.

b) = c¢). Condition ¢) is independent of the choice of the hermitian metric, so we
may select a metric h4 on A with positive curvature and set w =iO(A). f kL + A
is ample, this bundle has a metric hir4+a of positive curvature. Then the metric
hr = (hgr+a ® h;,l)l/’c has curvature

i0(L) = %(i@(kL + A) —i0(4)) > —%i@(A);

in this way the negative part can be made smaller than ew by taking k large
enough.

¢) = a). Under hypothesis c), we get L-C = [ %@he (L) > —5= [, w for every

curve C and every € > 0, hence L - C > 0 and L is nef. O

Let now X be an arbitrary compact complex manifold. Since there need not
exist any curve in X, Property 6.2 c) is simply taken as a definition of nefness
([DPS94]):

(6.3) Definition. A line bundle L on a compact complex manifold X is said to
be nef if for every € > 0, there is a smooth hermitian metric h. on L such that
iOp (L) > —cw.

In general, it is not possible to extract a smooth limit hg such that i@, (L) > 0.
The following simple example is given in [DPS94] (Example 1.7). Let E be a non
trivial extension 0 - O — E — O — 0 over an elliptic curve C and let X = P(E)
be the corresponding ruled surface over C. Then L = Op(g)(1) is nef but does
not admit any smooth metric of nonnegative curvature. This example answers
negatively a question raised by [Fuj83].

Let us now introduce the important concept of Kodaira-Iitaka dimension of a
line bundle.

(6.4) Definition. If L is a line bundle, the Kodaira-Titaka dimension k(L) is the
supremum of the rank of the canonical maps

@, : X\Bp,—PV}), zr—H,={0€Vy,;0(x) =0}, m>1

with Vi, = H°(X,mL) and By = (\,ey, 07 '(0) = base locus of V. In case
Vin = {0} for all m > 1, we set k(L) = —oo.
A line bundle is said to be big if k(L) = dim X.
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The following lemma is well known (the proof is a rather elementary conse-
quence of the Schwarz lemma).

(6.5) Serre-Siegel lemma ([Ser54], [Sie55]). Let L be any line bundle on a compact
complex manifold. Then we have

RO (X, mL) < O(m"*)) form>1,

and k(L) is the smallest constant for which this estimate holds. O

We now discuss the various concepts of positive cones in the space of numerical
classes of line bundles, and establish a simple dictionary relating these concepts to
corresponding concepts in the context of differential geometry.

Let us recall that an integral cohomology class in H?(X,Z) is the first Chern
class of a holomorphic (or algebraic) line bundle if and only if it lies in the Neron-
Severi group

NS(X) = Ker (H*(X,Z) — H*(X,Ox))

(this fact is just an elementary consequence of the exponential exact sequence
0—>7Z— 0O — 0= 0). If X is compact Kahler, as we will suppose from now
on in this section, this is the same as saying that the class is of type (1,1) with
respect to Hodge decomposition.
Let NSr(X) be the real vector space NS(X) ® R C H2(X,R). We define four

convex cones

Kamp(X) C Keﬂ‘(X) C NSR(X),

Knef(X) C Kpsef(X) C NSR(X)

which are, respectively, the convez cones generated by Chern classes ¢; (L) of am-
ple and effective line bundles, resp. the closure of the convex cones generated by
numerically effective and pseudo-effective line bundles; we say that L is effective
if mL has a section for some m > 0, i.e. if O(mL) ~ O(D) for some effective
divisor D ; and we say that L pseudo-effective if ¢; (L) is the cohomology class of
some closed positive current 7', i.e. if L can be equipped with a singular hermitian
metric h with T = %Oh (L) > 0 as a current. For each of the ample, effective, nef
and pseudo-effective cones, the first Chern class ¢; (L) of a line bundle L lies in the
cone if and only if L has the corresponding property (for Kpeer use the fact that
the space of positive currents of mass 1 is weakly compact; the case of all other
cones is obvious).

(6.6) Proposition. Let (X,w) be a compact Kihler manifold. The numerical cones
satisfy the following properties.

2) Kamp = Konp C Koy Knet C Kpser-
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b) If moreover X is projective algebraic, we have Kamp = K2 (therefore K amp =
Knef)’ and Keﬁ' = Kpsef-

If L is a line bundle on X and h denotes a hermitian metric on L, the following
properties are equivalent:

¢) ¢1(L) € Kamp < 3¢ > 0, 3h smooth such that iO,(L) > ¢
d) ci1(L) € Kper & Ve > 0, 3h smooth such that i (L) > —
e) c1(L) € Kpser < 3h possibly singular such that 1O, (L) >

f) If moreover X is projective algebraic, then
ci(L) € K © k(L) =dim X
& Je > 0, 3h possibly singular such that i@ (L) > ew.

Proof. ¢) and d) are already known and e) is a definition.

a) The ample cone K, is always open by definition and contained in Kpef, so the
first inclusion is obvious (Kymp is of course empty if X is not projective algebraic).
Let us now prove that Kner C Kpser. Let L be a line bundle with ¢1(L) € Kpet.
Then for every € > 0, there is a current T, = 5-0p, (L) > —cw. Then T, +ew is a
closed positive current and the family is umformly bounded in mass for ¢ € ]0,1],

since
/ (T: + ew) Aw™ ! =/ ci(L) Aw™ ™t +5/ w".
b'e b'e b's

By weak compactness, some subsequence converges to a weak limit 7" > 0 and T €
¢1(L) (the cohomology class {T'} of a current is easily shown to depend continuously
on T with respect to the weak topology; use e.g. Poincaré duality to check this).

b) If X is projective, the equality Kamp = K¢ is a simple consequence of 6.2 b)
and of the fact that ampleness (or positivity) is an open property. It remains to
show that Kpser C Ker- Let L be a line bundle with ¢; (L) € Kpser and let hy, be a
singular hermitian on L such that T = ;-@(L) > 0. Fix a point 2o € X such that
the Lelong number of T' at xg is zero, and take a sufficiently positive line bundle A
(replacing A by a multiple if necessary), such that A — Kx has a singular metric
ha_k, of curvature > ew and such that hg_g, is smooth on X ~\ {z¢} and has
an isolated logarithmic pole of Lelong number > n at xy. Then apply Corollary
5.13 to F = mL + A — Kx equipped with the metric h$™ ® ha_k. Since the
weight ¢ of this metric has a Lelong number > n at zy and a Lelong number equal
to the Lelong number of T' = %O(L) at nearby points, limsup,_,, v(T,z) =
v(T,z9) = 0, Corollary 5.13 implies that H*(X, Kx + F) = H°(X,mL + A) has
a section which does not vanish at z¢. Hence there is an effective divisor D,, such
that O(mL + A) = O(Dy,) and ¢1(L) = 2{Dp} — Lei(A) = lim L{D,} is in
Keg. O
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f) Fix a nonsingular ample divisor A. If ¢ (L) € K, there is an integer m > 0 such
that ¢1(L)— L ¢1 (A) is still effective, hence for m, p large we have mpL—pA = D+F
with an effective divisor D and a numerically trivial line bundle F'. This implies
O(kmpL) = O(kpA+kD+kF) D O(kpA+kF), hence h°(X, kmpL) > h(X, kpA+
kF) ~ (kp)™A™/n! by the Riemann-Roch formula. Therefore k(L) = n.

If k(L) = n, then h°(X, kL) > ck™ for k > ko and ¢ > 0. The exact cohomology
sequence

0 — H°(X,kL— A) — H°(X,kL) — H°(A,kL;4)

where h°(A, kL;4) = O(k™ ') shows that kL — A has non-zero sections for k large.
If D is the divisor of such a section, then kL ~ O(A + D). Select a smooth metric
on A such that %@(A) > gow for some g9 > 0, and take the singular metric on
O(D) with weight function ¢p = > a;log|g;| described in Example 3.13. Then
the metric with weight ¢, = £(¢a + ¢p) on L yields

i

5-0(0) = & (5-6(4) + [D]) > (co/K)

as desired.
Finally, the curvature condition i@ (L) > ew in the sense of currents yields by
definition ¢; (L) € K¢ Moreover, b) implies K ., = Kgg. O

sef -

Before going further, we need a lemma.

(6.7) Lemma. Let X be a compact Kdhler n-dimensional manifold, let L be a nef
line bundle on X, and let E be an arbitrary holomorphic vector bundle. Then
h(X,0(E) ® O(kL)) = o(k™) as k — +oo, for every ¢ > 1. If X is projective
algebraic, the following more precise bound holds:

hi(X,0(E) ® O(kL)) = O(k™ %), Vg >0.

Proof. The Kahler case will be proved in Section 12, as a consequence of the holo-
morphic Morse inequalities. In the projective algebraic case, we proceed by induc-
tion on n = dim X. If n = 1 the result is clear, as well as if ¢ = 0. Now let A be a
nonsingular ample divisor such that E ® O(A — Kx) is Nakano positive. Then the
Nakano vanishing theorem applied to the vector bundle F' = E® O(kL + A— Kx)
shows that H4(X,O(E) ® O(kL + A)) = 0 for all ¢ > 1. The exact sequence

0— O(kL) > O(kL+ A) - O(kL+ A);a =0
twisted by E implies
HY(X,0(E) ® O(kL)) ~ H" (A, O(E;a ® O(kL + A)4),
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and we easily conclude by induction since dim A = n—1. Observe that the argument
does not work any more if X is not algebraic. It seems to be unknown whether the
O(k™ ) bound still holds in that case. O

(6.8) Corollary. If L is nef, then L is big (i.e. k(L) = n) if and only if L™ > 0.
Moreover, if L is nef and big, then for every § > 0, L has a singular metric h = e=2¢
such that max,ex v(p,z) <6 and iO(L) > ew for some € > 0. The metric h can
be chosen to be smooth on the complement of a fired divisor D, with logarithmic
poles along D.

Proof. By Lemma 6.7 and the Riemann-Roch formula, we have h°(X,kL) =
X(X,kL) + o(k™) = k™L™/n! + o(k™), whence the first statement. If L is big, the
proof made in (6.6 f) shows that there is a singular metric h; on L such that

i 1/1i

63, (L) = 7 (5-6(4) + [D])

(L) =+ (5-6(4) +[D]
with a positive line bundle A and an effective divisor D. Now, for every ¢ > 0,
there is a smooth metric h. on L such that -6, (L) > —ew, where w = ;-0(A).
The convex combination of metrics h. = h¥*hl~*¢ is a singular metric with poles
along D which satisfies

i@h; (L) > e(w + [D]) = (1 — ke)ew > kew.

Its Lelong numbers are ev(D, z) and they can be made smaller than § by choosing
€ > 0 small. O

We still need a few elementary facts about the numerical dimension of nef line
bundles.

(6.9) Definition. Let L be a nef line bundle on a compact Kihler manifold X. One
defines the numerical dimension of L to be

v(L) = ma.x{k =0,...,n; a(L)*#0in H%(X,R)},

By Corollary 6.8, we have k(L) = n if and only if (L) = n. In general, we
merely have an inequality.

(6.10) Proposition. If L is a nef line bundle on a compact Kdhler manifold, then
k(L) < v(L).
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Proof. By induction on n = dim X. If (L) = n or k(L) = n the result is true, so
we may assume 7 := k(L) < n—1and k := v(L) < n—1. Fix m > 0 so that
& = &|,,,| has generic rank r. Select a nonsingular ample divisor A in X such that
the restriction of &|,,,1| to A still has rank 7 (for this, just take A passing through a
point & ¢ Bjp,| at which rank(d®,) = r < n, in such a way that the tangent linear
map d®;t, , still has rank r). Then x(Lja) > r = x(L) (we just have an equality
because there might exist sections in H°(A,mL;4) which do not extend to X). On
the other hand, we claim that v(Lj4) = k = v(L). The inequality v(L;4) > v(L)
is clear. Conversely, if we set w = %@(A) > 0, the cohomology class c¢;(L)* can
be represented by a closed positive current of bidegree (k, k)

. i k
T = 51_r>r(1) (5(9;15 (L) + sw)
after passing to some subsequence (there is a uniform bound for the mass thanks
to the Kihler assumption, taking wedge products with w™ *). The current 7' must
be non-zero since ¢;(L)* # 0 by definition of k¥ = v(L). Then {[4]} = {w} as
cohomology classes, and

/ cl(LfA)k A wn_l_k = / CI(L)k A [A] A wn_l_k = / T A wn_k > 0
This implies v(L;4) > k, as desired. The induction hypothesis with X replaced by
A yields
K(L) < £(Lya) < v(Lya) < v(L). 0

(6.11) Remark. It may happen that x(L) < v(L): take e.g.
L—-X= X1 X X2

equal to the total tensor product of an ample line bundle L; on a projective man-
ifold X3 and of a unitary flat line bundle Ly on an elliptic curve X» given by a
representation 7 (X2) — U(1) such that no multiple kLy with k # 0 is trivial. Then
HY(X,kL) = H°(Xy,kL;) ® H°(X2,kLy) = 0 for k > 0, and thus k(L) = —oo.
However ¢;(L) = pr¥c;(L1) has numerical dimension equal to dim X;. The same
example shows that the Kodaira dimension may increase by restriction to a subva-
riety (if Y = X7 x {point}, then x(L;y) = dimY). O

We now derive an algebraic version of the Nadel vanishing theorem in the
context of nef line bundles. This algebraic vanishing theorem has been obtained
independently by Kawamata [Kaw82] and Viehweg [Vie82], who both reduced it
to the Kodaira-Nakano vanishing theorem by cyclic covering constructions. Since
then, a number of other proofs have been given, one based on connections with



56 J.-P. Demailly

logarithmic singularities [EV86], another on Hodge theory for twisted coefficient
systems [Kol85], a third one on the Bochner technique [Dem89)] (see also [EV92] for
a general survey, and [Eno93] for an extension to the compact Kahler case). Since
the result is best expressed in terms of multiplier ideal sheaves (avoiding then any
unnecessary desingularization in the statement), we feel that the direct approach
via Nadel’s vanishing theorem is probably the most natural one.

If D=3 a;D; > 0is an effective Q-divisor, we define the multiplier ideal sheaf
Z(D) to be equal to Z(yp) where ¢ = " aj|g;| is the corresponding psh function
defined by generators g; of O(—D;) ; as we saw in Remark 5.9, the computation of
Z(D) can be made algebraically by using desingularizations p : X — X such that
©*D becomes a divisor with normal crossings on X.

(6.12) Kawamata-Viehweg vanishing theorem. Let X be a projective algebraic man-
ifold and let F' be a line bundle over X such that some positive multiple mF can
be written mF = L 4+ D where L is a nef line bundle and D an effective divisor.
Then

HY(X,0(Kx + F)®@ZI(m D)) =0 for g>n—uv(L).

(6.13) Special case. If F' is a nef line bundle, then

HY(X,O0(Kx +F)) =0 for ¢>n—uv(F).

Proof of Theorem 6.12. First suppose that v(L) = n, i.e. that L is big. By the proof
of 6.5 f), there is a singular hermitian metric on L such that the corresponding
weight ¢y, o has algebraic singularities and

iOg(L) = 2id'd" p1, > gow

for some €y > 0. On the other hand, since L is nef, there are metrics given by
weights ¢r . such that %OE(L) > ew for every € > 0, w being a Kéahler metric.
Let op = Y ajlog|g;| be the weight of the singular metric on O(D) described in
Example 3.13. We define a singular metric on F' by

1
or=— (1 =0)pL.e +d0L0+ ¢D)

with ¢ € § € 1, d rational. Then ¢r has algebraic singularities, and by taking ¢
small enough we find Z(pr) = Z(L ¢p) = Z(L D). In fact, Z(¢r) can be computed
by taking integer parts of Q-divisors (as explained in Remark 5.9), and adding d¢r, ¢
does not change the integer part of the rational numbers involved when ¢ is small.

Now
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1
dd°pp = m ((1 — 6)ddC<pL75 + (dec(pr + ddC(,DD)

> l(— (1 = d)ew + deow + [D] > d—ew,

m m
if we choose € < dgg. Nadel’s theorem thus implies the desired vanishing result for
all ¢ > 1.

Now, if (L) < n, we use hyperplane sections and argue by induction on n =
dim X. Since the sheaf O(Kx) ® Z(m~'D) behaves functorially with respect to
modifications (and since the L? cohomology complex is “the same” upstairs and
downstairs), we may assume after blowing-up that D is a divisor with normal
crossings. By Remark 5.9, the multiplier ideal sheaf Z(m~1D) = O(—|m~1D]) is
locally free. By Serre duality, the expected vanishing is equivalent to

HY(X,0(-F)®0O(|m 'D|))=0  for q < v(L).

Then select a nonsingular ample divisor A such that A meets all components D;
transversally. Select A positive enough so that O(A+F — |m 1D]) is ample. Then
HY(X,0(-A-F)®0O(|m1D|)) = 0 for ¢ < n by Kodaira vanishing, and the exact
sequence 0 = Ox(—A) = Ox — (i4)x04 — 0 twisted by O(—F) ® O(lm 'D])
yields an isomorphism

HY(X,0(~F) ® O(|m~'D))) ~ HI(A, O(~F;4) ® O(lm~'Dj)).

The proof of 5.8 showed that v(L4) = v(L), hence the induction hypothesis implies
that the cohomology group on A on the right-hand side is zero for ¢ < v(L). O

7. A Simple Algebraic Approach to Fujita’s Conjecture

This section is devoted to a proof of various results related to the Fujita con-
jecture. The main ideas occuring here are inspired by a recent work of Y.T. Siu
[Siu96]. His method, which is algebraic in nature and quite elementary, consists
in a combination of the Riemann-Roch formula together with Nadel’s vanishing
theorem (in fact, only the algebraic case is needed, thus the original Kawamata-
Viehweg vanishing theorem would be sufficient). Slightly later, Angehrn and Siu
[AS95], [Siu95] introduced other closely related methods, producing better bounds
for the global generation question; since their method is rather delicate, we can
only refer the reader to the above references. In the sequel, X denotes a projective
algebraic n-dimensional manifold. The first observation is the following well-known
consequence of the Riemann-Roch formula.

(7.1) Special case of Riemann-Roch. Let 7 C Ox be a coherent ideal sheaf on X
such that the subscheme Y = V(J) has dimension d (with possibly some lower
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dimensional components). Let [Y] = Y A;[Y;] be the effective algebraic cycle of
dimension d associated to the d dimensional components of Y (taking into account
multiplicities \; given by the ideal J). Then for any line bundle F, the Euler
characteristic

x(Y,O(F + mL)y) = x(X,O(F + mL) ® Ox/J)

is a polynomial P(m) of degree d and leading coefficient L? - [Y]/d!

The second fact is an elementary lemma about numerical polynomials (polyno-
mials with rational coefficients, mapping Z into Z).

(7.2) Lemma. Let P(m) be a numerical polynomial of degree d > 0 and leading
coefficient aq/dl, aq € Z, ag > 0. Suppose that P(m) > 0 for m > mq. Then

a) For every integer N > 0, there exists m € [mg, mg + Nd] such that P(m) > N.
b) For every k € N, there exists m € [mg, mg + kd] such that P(m) > aqk?/2771.
c) For every integer N > 2d?, there exists m € [mg, mo+ N| such that P(m) > N.

Proof. a) Each of the N equations P(m) =0, P(m) =1, ..., P(m) = N —1 has at
most d roots, so there must be an integer m € [mg, mg + dN] which is not a root
of these.

b) By Newton’s formula for iterated differences AP(m) = P(m + 1) — P(m), we
get
(d
A?P(m) = Z (=1)7 ( .>P(m +d—j)=as, VmeLZ.
1<j<d J
Henceif j € {0,2,4,...,2|d/2]} C [0,d] is the even integer achieving the maximum
of P(mgo + d — j) over this finite set, we find

271 P(mo +d — j) = ((g) + (;i) + ) P(mo +d — j) > aa,

whence the existence of an integer m € [mg, mqo + d] with P(m) > ag/2%!. The
case k = 1 is thus proved. In general, we apply the above case to the polynomial
Q(m) = P(km — (k — 1)myg), which has leading coefficient aqk?/d!

c) If d = 1, part a) already yields the result. If d = 2, a look at the parabola shows

that
asN?/8 if N is even,

B3y Fm) 2 { as(N? —1)/8 if N is odd;

thus max,,epmg,mo+n] P(m) > N whenever N > 8. If d > 3, we apply b) with
k equal to the smallest integer such that k%/2¢~' > N, ie. k = [2(N/2)1/4],
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where [2] € Z denotes the round-up of z € R. Then kd < (2(N/2)'/¢+1)d < N
whenever N > 2d?, as a short computation shows. O

We now apply Nadel’s vanishing theorem pretty much in the same way as Siu
[Siu96], but with substantial simplifications in the technique and improvements in
the bounds. Our method yields simultaneously a simple proof of the following basic
result.

(7.3) Theorem. If L is an ample line bundle over a projective n-fold X, then the
adjoint line bundle Kx + (n + 1)L is nef.

By using Mori theory and the base point free theorem ([Mor82], [Kaw84]), one
can even show that Kx + (n+ 1)L is semiample, i.e., there exists a positive integer
m such that m(Kx + (n+1)L) is generated by sections (see [Kaw85] and [Fuj87]).
The proof rests on the observation that n + 1 is the maximal length of extremal
rays of smooth projective n-folds. Our proof of (7.3) is different and will be given
simultaneously with the proof of Th. (7.4) below.

(7.4) Theorem. Let L be an ample line bundle and let G be a nef line bundle on a
projective n-fold X. Then the following properties hold.

a) 2Kx +mL+ G generates simultaneous jets of order si1,...,sp € N at arbitrary
points x1,...,Tp € X, i.e., there is a surjective map
HY(X,2Kx +mL+G) — P O@2Kx +mL+G)® Oxq, /mit,
1<j<p
3 2s; — 1
provided that m > 2 + Z ( et as; )
n

1<j<p
. : n+1
In particular 2K x +mL + G 1is very ample for m > 2 + n .
b) 2Kx + (n+ 1)L+ G generates simultaneous jets of order s1,...,sp at arbitrary

points z1,...,xp € X provided that the intersection numbers L¢.Y of L over
all d-dimensional algebraic subsets Y of X satisfy

7d. Y> Jd Z <3n+2$]—1)

1<5<p

Proof. The proofs of (7.3) and (7.4a,b) go along the same lines, so we deal with
them simultaneously (in the case of (7.3), we simply agree that {z1,...,zp} = 0).
The idea is to find an integer (or rational number) mg and a singular hermitian
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metric hg on Kx + moL with strictly positive curvature current i@, > cw, such
that V(Z(ho)) is O-dimensional and the weight ¢q of ho satisfies v(po, ;) > n +s;
for all j. As L and G are nef, (m —mg)L + G has for all m > mg a metric b’ whose
curvature i@y has arbitrary small negative part (see [Dem90]), e.g., i@ > —Sw.
Then i@y, +i1Oy > Sw is again positive definite. An application of Corollary (5.12)
to F = Kx+mL+G = (Kx +moL)+ ((m—mo)L+ G) equipped with the metric
ho ® h' implies the existence of the desired sections in Kx + F = 2Kx + mL+ G
for m > mg.

Let us fix an embedding &|,r| : X — PY, 11> 0, given by sections Ao, ..., An €
H°(X,pL), and let by, be the associated metric on L of positive definite curvature
form w = = O(L). In order to obtain the desired metric hg on Kx + moL, we fix
a € N* and use a double induction process to construct singular metrics (Ag,)v>1
on aKx + b, L for a non increasing sequence of positive integers by > by > ... >
b > .... Such a sequence much be stationary and mg will just be the stationary
limit mgo = lim by /a. The metrics hy , are taken to satisfy the following properties:

@) hy,, is an algebraic metric of the form

I ()

(a+1) (a+1)b, —am;
( 1<i<v, 0<j<N R G AT

€l =

2\ 1/

defined by sections o; € H*(X,(a + 1)Kx + m;L), m; < “ELb,, 1 < i < v,

where £ — 71(£) is an arbitrary local trivialization of aKx + bgL; note that
ap )\(a—i-l)bk—ami . .

o;" A is a section of

ap((a+1)Kx + m;L) + ((a + 1)by, — am;)pL = (a + V)p(aKx + by L).

B) ordg;(o;) > (a+1)(n + s;) for all i, j;

v) Z(hkp+1) DO Z(hgy) and Z(hgp41) # Z(hi,) whenever the zero variety
V(Z(h,)) has positive dimension.

The weight ¢y, = % of hy, is plurisub-

a+1 a a+1)br—am;
—2(;1)“ log > |T,£ )“(gi” .)\§ ) )

harmonic and the condition m; < “il by, implies (a+1)bg —am; > 1, thus the differ-

ence ¢x,, — 51y 108 2 |[7(;)|? is also plurisubharmonic. Hence O, (aKx +

bpL) = %d’d”go,w > (a—}rl)w. Moreover, condition ) clearly implies v(py,., ;) >
a(n + s;). Finally, condition ) combined with the strong Noetherian property of
coherent sheaves ensures that the sequence (hk,,,),,zl will finally produce a zero
dimensional subscheme V (Z(hg,,)). We agree that the sequence (hg,,),>1 stops at

this point, and we denote by hj, = hy ., the final metric, such that dim V (Z(h)) = 0.

For k = 1, it is clear that the desired metrics (h1,,),>1 exist if by is taken
large enough (so large, say, that (a + 1)Kx + (by — 1)L generates jets of order
(a+1)(n+maxs;) at every point; then the sections o1,...,0, can be chosen with
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my = ...=m, = b —1). Suppose that the metrics (ht,),>1 and hy have been
constructed and let us proceed with the construction of (Ax41,,)v>1. We do this
again by induction on v, assuming that hjyi, is already constructed and that
dim V(Z(hk+1,,)) > 0. We start in fact the induction with v = 0, and agree in
this case that Z(hg1,0) = 0 (this would correspond to an infinite metric of weight
identically equal to —o0). By Nadel’s vanishing theorem applied to

F,=aKx +mL = (aKX +bkL) + (m—bk)L
with the metric hy, ® (hr,)®™ b, we get
HI(X,0((a+1)Kx +mL)QZ(ht)) =0 for g > 1, m > by.

As V(Z(hy)) is 0-dimensional, the sheaf Ox /Z(hy) is a skyscraper sheaf, and the
exact sequence 0 — Z(hy) = Ox — Ox/Z(hy) — 0 twisted with the invertible
sheaf O((a + 1)Kx + mL) shows that

HI(X,0((a+1)Kx +mL))=0 for g > 1, m > by.
Similarly, we find
HY(X,0((a+1)Kx +mL) ® Z(hg41,,)) =0  for g> 1, m > b1

(also true for v = 0, since Z(hg+1,0) = 0), and when m > max (b, bx+1) = bx, the
exact sequence 0 = Z(hg41,,) & Ox = Ox/Z(hgt1,v) — 0 implies

HY(X,0((a+1)Kx + mL) ® Ox /Z(hgt1,,)) =0  for g > 1, m > by.

In particular, since the H! group vanishes, every section ' of (a + 1)Kx + mL
on the subscheme V(Z(hk+1,,)) has an extension u to X. Fix a basis uf,...,uly of
the sections on V(Z(hg41,,)) and take arbitrary extensions us,...,un to X. Look
at the linear map assigning the collection of jets of order (a + 1)(n + s;) — 1 at all

points z;
w= Y aju; — P ItV (),
1<G<N
Since the rank of the bundle of s-jets is ("}®), the target space has dimension
_ n+(a+1)(n+s;)—1
5= 3 ( (¢ |
1<j<p

In order to get a section o,4+1 = w satisfying condition £) with non trivial restriction
0,41 t0 V(Z(hi41,,)), we need at least N = § 41 independent sections w1, ..., uy.
This condition is achieved by applying Lemma, (7.2) to the numerical polynomial
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P(m) = x(X,0((a +1)Kx + mL) ® Ox [T(ht1,))
:hO(X,O((a+1)KX +mL)® Ox [Z(hgt1,)) > 0, m > by.

The polynomial P has degree d = dim V(Z(hg+1,,)) > 0. We get the existence of
an integer m € [by, by + 7] such that N = P(m) > § + 1 with some explicit integer
n € N (for instance n = n(d + 1) always works by (7.2a), but we will also use
other possibilities to find an optimal choice in each case). Then we find a section
ovt1 € H(X, (a+ 1)K x + mL) with non trivial restriction o/, to V(Z(hgt1,.)),
vanishing at order > (a + 1)(n + s;) at each point z;. We just set m,41 = m, and
the condition m, 1 < aTkuJ,_l is satisfied if by, +7n < aT“ka. This shows that we
can take inductively
a

b =
ko {a+ 1

(br + n)J +1.

By definition, hk+1,,,+1 < hk+1,,,, hence I(hk+1’,,+1) D I(h/ﬂ_l,,,). We neces-
sarily have Z(hg+1,041) # Z(hkt1,0), for Z(hgt1,41) contains the ideal sheaf
associated with the zero divisor of o,y1, whilst 0,41 does not vanish identi-
cally on V(Z(hg41,,)).- Now, an easy computation shows that the iteration of
bi+1 = [ 337 (be+n)|+1stops at by, = a(n+1)+1 for any large initial value b;. In this
way, we obtain a metric hy, of positive definite curvature on aKx + (a(n+1)+1)L,

with dim V(Z(heo)) = 0 and v(¢uo, z;) > a(n + s;) at each point z;.

Proof of (7.3). In this case, the set {z;} is taken to be empty, thus § = 0. By (7.2a),
the condition P(m) > 1 is achieved for some m € [by, br, +n] and we can take n = n.
As pL is very ample, there exists on pL a metric with an isolated logarithmic pole
of Lelong number 1 at any given point g (e.g., the algebraic metric defined with
all sections of L vanishing at zq). Hence

F! =aKx + (a(n+ 1)+ 1)L + nuL

has a metric A/ such that V(Z(h))) is zero dimensional and contains {z¢}. By
Corollary (5.12), we conclude that

Kx+F,=(a+1)Kx + (a(n+1)+1+nu)L

is generated by sections, in particular Kx + “("?%L is nef. As a tends to

+00, we infer that Kx + (n + 1)L is nef. O

Proof of (7.4a). Here, the choice a = 1 is sufficient for our purposes. Then

In+2s;—1
5:2( nf )

1<j<p
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If {z;} # 0, we have 5+ 1> (*" ) +1 > 2n? for n > 2. Lemma (7.2c) shows that
P(m) > 0 + 1 for some m € [bg,br + 1] with n = § + 1. We can start in fact the
induction procedure k — k + 1 with b =7+ 1 = J + 2, because the only property
needed for the induction step is the vanishing property

HY(X,2Kx +mL)=0  for g>1,m > by,

which is true by the Kodaira vanishing theorem and the ampleness of Kx + b1 L
(here we use Fujita’s result (7.3), observing that by > n + 1). Then the recursion
formula byy1 = |&(br + 1)) + 1 yields by = n+1 =6+ 2 for all k, and (7.4a)
follows. O

Proof of (7.4b). Quite similar to (7.4a), except that we take n = n, a = 1 and
by = n+ 1 for all k. By Lemma (7.2b), we have P(m) > ask?/2¢~! for some
integer m € [mg, mg + kd], where a4 > 0 is the coefficient of highest degree in P.
By Lemma (7.2) we have agq > infgimy—q L?-Y. We take k = |n/d|. The condition
P(m) > 0 + 1 can thus be realized for some m € [mg, mg + kd] C [mg, mo + n] as
soon as

. d d jod—1
Lnf LTV |n/d)tj2rt > 6

which is equivalent to the condition given in (7.4b). O

(7.5) Corollary. Let X be a smooth projective n-fold, let L be an ample line bundle
and G a nef line bundle over X. Then m(Kx + (n + 2)L) + G is very ample for
m > (> —2n.

Proof. Apply Theorem (7.4a) with G' = a(Kx + (n+ 1)L) + G, so that
2Kx +mL+G =(a+2)(Kx+(n+2)L)+(m—2n—4—a)L+G,

andtakem:a+2n+422+(3";1). O

The main drawback of the above technique is that multiples of L at least equal
to (n + 1)L are required to avoid zeroes of the Hilbert polynomial. In particular,
it is not possible to obtain directly a very ampleness criterion for 2K x + L in the
statement of (7.4Db). Nevertheless, using different ideas from Angehrn-Siu [AS95],
[Siu96] has obtained such a criterion. We derive here a slightly weaker version,
thanks to the following elementary Lemma.

(7.6) Lemma. Assume that for some integer p € N* the line bundle uF generates
simultaneously all jets of order u(n+s;)+1 at any point x; in a subset {x1,...,zp}
of X. Then Kx + F generates simultaneously all jets of order s; at x;.



64 J.-P. Demailly

Proof. Take the algebraic metric on F' defined by a basis of sections o1, ...,0n of
wF which vanish at order p(n + s;) + 1 at all points x;. Since we are still free
to choose the homogeneous term of degree p(n + s;) + 1 in the Taylor expansion
at z;, we find that xq,...,z, are isolated zeroes of [ aj_l(O). If ¢ is the weight of
the metric of F' near z;, we thus have p(z) ~ (n +s; + %) log |z — z;| in suitable
coordinates. We replace ¢ in a neighborhood of z; by

¢'(2) = max (p(z2), |2|* = C + (n + 5;) log |2 — z;])

and leave ¢ elsewhere unchanged (this is possible by taking C' > 0 very large).
Then ¢'(2) = |2 — C + (n + s;)log |z — z;| near z;, in particular ¢ is strictly
plurisubharmonic near z;. In this way, we get a metric A’ on F' with semipositive
curvature everywhere on X, and with positive definite curvature on a neighborhood
of {z1,...,zp}. The conclusion then follows directly from Hérmander’s L? estimates
(56.1) and (5.2). O

(7.7) Theorem. Let X be a smooth projective n-fold, and let L be an ample line
bundle over X. Then 2K x + L generates simultaneous jets of order si,...,s, at
arbitrary points x1,...,x, € X provided that the intersection numbers L?-Y of L
over all d-dimensional algebraic subsets Y of X satisfy

24-1 (n+1)(4n+2s; +1) — 2
—Ln/djd Z ( ), 1<d<n.

n =

Proof. By Lemma (7.6) applied with F = Kx + L and g = n + 1, the desired
jet generation of 2Kx + L occurs if (n + 1)(Kx + L) generates jets of order
(n+1)(n+s;)+1 at z;. By Lemma (7.6) again with F' =aKx + (n + 1)L and
p = 1, we see by backward induction on a that we need the simultaneous gener-
ation of jets of order (n+1)(n +s;) + 14+ (n +1 —a)(n + 1) at z;. In particular,
for 2K x 4+ (n+1)L we need the generation of jets of order (n +1)(2n +s; — 1) + 1.
Theorem (7.4b) yields the desired condition. O

We now list a few immediate consequences of Theorem 7.4, in connection with
some classical questions of algebraic geometry.

(7.8) Corollary. Let X be a projective n-fold of general type with Kx ample. Then
mKx is very ample for m > mg = (3"7#) +4.

(7.9) Corollary. Let X be a Fano n-fold, that is, a n-fold such that —Kx is ample.
Then —mKx is very ample for m > mg = (*"11).
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Proof. Corollaries 7.8, 7.9 follow easily from Theorem 7.4 a) applied to L = +Kx.
Hence we get pluricanonical embeddings & : X — P such that *O(1) = +moKx.
The image Y = &(X) has degree

deg(Y):/Ycl(O(l))n:/Xcl(imoKX)n:mO"|K§§|.

It can easily be reproved from this that there are only finitely many deformation
types of Fano n-folds, as well as of n-folds of general type with Kx ample, corre-
sponding to a given discriminant |K%| (from a theoretical viewpoint, this result is
a consequence of Matsusaka’s big theorem [Mat72] and [KoM83], but the bounds
which can be obtained from it are probably extremely huge). In the Fano case,
a fundamental result obtained independently by Kollar-Miyaoka-Mori [KoMM92]
and Campana [Cam92] shows that the discriminant K% is in fact bounded by a
constant C,, depending only on n. Therefore, one can find an explicit bound CJ,
for the degree of the embedding &, and it follows that there are only finitely many
families of Fano manifolds in each dimension. O

In the case of surfaces, much more is known. We will content ourselves with a
brief account of recent results. If X is a surface, the failure of an adjoint bundle
Kx + L to be globally generated or very ample is described in a very precise way
by the following result of I. Reider [Rei88].

(7.10) Reider’s Theorem. Let X be a smooth projective surface and let L be a nef
line bundle on X.

a) Assume that L? > 5 and let z € X be a given point. Then Kx + L has a section
which does not vanish at x, unless there is an effective divisor D C X passing
through x such that either

L-D=0 and D?>=-1; or
L-D=1 and D?>=0.

b) Assume that L? > 10. Then any two points x,y € X (possibly infinitely near)
are separated by sections of Kx + L, unless there is an effective divisor D C X
passing through x and y such that either

L-D=0 and D?>=—-1or —2; or
L-D=1 and D?*=0 or —1; or
L-D=2 and D?=0. O
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(7.11) Corollary. Let L be an ample line bundle on a smooth projective surface X.
Then Kx + 3L is globally generated and Kx + 4L is very ample. If L? > 2 then
Kx + 2L is globally generated and K x + 3L is very ample. O

The case of higher order jets can be treated similarly. The most general result
in this direction has been obtained by Beltrametti and Sommese [BeS93].

(7.12) Theorem ([BeS93]). Let X be a smooth projective surface and let L be a nef
line bundle on X. Let p be a positive integer such that L?> > 4p. Then for every
0-dimensional subscheme Z C X of length h°(Z,0z) < p the restriction

pz : H*(X,0x(Kx + L)) — H°(Z,07(Kx + L))

is surjective, unless there is an effective divisor D C X intersecting the support |Z|
such that

1
L-D—p§D2<§L-D. O

Proof (Sketch). The proof the above theorems rests in an essential way on the
construction of rank 2 vector bundles sitting in an exact sequence

0-0x - E—-L®Iz—0.

Arguing by induction on the length of Z, we may assume that Z is a 0-dimensional
subscheme such that pz is not surjective, but such that pz: is surjective for every
proper subscheme Z' C Z. The existence of E is obtained by a classical construction
of Serre (unfortunately, this construction only works in dimension 2). The numerical
condition on L? in the hypotheses ensures that c;(E)? — 4cy(E) > 0, hence E is
unstable in the sense of Bogomolov. The existence of the effective divisor D asserted
in 7.10 or 7.12 follows. We refer to [Rei88], [BeS93] and [Laz97] for details. The
reader will find in [FdB95] a proof of the Bogomolov inequality depending only on
the Kawamata-Viehweg vanishing theorem. O

(7.13) Exercise. Prove the Fujita conjecture in the case of dimension 1, according
to the following steps.

a) By using Hodge theory, show that for every smooth function f on a compact
Kahler manifold (X,w), the equation Au = f has a solution if and only if

Jx fdVy =0.

b) Derive from (a), by using the local solvability of elliptic operators, that one has
a similar result when f is a distribution.
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c¢) If X = C is a compact complex curve and L a positive line bundle, for every
positive measure p on X such that [, p = deg(L) = [, ci1(L), there exists a
singular hermitian metric  on L such that ;-04(L) = p (with the obvious
identification of measures and currents of bidegree (1,1)).

d) Given a finite collection of points z; € C and integers s; > 0, then K¢ + L
generates jets of order s; at all points z; as soon as deg(L) > >, (s; +1).

e) If L is positive on C, then K¢ + 2L is globally generated and K¢ + 3L is very
ample.

(7.14) Exercise. The goal of the exercise is to prove the following weaker form of
Theorems 7.10 and 7.12, by a simple direct method based on Nadel’s vanishing
theorem:

Let L be a nef line bundle on a smooth projective surface X. Fix points
T1,...,zN and corresponding multiplicities s1,. .., sn, and set p= > (2+ s;)*.
Then H°(X,Kx + L) generates simultaneously jets of order s; at all points x;
provided that L2 > p and L - C > p for all curves C passing through one of the
points x;.

a) Using the Riemann-Roch formula, show that the condition L? > p implies the
existence of a section of a large multiple m L vanishing at order > m(2+ s;) at
each of the points.

b) Construct a sequence of singular hermitian metrics on L with positive definite
curvature, such that the weights ¢, have algebraic singularities, v(yp,,z;) >
2+ s; at each point, and such that for some integer m; > 0 the multiplier ideal
sheaves satisfy Z(mi¢,4+1) 2 Z(miy,) if V(Z(¢,)) is not 0-dimensional near
some ;.

Hint: a) starts the procedure. Fix mg > 0 such that moL — Kx is ample. Use
Nadel’s vanishing theorem to show that

HU(X,O0((m+ mo)L) @ Z(Amep,)) =0 forallg>1,m >0, XA €[0,1].

Let D, be the effective Q-divisor describing the 1-dimensional singularities of ¢,,.
Then Z(Amy,) C O(—|AmD, |) and the quotient has 0-dimensional support, hence

HY(X,0((m+mo)L) ® O(—|AmD,]|)) =0 forallg>1,m >0, A €[0,1].

By the Riemann-Roch formula again prove that

(%) hO(X, O((m +mo)L) ® O/O(—|XmD,])) = m;(zu - D, — \2D2) + O(m).
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As the left-hand side of (x) is increasing with A, one must have D2 < L - D,,.
If V(Z(y.)) is not 0-dimensional at x;, then the coefficient of some component of
D, passing through z; is at least 1, hence

2L-D,-D>>L-D,>p+1.
Show the existence of an integer m; > 0 independent of v such that

(m +mg)(2+ s;) + 2)

ho(X,0((m +mo)L) ® O/O(~|mD,])) > Y ( .

1<G<N

for m > my, and infer the existence of a suitable section of (my 4+ mo)L which is
not in H°(X, O((my +mg)L — |my1D,])). Use this section to construct ¢, 11 such
that Z(mippy1) 2 Z(mipy).

8. Holomorphic Morse Inequalities

Let X be a compact Kdhler manifold, E a holomorphic vector bundle of rank r
and L a line bundle over X. If L is equipped with a smooth metric of curvature
form O(L), we define the g-index set of L to be the open subset

(8.1) X(q.L) = {x € X : i0(L), has q negative elgenvalues}

n — q positive eigenvalues

for 0 < ¢ < n. Hence X admits a partition X = AU, X(¢,L) where A =
{z € X ; det(O(L),) = 0} is the degeneracy set. We also introduce

(8.1) X(<q.L)= |J XG.D.
0<j<q

It is shown in [Dem85b] that the cohomology groups H? (X, E® O(kL)) satisfy the
following asymptotic weak Morse inequalities as k — 400

n

q k q 1 n n
(8.2) W(X,E® O(L)) < 71— X(Q,L)(—n (ﬁ@(L)) +o(k™).

A sharper form is given by the strong Morse inequalities

> (1)K (X,E® O(kL))

(8.2") <r—

1 q(i
- n' X(<q,L 27
<¢,L)

(L))" +o(k").

These inequalities are a useful complement to the Riemann-Roch formula when
information is needed about individual cohomology groups, and not just about the
Euler-Poincaré characteristic.
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One difficulty in the application of these inequalities is that the curvature inte-
gral is in general quite uneasy to compute, since it is neither a topological nor an
algebraic invariant. However, the Morse inequalities can be reformulated in a more
algebraic setting in which only algebraic invariants are involved. We give here two
such reformulations.

(8.3) Theorem. Let L = F — G be a holomorphic line bundle over o compact Kdihler
manifold X, where F' and G are numerically effective line bundles. Then for every
q=20,1,...,n =dim X, there is an asymptotic strong Morse inequality

S )WL) < S S (-1 (") F" 9GO+ ofk").

0<7<q " 0<j<q J

Proof. By adding € times a K&hler metric w to the curvature forms of F' and G,
€ > 0 one can write %@(L) = 0.(F) — 0-(G) where 6.(F) = ﬁ@(F) + ew and
0-(G) = 5-0(G)+ew are positive definite. Let Ay > ... > X, > 0 be the eigenvalues
of 0.(G) with respect to 6:(F). Then the eigenvalues of %@(L) with respect to
0. (F) are the real numbers 1 — A; and the set X (< ¢, L) is the set {A\j41 < 1} of

points € X such that Agy1(z) < 1. The strong Morse inequalities yield

> vk s S i [T - A6 + ok,
0<7<q M en<1l 1<

On the other hand we have

(5‘) 6.(F)"3 A6.(GY = o3, (N) 8. (F)",

J
where o7 ()) is the j-th elementary symmetric function in A,..., A, , hence
> (—nrd (") FP . QY = lim / > (=D)"oh (N 6 (F)™.
- J] e—=0 [x -
0<j<q 0<j<q

Thus, to prove the Lemma, we only have to check that

Y Do) = 1pLany (1) [T -2 >0

0<j<n 1<j<n

for all Ay > ... > A, > 0, where 1; y denotes the characteristic function of a set.
This is easily done by induction on n (just split apart the parameter \,, and write
oh(N) =l () + 0171 () An). O

In the case ¢ = 1, we get an especially interesting lower bound (this bound has
been observed and used by S. Trapani [Tra95] in a similar context).
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(8.4) Consequence. h°(X, kL) — h'(X,kL) > ’:L—H,(F” —nF" 1. G) - o(k").
Therefore some multiple kL has a section as soon as F* —nF*1.G > 0.

(8.5) Remark. The weaker inequality
n

R(X,kL) > %(F” —nF"1.G) - o(k™)

is easy to prove if X is projective algebraic. Indeed, by adding a small ample Q-
divisor to F' and G, we may assume that F', G are ample. Let moG be very ample
and let k' be the smallest integer > k/mo. Then h°(X, kL) > h%(X, kF — k'moG).
We select k' smooth members G, 1 < j < k' in the linear system |moG| and use
the exact sequence

0— HY(X,kF - Y G;) » H'(X,kF) » @ H*(G}, kF|g,).-

Kodaira’s vanishing theorem yields HY(X,kF) = 0 and H%(G},kF|g,) = 0 for
q > 1 and k > ko. By the exact sequence combined with Riemann-Roch, we get

hO(X, kL) > h°(X,kF =) G;)

n n—1
> 2000 = Y (e P Gy - 060 )

(n—1)!
k™ n k,mo n—1 n—1
ZH(F —n—F -G)—O(k )
k™ n n—1 n—1
ZH(F —nF -G)—O(k ).
(This simple proof is due to F. Catanese.) O

(8.6) Corollary. Suppose that F' and G are nef and that F' is big. Some multiple of
mF — G has a section as soon as

.G
n——e—.

m > Fn

In the last condition, the factor n is sharp: this is easily seen by taking X =P}
and F = O(a,...,a) and G = O(by, ..., by) over P7; the condition of the Corollary
is then m > > b;/a, whereas k(mF — G) has a section if and only if m > sup b;/a;
this shows that we cannot replace n by n(1 — ). O
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9. Effective Version of Matsusaka’s Big Theorem

An important problem of algebraic geometry is to find effective bounds mg such
that multiples mL of an ample line bundle become very ample for m > my.
From a theoretical point of view, this problem has been solved by Matsusaka
[Mat72] and Kollar-Matsusaka [KoM83]. Their result is that there is a bound
mo = mo(n, L™, L™ ! - Kx) depending only on the dimension and on the first
two coefficients L™ and L™ ! - Kx in the Hilbert polynomial of L. Unfortunately,
the original proof does not tell much on the actual dependence of mg in terms of
these coefficients. The goal of this section is to find effective bounds for such an
integer myg, along the lines of [Siu93]. However, one of the technical lemmas used
in [Siu93] to deal with dualizing sheaves can be sharpened. Using this sharpening
of the lemma, Siu’s bound will be here substantially improved. We first start with
the simpler problem of obtaining merely a nontrivial section in mL. The idea, more
generally, is to obtain a criterion for the ampleness of mL — B when B is nef. In
this way, one is able to subtract from mL any multiple of K x which happens to
get added by the application of Nadel’s vanishing theorem (for this, replace B by
B plus a multiple of Kx + (n + 1)L).

(9.1) Proposition. Let L be an ample line bundle over a projective n-fold X and let
B be a nef line bundle over X. Then Kx +mL — B has a nonzero section for some

integer m such that

Ln_l-B
mSnT+n+1.

Proof. Let mg be the smallest integer > n L"L_,t'B . Then moL — B can be equipped

with a singular hermitian metric of positive definite curvature. Let ¢ be the weight
of this metric. By Nadel’s vanishing theorem, we have

HY(X,O0(Kx+mL—B)®Z(p)=0 for ¢ > 1,

thus P(m) = h°(X,0(Kx +mL — B) ® Z(y)) is a polynomial for m > mg. Since
P is a polynomial of degree n and is not identically zero, there must be an integer
m € [mg, mo + n] which is not a root. Hence there is a nontrivial section in

HY(X,0(Kx +mL — B)) D H'(X,0(Kx +mL — B) ® I(¢))

for some m € [mg, mo + 1], as desired. O

(9.2) Corollary. If L is ample and B is nef, then mL — B has a nonzero section for
some integer
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"l.Ban-1. K
m < n( + X +n+ 1).
n
Proof. By Fujita’s result 8.3 a), Kx + (n + 1)L is nef. We can thus replace B by
B+ Kx + (n+ 1)L in the result of Proposition 9.1. Corollary 9.2 follows. O

(9.3) Remark. We do not know if the above Corollary is sharp, but it is certainly
not far from being so. Indeed, for B = 0, the initial constant n cannot be replaced
by anything smaller than n/2: take X to be a product of curves C; of large genus
g; and B = 0; our bound for L = O(a1[p1]) ® ... ® O(an[ps]) to have |mL| # 0
becomes m < Y (29; —2)/a; +n(n + 1), which fails to be sharp only by a factor 2
whena; =...=a,=1and g1 > g2 > ... > g, = +00. On the other hand, the
additive constant n + 1 is already best possible when B = 0 and X = P"™. O

So far, the method is not really sensitive to singularities (the Morse inequalities
are indeed still true in the singular case as is easily seen by using desingularizations
of the ambient variety). The same is true with Nadel’s vanishing theorem, provided
that Kx is replaced by the L? dualizing sheaf wx (according to the notation in-
troduced in Remark 5.17, wx = Kx(0) is the sheaf of holomorphic n-forms u on
Xreg such that iy AT is integrable in a neighborhood of the singular set). Then
Proposition 9.1 can be generalized as

(9.4) Proposition. Let L be an ample line bundle over a projective n-fold X and
let B be a nef line bundle over X. For every p-dimensional (reduced) algebraic
subvariety Y of X, there is an integer

m < By +p+1
<P P
such that the sheaf wy ® Oy (mL — B) has a nonzero section. O

To proceed further, we need the following useful “upper estimate” about I>
dualizing sheaves (this is one of the crucial steps in Siu’s approach; unfortunately, it
has the effect of producing rather large final bounds when the dimension increases).

(9.5) Proposition. Let H be a very ample line bundle on a projective algebraic
manifold X, and let Y C X be a p-dimensional irreducible algebraic subvariety. If
6 = HP? -Y is the degree of Y with respect to H, the sheaf

Hom (wy, Oy ((6 —p— 2)H))

has a nontrivial section.
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Observe that if Y is a smooth hypersurface of degree § in (X, H) = (PP*1, O(1)),
then wy = Oy (d —p — 2) and the estimate is optimal. On the other hand, if Y is a
smooth complete intersection of multidegree (d1,...,d,) in PP*" then § = §; ... 4,
whilst wy = Oy (61 + ...+ 6 —p —r — 1) ; in this case, Proposition (9.5) is thus
very far from being sharp.

Proof. Let X C PN be the embedding given by H, so that H = Ox(1). There is
a linear projection P* ---» PPt! whose restriction 7 : Y — PP*! to Y is a finite
and regular birational map of Y onto an algebraic hypersurface Y' of degree ¢
in PPL, Let s € HO(PP*!,O(5)) be the polynomial of degree &§ defining Y'. We
claim that for any small Stein open set W C PPt! and any L2 holomorphic p-
form u on Y’ N W, there is a L? holomorphic (p + 1)-form & on W with values
in O(6) such that @jy'nw = u A ds. In fact, this is precisely the conclusion of the
Ohsawa-Takegoshi extension theorem [OT87], [Ohs88] (see also [Man93] for a more
general version); one can also invoke more standard local algebra arguments (see
Hartshorne [Har77], Th. I1I-7.11). As Kpy+1 = O(—p — 2), the form @ can be seen
as a section of O(6 — p — 2) on W, thus the sheaf morphism u — u A ds extends
into a global section of Hom (wy+, Oy (6 — p — 2)). The pull-back by 7* yields a
section of Hom (m*wy, Oy ((§ —p — 2)H)). Since  is finite and generically 1 : 1,
it is easy to see that 7*wy+ = wy. The Proposition follows. O

By an appropriate induction process based on the above results, we can now
improve Siu’s effective version of the Big Matsusaka Theorem [Siu93]. Our version
depends on a constant A, such that m(Kx + (n + 2)L) + G is very ample for
m > A, and every nef line bundle G. Corollary (7.5) shows that A, < (**1') — 2n,
and a similar argument involving the recent results of Angehrn-Siu [AS95] implies
A <12 —n? —n—1forn > 2. Of course, it is expected that A, = 1 in view of
the Fujita conjecture.

(9.6) Effective version of the Big Matsusaka Theorem. Let L and B be nef line
bundles on a projective n-fold X. Assume that L is ample and let H be the very
ample line bundle H = \(Kx + (n+ 2)L). Then mL — B is very ample for

(8"1_1)/2 (Ln—l (B+ H))(3"_1+1)/2(Ln—1 _H)B"_z(n/2—3/4)—1/4‘

m 2 (2n) (L) 2 (n/2=1/0)+1/4

In particular mL is very ample for
n—2
s In—1. | \3 (n/243/9)+1/4
m > C, (L") (n+2+ o X)

with Cp, = (2n)B" 7' =1/2(),)3" 7 (n/243/0)+1/4
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Proof. We use Proposition (9.4) and Proposition (9.5) to construct inductively a
sequence of (non necessarily irreducible) algebraic subvarieties X =Y,, D Y,—_1 D
... D Y2 D Yi such that ¥, = |J;Y;,; is p-dimensional, and Y¥},_; is obtained for
each p > 2 as the union of zero sets of sections

opj € H (Y, Oy, ,; (myp,; L — B))

with suitable integers m, ; > 1. We proceed by induction on decreasing values of
the dimension p, and find inductively upper bounds m,, for the integers my, ;.

By Corollary (9.2), an integer m,, for m,L — B to have a section o, can be
found with

n—1 n—1
mnSnL -(B+Il(jf+(n+1)L)SnL I(f+H)

Now suppose that the sections oy, ..., 0p+1,; have been constructed. Then we get
inductively a p-cycle Y, = > pp,iYp,; defined by }N’;, = sum of zero divisors of
sections gp41,; in Ypy1,;, where the multiplicity i, ; on Yy ; C Ypy1 4 is obtained
by multiplying the corresponding multiplicity ppy1,x with the vanishing order of
Op+1,; along Y, ;. As cohomology classes, we find

Yy =Y (mpr1 kL — B) - (prasYpi1h) < mpiaL- Yopn.

Inductively, we thus have the numerical inequality
}71, <mpyi...mpL"7P,
Now, for each component Y}, ;, Proposition (9.4) shows that there exists a section
of wy, ; ® Oy, ;(myp, ;L — B) for some integer
Lr~1'.B.Y,

2l 4 p+1<pmpyr...mp L" - B+p+1.

Ted SP Ly
p,J]

Here, we have used the obvious lower bound LP~! -V, ; > 1 (this is of course a
rather weak point in the argument). The degree of Y}, ; with respect to H admits
the upper bound

51,’]' = H? - Y;)’j <Mpg1.. .m, H? - L"7P,
We use the Hovanski-Teissier concavity inequality ([Hov79], [Tei79, Tei82])
(Lnfp A Hp)%(Ln)l—% S Lnfl -H

to express our bounds in terms of the intersection numbers L™ and L™~! - H only.
We then get
(Lnfl . H)p

51)’]' S mp+1 .. mnW
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By Proposition (9.5), there is a nontrivial section in
Hom(wy, ;, Oy, ; (6,5 —p — 2)H)).

Combining this section with the section in wy, ; ® Oy, ;(m,, ;L — B) already cons-
tructed, we get a section of Oy, ,(my ;L — B + (d,,; —p—2)H) on Y, ;. Since we
do not want H to appear at this point, we replace B with B+ (6,,; —p —2)H and
thus get a section oy, ; of Oy, ; (m, ;L — B) with some integer m, ; such that

Mp,j gpmpﬂ...an”*l -(B+(0p; —p—2)H)+p+1
< PMpt1 -- .mnép,j 1. (B +H)
(L= my

T L (B4 H)

S P (mp+1 ce mn)2

Therefore, by putting M = n L™ ! - (B + H), we get the recursion relation
(Lt Hy
(Lm)p—t
with initial value m, < M/L". If we let (Mp) be the sequence obtained by the

same recursion formula with equalities instead of inequalities, we get m, < m,
with m,,_y = M3(L" - H)"1/(L™)" and

L’n
My, = ———m>2,,m
P In-1.pg e+l

my < M (Mpt1 -.-mp)? for2<p<n-1,

for 2 < p <n — 2. We then find inductively

(an . H)3"_p_1(n73/2)+1/2
(Ln)3"—1’—1(n—1/2)+1/2

__ _ ar3nTP
mp <My =M

We next show that moL — B is nef for
mo = max (ma, M3, ..., My, Ma...myu L"~' - B).

In fact, let C' C X be an arbitrary irreducible curve. Either C' = Y7 ; for some j or
there exists an integer p = 2,...,n such that C' is contained in Y, but not in Y;_4.
If C C Y, ;\Y,_1, then o, ; does not vanish identically on C. Hence (my ;L —B)c
has nonnegative degree and

(moL—B)-C > (mp;L—B)-C >0.
On the other hand, if C =Y ;, then
(moL —B)-C >mog—B-Y1 >mg—ms...m, L' - B >0.

By the definition of A, (and by Corollary (7.5) showing that such a constant exists),
H + G is very ample for every nef line bundle G, in particular H + moL — B is
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very ample. We thus replace again B with B + H. This has the effect of replacing
M with M =n (L"! - (B + 2H)) and mqo with

mg = max (mn, Mp—1,--v, Mo, My...my L1 (B+H)).
The last term is the largest one, and from the estimate on m, , we get

(Ln—l _H)(3"—2,1)(n73/2)/2+(n—2)/2(Ln—l . (B + H))
(Ln)(3"_2—1)(n—1/2)/2+(n—2)/2+1

(31 1)/ (Ln—1 (B + H))(3"—1+1)/2(Ln—1 _H)3"_2(n/273/4)71/4

(Ln)3"—2(n/2—1/4)+1/4

me < MG =D/2

< (2n)

O

(9.7) Remark. In the surface case n = 2, one can take A, = 1 and our bound yields
mL very ample for

(L-(Kx +4L))?

L2 )
If one looks more carefully at the proof, the initial constant 4 can be replaced by 2.
In fact, it has been shown recently by Fernandez del Busto that mL is very ample
for

m >4

1[(L-(Kx +4L) +1)?
m > 5 12 + 3|,
and an example of G. Xiao shows that this bound is essentially optimal (see
[FdB96]).

10. Positivity concepts for vector bundles

In the course of the proof of Skoda’s L? estimates, we will have to deal with dual
bundles and exact sequences of hermitian vector bundles. The following fundamen-
tal differential geometric lemma will be needed.

(10.1) Lemma. Let E be a hermitian holomorphic vector bundle of rank r on a
complex n-dimensional manifold X. Then the Chern connections of E and E* are
related by O(E*) = —'O(E) where ¢ denotes transposition. In other words, the

associated hermitian forms O(E) and O(E*) are related by
~ _ 0
Q(E)(T; T) = ' Z cjkAijATku, T = ZTj,)\a_zj ® €,
1<j,k<n, 1<A,u<r A

~ 0

% — * —k * * *

O(E")(r,7) = — Z CikpATiNT ko T = ZTN_@z- ® €.
1<,k<n, 1< u<r 3 ’
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In particular E >gie 0 if and only if E* <Gyt 0.

Notice that the corresponding duality statement for Nakano positivity is wrong
(because of the twist of indices, which is fortunately irrelevant in the case of de-
composable tensors).

Proof. The Chern connections of £ and E* are related by the Leibnitz rule
d(o As) = (Dg~o) As+ (=1)¥%€°g A Dgs

whenever s, o are forms with values in E, E* respectively, and o A s is computed
using the pairing E* @ E — C. If we differentiate a second time, this yields the
identity

0= (D%.0) As+ o A D%s,

which is equivalent to the formula O(E*) = —'O(E). All other assertions follow.
O

(10.2) Lemma. Let
0—S3 HE L Q—0

be an exact sequence of holomorphic vector bundles. Assume that E is equipped
with a smooth hermitian metric, and that S and ) are endowed with the metrics
(restriction-metric and quotient-metric) induced by that of E. Then

(10.3) *®g:E—=SaQ, jog:SeoQ— FE

are C™ isomorphisms of bundles, which are inverse of each other. In the C*-
splitting E ~ S @® Q, the Chern connection of E admits a matrix decomposition

_(Ds =B
(10.4) Dp = ( ﬂs DQ)

in terms of the Chern connections of S and @), where
B e C™®(X, ATk ® Hom(S,Q)), B* € C*(X,A%' T ® Hom(Q, S)).

The form B is called the second fundamental form associated with the exact se-
quence. It is uniquely defined by each of the two formulas

(105) Df-lom(S,E)j = g* 0 ﬂa .7 0 /8* = _Dﬁom(Q,E)g*'

We have Dﬁom(S,Q)B =0, D (@,5)8" = 0, and the curvature form of E splits as

Hom

(9(5) —B*AB —D'Hom(Q,S)B*>

(10.6) O(E) = Dﬁom(S,Q)fB 0(Q) - B A B*
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and the curvature forms of S and Q) can be expressed as
(10.7) O(S) =O0(E)is +B"AB,  O(Q)=0(E)q+BAB,
where O(E) s, O(E)q stand for j* o O(E) o j and g o O(E) o g*.

Proof. Because of the uniqueness property of Chern connections, it is easy to see
that we have a Leibnitz formula

Dr(f ANu) = (Diome,F)f) Nu+ (—1)%87 f A Dpu

whenever u, f are forms with values in hermitian vector bundles E and Hom(E, F')
(where Hom(FE, F) = E*® F' is equipped with the tensor product metric and f Au
incorporates the evaluation mapping Hom(E,F) ® E — F). In our case, given a
form v with values in E, we write u = jug + g*ug where us = j*u and ug = gu
are the projections of 4 on S and . We then get
Dgu = DE(jUS + g*uQ)
= (DHom(s,B)J) ANus +j - Dsus + (Duom(@,r)9”) Nug + g* - Dquq.

Since j is holomorphic as well as j* o j = Idg, we find D.III{om( S,E) j=0and

}IJom(S,S) Ids =0= Dﬁom(E,S)j* °J.

By taking the adjoint, we see that j* o Dhom(S E)j = 0, hence Dhom(s E)j takes
values in g*@ and we thus have a unique form § as in the Lemma such that
Dhom( s,p)J = g% o B. Similarly, g and g o g* =Idq are holomorphic, thus

Ditom(.@) 1d@ = 0= g0 Diionq.5)9"

and there is a form vy € C* (X, A%!T§ ®Hom(Q, S)) such that Dﬁom(Q,E)g* =jon.
By adjunction, we get Dhom(E,Q)g = * o j* and Dj{IoME’Q)g = 0 implies
Dhom(Q g)9" = 0. If we differentiate g o j = 0 we then get

0:D{{om(E,Q)goj+g°Di{0m(S,E)j =q*0j*oj+gog-oB=v"+0,
thus v = —3* and D’}’Iom(Q’E)g* = —j o *. Combining all this, we get
Dpu=g*B Aus +j-Dsus — jB* Aug + ¢* - Duq
= j(Dsus — B* ANug) + g*(B A us + Doug),

and the asserted matrix decomposition formula follows. By squaring the matrix,
we get
D2 _ ( D% - BB —Dsoﬂ*—ﬂ*oDQ>
E=\DgoB+BoDs  DL—BAB )
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As Dgof+ B0Ds = Duom(s,@)B and Ds o * + 80 Dg = Dyom(q,s)3” by the
Leibnitz rule, the curvature formulas follow (observe, since the Chern curvature
form is of type (1,1), that we must have Dhom(S,Q)IB =0, Dﬁom(Q,S)ﬂ* =0). O

(10.8) Corollary. Let 0 —» S — E — @ — 0 be an exact sequence of hermitian
vector bundles. Then

a) E>ait 0 = @ >aui 0,
b) E <arit 0 = S <arif 0,
C) E SNak 0 = S SNak 0;

and analogous implications hold true for strict positivity.

Proof. If 3 is written )" dz; ® f;, f; € Hom(S, @), then formulas (10.7) yield

i0(S) =i0(E)1s — Y _ dz; A dzi ® Bi;,
i0(E)1q + Y dzj A dz @ B; ;-

%
L
I

Since B- (E®s) =Y &Bj-sand B*- (E®35) =3 .85 - s we get
O(S)(€®s,6 ®s)=O(BE)(E®s, ®s) =Y §E(B; -5, Bk 5),
ok

O(S)(u,u) = O(E)(u,u) — |8 - uf?,
OQ)E®s,E ®s)=0(E)E®s,E ®s)+ D §E(BE 5,875,

3.k

O(Q)E®s,E@s) =0(E)(E®s,E®8) = |B*- (@)% O

Next, we need positivity properties which somehow interpolate between Griffiths
and Nakano positivity. This leads to the concept of m-tensor positivity.

(10.9) Definition. Let T' and E be complex vector spaces of dimensions n, r respec-
tively, and let © be a hermitian form on T @ E.

a) A tensor u € T ® E is said to be of rank m if m is the smallest > 0 integer
such that u can be written

m
UZZ§]'®SJ', §eT, s; e E.
Jj=1
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b) O is said to be m-tensor positive (resp. m-tensor semi-positive) if ©(u,u) > 0
(resp. O(u,u) > 0) for every tensor u € T ® E of rank < m, u # 0. In this
case, we write

0>,0 (resp. O©>,0).

We say that a hermitian vector bundle E is m-tensor positive if é(E) >m 0.
Griffiths positivity corresponds to m = 1 and Nakano positivity to m > min(n,r).
Recall from (4.8) that we have

(1OFE), Au,u)y = > Y ciran ujs \Tks,u

‘Sl:qf]_ Jrk, A

for every (n,q)-form u = Y ur,xdz1 A ... Adzp A dZx @ ey with values in E.
Since ujg,x = 0 for j € S, the rank of the tensor (u;s,a);x € C* ® C" is in fact
< min{n — ¢+ 1,7}. We obtain therefore:

(10.10) Lemma. Assume that E >, 0 (resp. E >, 0). Then the hermitian operator
[iO(E), 4] is semipositive (resp. positive definite) on A™1T*X ® E for ¢ > 1 and
m >min{n —q+1,r}.

The Nakano vanishing theorem can then be improved as follows.

(10.11) Theorem. Let X be a weakly pseudoconvez Kéihleamanifold of dimension n
and let E a hermitian vector bundle of rank v such that O(E) >, 0 over X. Then

H"(X,E)=0 for ¢>1 and m > min{n —q+1,r}.

We next study some important relations which exist between the various posi-
tivity concepts. Qur starting point is the following result of [DSk79].

(10.12) Theorem. For any hermitian vector bundle E,

E>Gir 0 = FE®detE >nac 0.

To prove this result, we use the fact that
(10.13) O(det E) = Trg O(E)
where Trg : Hom(E, E) — C is the trace map, together with the identity

O(E ® det E) = O(E) + Trp(0(E)) ® Idg,
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which is itself a consequence of (10.13) and of the standard formula
O(E® F) = O(E) @ Idp +Idp @0 (F).

In order to prove (10.13), for instance, we differentiate twice a wedge product,
according to the formula

/4
DAPE(Sl A A Sp) = Z(_l)degsl+---+de38j_1sl A== Nsj 1 N DESJ' AREEAY:
j=1
The corresponding hermitian forms on T'x ® E are thus related by
O(E @ det E) = O(E) + Trg O(E) ® h,

where h denotes the hermitian metric on E and Trg O(E) is the hermitian form
on T'x defined by

TrEé(E)(f,é.): Z é(E)(£®e/\7§®e/\)J EGTXJ

1<A<r

for any orthonormal frame (eg,...,e;) of E. Theorem 10.12 is now a consequence
of the following simple property of hermitian forms on a tensor product of complex
vector spaces.

(10.14) Proposition. Let T, E be complex vector spaces of respective dimensions
n,r, and h a hermitian metric on E. Then for every hermitian form @ on T @ E

O>ait0 = O+ TrgO Qh >Nk 0.

We first need a lemma analogous to Fourier inversion formula for discrete
Fourier transforms.

(10.15) Lemma. Let g be an integer > 3, and x, yu, 1 < A, pu < 7, be complex
numbers. Let o describe the set U; of r-tuples of q-th roots of unity and put

z = Z TATr, Yo = Z Yuou, o €U;.
1<A<r 1<u<r
Then for every pair (a, ), 1 <, <r, the following identity holds:
Zalg if a#p,
"’ Z oYy 0a0p = Z .y, if a=p.

o€y
1<p<r
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Proof. The coefficient of )7, in the summation ¢~" > ;. 2, 7,040p is given by
q

qg " E Oa0RTN\O-
geUy

This coefficient equals 1 when the pairs {a, 4} and {8, A\} are equal (in which case
040500, = 1 for any one of the ¢" elements of UJ). Hence, it is sufficient to prove
that

Z 0o 0B0N\0, = 0
aeUy
when the pairs {a, u} and {3, A} are distinct.

If {a, p} # {8, A}, then one of the elements of one of the pairs does not belong
to the other pair. As the four indices a, 3, A\, 4 play the same role, we may suppose
for example that a ¢ {8, A\}. Let us apply to o the substitution o — 7, where 7 is
defined by

Ta = e2”i/qaa, T, =0, for v#a.
We get
e27ri/qz if a#up,
00RO\, = = R
; alp 1 z e47r1/qz if o=y,
g

Since ¢ > 3 by hypothesis, it follows that

Z 0a080x0, = 0.
o

Proof of Proposition 10.14. Let (t;)1<;<n be abasis of T', (ex)1<a<r an orthonormal
basisof Eand §{ = 2. &t; € T,u =}, ,ujnt;®ex € TRE. The coefficients cjray
of © with respect to the basis t; ® ey satisfy the symmetry relation €z, = Crjun,
and we have the formulas

O(u,u) = Z CikAnUjA Uk s

Jiks A
Trp 06,8 = Y ciranéss,
Jik,A
(O+Trg @ h)(u,u) = Z CitapWirUry + CiraAUjp Uy -
Jiks A

For every o € U (cf. Lemma 10.15), put
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1<A<r
Uy = E Wit €T, €5 = E oxex €EE
j A

Lemma 10.15 implies

_ ~ ~ o~ ~ — ! —t —
q " E O, €y U, R€y) =q " E CikApWsUky OAD

a'GU; anqT
= E  CikanUiaTRy + § : CiRANUjp Uk -
j,k,k#ﬂ j,k,)\,u

The Griffiths positivity assumption shows that the left-hand side is > 0, hence

(O + Trg O ® h)(u,u) > Z CikaUj Ugx > 0
koA

with strict positivity if @ >guir 0 and u # 0. O

We now relate Griffiths positivity to m-tensor positivity. The most useful result
is the following

(10.16) Proposition. Let T' be a complex vector space and (E,h) a hermitian vector
space of respective dimensions n,r with r > 2. Then for any hermitian form © on
T ® E and any integer m > 1

O>cir0 — mTrg®ORh—-06 >, 0.

Proof. Let us distinguish two cases.

a) m=1. Let u € T® E be a tensor of rank 1. Then u can be written u = &; ® e
with & €T, & #0, and e; € E, |e;| = 1. Complete e; into an orthonormal basis
(e1,---,er) of E. One gets immediately

(Trg O ® h)(u,u) = Trg O(&1,&) = Z O(& ®en, & Qey)

1<A<Lr
> 06 ®e1, & ®er) =O(u,u).

b) m > 2. Every tensor u € T ® E of rank < m can be written

u = Zé-)\@e)\ ) fAETa

1<A<q
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with ¢ = min(m,r) and (ex)1<a<r an orthonormal basis of E. Let F' be the vector
subspace of E generated by (e1,...,e,) and O the restriction of © to T'® F. The
first part shows that

O :=TrrOr @ h — OF >auif 0.
Proposition 10.14 applied to ©' on T ® F yields
O +TrpO@ @h=qTrrOr @ h— O >, 0.
Since u € T ® F is of rank < g < m, we get (for u # 0)

O(u,u) = Op(u,u) < ¢(Trr OF ® h)(u,u)

=q Z O ®exé®ex) <mTrg O ® h(u,uw). O
1<5,A<q

Proposition 10.16 is of course also true in the semi-positive case. From these
facts, we deduce

(10.17) Theorem. Let E be a Griffiths (semi-)positive bundle of rank r > 2. Then
for any integer m > 1

E*® (det E)™ >, 0 (resp. >, 0).

Proof. We apply Proposition 10.16 to ©@ = —Q(E*) = tO(E) >g.it 0 on Tx ® E*
and observe that
O(det E) = Trp O(E) = Trp- O.

(10.18) Theorem. Let 0 — S — E — @ — 0 be an ezact sequence of hermitian
vector bundles. Then for any m > 1

E>,0 = S®(det@)™ >, 0.

Proof. Formulas (10.7) imply
i0(S) >mif*AB -, 10(Q) >m i A B,

iO(det Q) = Trg (i0(Q)) > Trg(iB A B%).
If we write 8 =) dz; ® §; as in the proof of Corollary 10.8, then
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Tro(iB A B*) = Y _idz; A dzi Trg(B;5%)
= idz; Adzi Trs(B8;) = Trs(=i8* A B).

Furthermore, it has already been proved that —ig*AS >nax 0. By Proposition 10.16
applied to the corresponding hermitian form © on Tx ® S, we get

mTrg(—if* A B) @ Ids +if* A B >,, 0,

and Theorem 10.18 follows. O

(10.19) Corollary. Let X be a weakly pseudoconvex Kihler n-dimensional manifold,
E a holomorphic vector bundle of rank r > 2 and m > 1 an integer. Then

a) E>auir 0=> HY1(X,E®det E) =0 forq>1;
b) E >t 0= H"(X, E*®(det E)™) =0 forqg > 1 andm > min{n — g+ 1,7};
c) Let 0> S = E — @ — 0 be an exact sequence of vector bundles and m =

min{n —g+ 1,1k S}, ¢ > 1. If E >,,, 0 and if L is a line bundle such that
L® (det@)~™ >0, then

H™(X,S® L) =0.

Proof. Immediate consequence of Theorem 10.11, in combination with 10.12 for a),
10.17 for b) and 10.18 for c). O

11. Skoda’s L? Estimates for Surjective Bundle Morphisms

Let (X,w) be a Kéhler manifold, dim X = n, and let g : E — @ a holomorphic
morphism of hermitian vector bundles over X. Assume in the first instance that g
is surjective. We are interested in conditions insuring that the induced morphisms
g: HY* (X, E) — H™*(X, Q) are also surjective (dealing with (n, s) bidegrees is
always easier, since we have to understand positivity conditions for the curvature
term). For that purpose, it is natural to consider the subbundle S = Kerg C E
and the exact sequence

(11.1) 0—S D E25Q—0

where j : S — E is the inclusion. In fact, we need a little more flexibility to handle
the curvature terms, so we take the tensor product of the exact sequence by a
holomorphic line bundle L (whose properties will be specified later):

(11.2) 0—S®L—E®L 5 Q®L—0.
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(11.3) Theorem. Let k be an integer such that 0 < k < n. Set r =1k E, q = rkQ,
s=rkS=r—q and

m = min{n — k, s} = min{n — k,r — ¢}.

Assume that (X,w) possesses also a complete Kdhler metric @, that E >,, 0, and
that L — X is a hermitian holomorphic line bundle such that

iO(L) — (m+¢)iO(det Q) > 0

for some e > 0. Then for every D" -closed form [ of type (n, k) with values in QQ L
such that ||f|| < +o0, there exists a D"-closed form h of type (n,k) with values in
E® L such that f =g-h and

1Bl < (1 +m/e) I£]I*.

The idea of the proof is essentially due to [Sko78], who actually proved the
special case k = 0. The general case appeared in [Dem82b].

Proof. Let j : S — E be the inclusion morphism, ¢* : @ — E and j* : E — S
the adjoints of g, 7, and the matrix of Dg with respect to the orthogonal splitting
E~S®Q (cf. Lemma 10.2). Then g*f is a lifting of f in £ ® L. We will try to
find h under the form

h=g*f+ju, ue€Ll*X, ATy ®S®L).

As the images of S and @Q in E are orthogonal, we have |h|? = |f|? + |u|? at every
point of X. On the other hand D¢y, f = 0 by hypothesis and D"g* = —j o 8* by
(10.5), hence

D%@Lh = _j(ﬂ* A f) +ng®L = j(Dg®L = B*Af).
We are thus led to solve the equation
(11.4) Sert =B* A f,

and for that, we apply Theorem 5.1 to the (n, k+ 1)-form 8* A f. One now observes
that the curvature of S ® L can be expressed in terms of §. This remark will be
used to prove:

(11.5) Lemma. Let Ay = [iO(S ® L), A] be the curvature operator acting as an
hermitian operator on the bundle of (n,k + 1)-forms. Then

(A1 (B A ), (B A ) < (mfe) |12
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If the Lemma is taken for granted, Theorem 5.1 yields a solution u of (11.4) in
LX(X,A™IT% ® S ® L) such that [[u]|* < (m/e) [|£]|*. As [|A]]* = [|£]* + ||ul?, the
proof of Theorem 11.3 is complete. O

Proof of Lemma 11.5. Exactly as in the proof of Theorem 10.18, the formulas (10.7)
yield
0(S) > i8* A B,  1O(det Q) > Trg(iff A B¥) = Trs(—if* A B).
Since C® (X, AV1T% @ Herm S) 3 O := —if*AB >auir 0, Proposition 10.16 implies
m Trs(—if* A B) @ Ids +if* A B >, 0.
From the hypothesis on the curvature of L we get

i0(S ® L) >, 10(S) ® Idy, +(m +£) iO(det Q) ® IdseL
>m (iB*AB+ (m+e) Trs(—if* AB) ®1ds) ® Idy,
>m (/m) (—if* A B) @ Ids @ 1dy, .

For any v € A"F1T% ® S ® L, Lemma 10.10 implies
(11.6) (Agv,v) > (e/m) (—=if* A B A Av,v),

because rk(S® L) = s and m = min{n—k, s}. Let (dz1,...,dz,) be an orthonormal
basis of T% at a given point zy € X and set

B= > dz®B;, B;€Hom(S,Q).

1<j<n

The adjoint of the operator f* Ae = > dZ; A B e is the contraction operator 3 J e
defined by

Blvo=Y" 6% 1 (Bjv) = —idz; A A(Bjv) = —iB A Av.
Consequently, we get (—if* A B A Av,v) = |8 1 v|? and (11.6) implies
(B A F0)2 = (f,8 3 0)> <[fI1B 1 vf* < (m/e){Apv,0) |fI.

This is equivalent to the estimate asserted in the lemma. d

If X has a plurisubharmonic exhaustion function 1, we can select a convex
increasing function x € C*®(R,R) and multiply the metric of L by the weight
exp(—x o 9) in order to make the L2 norm of f converge. Theorem 11.3 implies
therefore:
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(11.7) Corollary. Let (X,w) be a weakly pseudoconvex Kahler manifold, g : E — Q
a surjective bundle morphism with r = rk E, ¢ =tk Q, and L — X a hermitian
holomorphic line bundle. We set m = min{n — k,r — q} and assume that E >, 0
and

iO(L) — (m +¢)iO(det Q) > 0

for some € > 0. Then g induces a surjective map

H""(X,E® L) — H" (X,Q ® L).

The most remarkable feature of this result is that it does not require any strict
positivity assumption on the curvature (for instance E can be a flat bundle). A
careful examination of the proof shows that it amounts to verify that the image of
the coboundary morphism

—B*ANe : H"™(X,Q® L) — H™ 1 (X,S® L)

vanishes; however the cohomology group H™*+1(X,S ® L) itself does not neces-
sarily vanish, as it would do under a strict positivity assumption.

We want now to get estimates also when @ is endowed with a metric given
a priori, that can be distinct from the quotient metric of £ by g. Then the map
g*(99*)™' : Q — E is the lifting of @ orthogonal to S = Ker g. The quotient
metric |o|' on @ is therefore defined in terms of the original metric |o| by

[0 = 19*(99%) "0I* = ((99%) "v,v) = det(gg") " {gg*v,v)

where ;]\gi € End(Q) denotes the endomorphism of ) whose matrix is the trans-
posed comatrix of gg*. For every w € det @, we find

| = det(9g") " [w|*.
If Q' denotes the bundle @ with the quotient metric, we get
iO(det Q') = iO(det Q) + id'd" log det(gg*).

In order that the hypotheses of Theorem 11.3 be satisfied, we are led to define a
new metric |o|' on L by [u|”? = |u|? (det(gg*)) " . Then

iO(L') =i0(L) + (m +¢)id'd" log det(gg*) > (m + €)iO(det Q).

Theorem 11.3 applied to (E,Q’, L") can now be reformulated:

(11.8) Theorem. Let X be a complete Kihler manifold equipped with o Kdhler
metric w on X, let E — Q be a surjective morphism of hermitian vector bundles
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and let L — X be a hermitian holomorphic line bundle. Set r = rk E, ¢ = rk Q
and m = min{n — k,r — ¢}, and assume that E >,, 0 and

iO(L) — (m+¢)iO(det Q) > 0

for some € > 0. Then for every D" -closed form f of type (n, k) with values in Q® L
such that

I=1/<aFﬁf>Maggv—m—*de<:+a%
X

there exists a D" -closed form h of type (n, k) with values in EQL such that f = g-h
and
/ IB[2 (det gg*) =™ dV < (1 +m/e) I. 0
X

Our next goal is to extend Theorem 11.8 in the case when g : E — (@) is only
generically surjective; this means that the analytic set

Y={z€X; g, : E, — Q, is not surjective }

defined by the equation A%g = 0 is nowhere dense in X. Here A%g is a section of the
bundle Hom(AE, det Q). The idea is to apply the above Theorem 11.8 to X \ Y.
For this, we have to know whether X \Y has a complete Kihler metric.

(11.9) Lemma. Let (X,w) be a Kihler manifold, and Y = o=1(0) an analytic
subset defined by a section of a hermitian vector bundle E — X. If X is weakly
pseudoconvex and ezhausted by X, = {z € X ; ¢¥(z) < ¢}, then X, \Y has a
complete Kdhler metric for all ¢ € R. The same conclusion holds for X \Y if
(X,w) is complete and if for some constant C > 0 we have O <ait Cw {, )&
on X.

Proof. Set 7 = log|o|?. Then d't = {D'0c,0}/|0c|* and D"D'c = D*¢ = O(E)o,
thus

{D's,D'c} {D'0,0}A{0,D'c} {iO(E)o,0}
|of? lof* o>

For every £ € T'x, we find therefore

21D . €12 _1UD! . 2 9
HﬂaszDaawwDaaw|_mmwﬁ?ww)

s _OE)E®0E00)
B o2

idd"r =i

by the Cauchy-Schwarz inequality. If C' is a bound for the coefficients of é(E) on
the compact subset X, we get id'd"'t > —Cw on X.. Let x € C®(R,R) be a
convex increasing function. We set
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B=w+idd" (xor)=w+i(X or dd"T+x" o d'TAd"T).

We thus see that & is positive definite if x' < 1/2C, and by a computation similar
to the one preceding Theorem 5.2, we check that & is complete near Y = 7! (—o0)

as soon as o
/ VX" (t) dt = +o0.
One can choose for example x such that x(t) = z(t —log|t|) for t < —1. In order

to obtain a complete Kahler metric on X, \Y, we also need the metric to be
complete near 0X,. If & is not, such a metric can be defined by

id'd" n id'yp Ad'"y
c—¢  (c—1)?
> id' log(c — ) ' Ad"log(c — )t ;

O=o+id'd" loglc—) P =D +

@ is complete on X, \ {2 because log(c — ) ™! tends to +o0o on 8X.. O

We also need another elementary lemma dealing with the extension of partial
differential equalities across analytic sets.

(11.10) Lemma. Let 2 be an open subset of C* and Y an analytic subset of (2.
Assume that v is a (p,q — 1)-form with L% . coefficients and w a (p,q)-form with

L . coefficients such that d"v =w on 2\Y (in the sense of distribution theory).
Then d"v=w on £2.

Proof. An induction on the dimension of Y shows that it is sufficient to prove the
result in a neighborhood of a regular point a € Y. By using a local analytic iso-
morphism, the proof is reduced to the case where Y is contained in the hyperplane
z1 = 0, with @ = 0. Let A € C*°(R,R) be a function such that A(t) =0 for ¢t < }
and A\(t) =1 for ¢t > 1. We must show that

(11.11) / wAa = (—1)”+q/ vAd'a

e o)
for all @ € D(£2, A"~ P 1T¥). Set A(2) = A(|z1|/€) and replace « in the integral
by Aca. Then A.a € D(2 N\ Y, A" P"~9T%) and the hypotheses imply

/w/\/\saz(—l)pﬂ/ vAd (\a) = (—1)P+q/ v A (@A Ao+ Moda).
2 2 2

As w and v have Llloc coefficients on {2, the integrals of w A Aca and v A A\.d"
converge respectively to the integrals of w A @ and v A d"«a as € tends to 0. The

remaining term can be estimated by means of the Cauchy-Schwarz inequality:
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2
‘/ v/\d"/\g/\a‘ 5/ v A af?dV. |d" N2 dV
(7] |z1]<e Supp a

as v € L (12), the integral Jiaj<e v A al? dV converges to 0 with e, whereas

loc 11<e

/ |d" X |2 dV < gVOI(Supp an{lz] <e}) <C'.
Supp a

Equality (11.11) follows when ¢ tends to 0. O

(11.12) Theorem. The ezistence statement and the estimates of Theorem 11.8 re-
main true for a generically surjective morphism g : E — @, provided that X is
weakly pseudoconvex.

Proof. Apply Theorem 11.8 to each relatively compact domain X, \'Y (these do-
mains are complete Kahler by Lemma 11.9). From a sequence of solutions on X.\Y
we can extract a subsequence converging weakly on X \Y as ¢ tends to +00. One
gets a form h satisfying the estimates, such that D"h=0on X \Y and f =g-h.
In order to see that D"h = 0 on X, it suffices to apply Lemma 11.10 and to observe
that h has L2 coefficients on X by our estimates. O

A very special but interesting case is obtained for the trivial bundles F = 2xC",
Q = 2 x C over a pseudoconvex open set 2 C C"*. Then the morphism g is given
by a r-tuple (g1,-..,g-) of holomorphic functions on 2. Let us take k¥ = 0 and
L = 2 x C with the metric given by a weight e~¢. If we observe that gg* = Id
when rk @ = 1, Theorem 11.8 applied on X = 2 \ g~1(0) and Lemmas 11.9, 11.10
give:

(11.13) Theorem (Skoda [Sko72b]). Let 2 be a complete Kihler open subset of C™
and ¢ a plurisubharmonic function on 2. Set m = min{n,r — 1}. Then for every
holomorphic function f on 2 such that

= [Pl e ay < v,
02\Z

where Z = g~1(0), there exist holomorphic functions (hi,...,h,;) on £2 such that
f=22g;h; and

/ |h|?|g|2(m+e)e=? 4V < (1 +m/e)l. 0
02\Y
We now show that Theorem 11.13 can be applied to get deep results concerning

ideals of the local ring O, = C{z1,...,2,} of germs of holomorphic functions on
(C*,0). Let T = (g1,---,9-) # (0) be an ideal of O,,.



92 J.-P. Demailly

(11.14) Definition. Let k € Ry . We associate to I the following ideals:

a) the ideal A of germs u € Oy, such that |u| < C|g|* for some constant C > 0,
where |g|? = |g1|> + -+ + |g-|*.

b) the ideal 7k of germs u € O,, such that
/ [u|? |g| 2%+ @V < +o0
2

on a small ball 2 centered at 0, if € > 0 is small enough.

(11.15) Proposition. For all k,l € Ry we have
a) T c 7®,

=

VA cz® if k €N;

¢) T(k) .T(I) C j(k"rl) ;

d) W 20 ¢ T+

All properties are immediate from the definitions except a) which is a conse-

quence of the integrability of |g|~¢ for £ > 0 small (exercise to the reader!). Before
stating the main result, we need a simple lemma.

(11.16) Lemma. If 7 = (g1,...,9-) and r > n, we can find elements G1,...,9n, € L
such that C~t|g| < |g| < C|g| on a neighborhood of 0. Each §; can be taken to be
a linear combination

gi=aj.9g= Z ajrgk, a; € C" {0}
1<k<Zr

where the coefficients ([a1], . .., [an]) are chosen in the complement of a proper ana-
lytic subset of (P"—1)".

It follows from the Lemma that the ideal J = (§1,...,9n) C Z satisfies 7*) =
Z*) and J*) = () for all k.

Proof. Assume that g € O(2)". Consider the analytic subsets in 2 x (PT=1)"
defined by
A={(zwi],-.., [wa]); wj.g(2) = 0},

A* = Uirreducible components of A not contained in g~ 1(0) x (P"1)".
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For z ¢ g 1(0) the fiber A, = {([w1],...,[wn]); wj.g(z) = 0} = A% is a product
of n hyperplanes in P"~1, hence AN (2~ g 1(0)) x (P""1)" is a fiber bundle with
base 2\ g—1(0) and fiber (P"=2)". As A* is the closure of this set in 2 x (P"~1)",

we have
dim A* = n +n(r —2) = n(r — 1) = dim(P™1)".

It follows that the zero fiber
Ay =A"n ({0} X (I["T_l)”)

is a proper subset of {0} x (P"~1)". Choose (ai,...,a,) € (C" ~ {0})" such

that (0,[a1],...,[as]) is not in A§. By an easy compactness argument the set
A*N (B(0,g) x (P™1)") is disjoint from the neighborhood B(0,¢) x [[[B(a;,¢)]
of (0,[a1],...,[an]) for € small enough. For z € B(0,¢) we have |a;. g(z)| > ¢|g(2)|

for some j, otherwise the inequality |a;. g(2)| < €|g(2)| would imply the existence
of hj € C" with |h;| < € and a;. g(2) = h;.g(2). Since g(z) # 0, we would have

(z,]a1 — 1], - -, [an — hy)]) € A* N (B(O,a) X (lP’T_l)"),
a contradiction. Therefore we obtain

elg(2)| < max|a;. g(2)| < (max|ag[) |9(z)| on B(0,¢). O

(11.17) Theorem (Briancon-Skoda [BSk74]). Set p = min{n — 1,7 — 1}. Then
a) Z0+D) =770 =TZT®)  for k> p.
b) 5P c TG40 c TF for all k € N.

Proof. a) The inclusions ZZ® c TZ®) c Z*;+1 are obvious thanks to Proposi-
tion 11.15, so we only have to prove that Z(*+1) ¢ ZZ®*)  Assume first that r < n.
Let f € Zk+1) be such that

/ 1£[2 19| ~2+149) @V < 400,
0

For k > p — 1, we can apply Theorem 11.13 with m = r — 1 and with the weight
¢ = (k —m)log|g|>. Hence f can be written f =) g;h; with

/ IB[2 9|25+ 4V < +o0,
2

thus h; € Z® and f € TZ(®. When r > n, Lemma 11.16 shows that there is an
ideal 7 C T with n generators such that J*) = Z®*) We find

T+ — j(k"'l) C Jj(k) cZZI®  for k >n—1.
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b) Property a) implies inductively Z(k+p) = 7R 7(®) for all k € N. This gives in
particular Z(k+P) c Tk, O

(11.18) Corollary.

a) The ideal T is the integral closure of Z, i.e. by definition the set of germs u € O,,
which satisfy an equation

wWtau - 4ay=0, a,€Z° 1<s<d.

b) Similarly, T (#)

is the set of germs u € O, which satisfy an equation
wtau™ - 4+a3=0, aSEIrks], 1<s<d,

where [t] denotes the smallest integer > t.

As the ideal AR is finitely generated, property b) shows that there always exists
a rational number [ > k such that ZW = Z().

Proof. a) If u € O, satisfies a polynomial equation with coefficients a5 € Z°%, then
clearly |as| < Cs |g|® and the usual elementary bound

[roots| < 2 max |a,|'/®
1<s<d

for the roots of a monic polynomial implies |u| < C'|g].

Conversely, assume that u € Z. The ring O,, is Noetherian, so the ideal 7(®) has
a finite number of generators vi,...,vnN. For every j we have uv; € IIW =110,
hence there exist elements b;;, € Z such that

uv; = E bjk’l}k.
1<k<N

The matrix (ud;r — bjx) has the non-zero vector (v;) in its kernel, thus u satisfies
the equation det(udjr — bjx) = 0, which is of the required type.

b) Observe that vq,...,vn satisfy simultaneously some integrability condition
Jo lv;| 722 < o0, thus Z®) = I+ for p € [0,¢[. Let u € Z*). For every
integer m € N we have

u™v; € f(km) Tt  Zkmtntp)

If & ¢ Q, we can find m such that d(km +¢/2,7Z) < /2, thus km +n € N for some
n € 10,¢[. If k € Q, we take m such that km € N and n = 0. Then
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u™v; € I+ = N T®)  with N=km+neN,

and the reasoning made in a) gives det(u™d;; — bjx) = 0 for some bjr € ZV. This
is an equation of the type described in b), where the coefficients a, vanish when s
is not a multiple of m and a,, € IV c Zlkmsl, O

Let us mention that Briangon and Skoda’s result 11.17 b) is optimal for k£ = 1.
Take for example Z = (g1, ...,9,) with g;(2) =27, 1 <j <r, and f(2) = z1... 2.
Then |f| < C|g| and 11.17 b) yields f" € Z; however, it is easy to verify that
f~1 ¢ . The theorem also gives an answer to the following conjecture made by
J. Mather.

(11.19) Corollary. Let f € O, and I; = (210f/0z1,-..,2,0f/02,). Then f € Iy,
and for every integer k > 0, fktn—1 ¢ I}“.

The Corollary is also optimal for k = 1 : for example, one can verify that the
function f(z) = (21...2n)% + 20" 1 + -+ + 22771 is such that f*! ¢ Z;.

Proof. Set g;(z) = 2z;0f/0z;, 1 < j < n. By 11.17 b), it suffices to show that
|f| < C|g|- For every germ of analytic curve C 5 t — v(t), v # 0, the vanishing
order of f o~(t) at t = 0 is the same as that of

td(fdjv) S m;.(t)g—;j(v(t))-

1<j<n

We thus obtain

d(f o of
Forol<aild [ 22D <o S i) | 2L ()| < s lg oo
1<j<n J
and conclude by the following elementary lemma. O

(11.20) Curve selection lemma. Let f,91,...,9, € O, be germs of holomorphic
functions vanishing at 0. Then we have |f| < C|g| for some constant C if and only
if for every germ of analytic curve vy through 0 there exists a constant C., such that

|[fov] <C,lgonl.

Proof. If the inequality |f| < C|g| does not hold on any neighborhood of 0, the
germ of analytic set (4,0) C (C**",0) defined by

9i(2) = f(2)znys, 1<j<m,
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contains a sequence of points (z,,g;(2.)/f(z,)) converging to 0 as v tends to +oo,
with f(z,) # 0. Hence (A4,0) contains an irreducible component on which f # 0
and there is a germ of curve ¥ = (7, ¥p4;) : (C,0) — (C**",0) contained in (A4, 0)
such that f o~y #Z 0. We get g; oy = (f ©y)Vn4j, hence |go~y(t)| < C|t||f o y(t)]
and the inequality |f o v| < C,|g o 7| does not hold. O

12. The Ohsawa-Takegoshi L? Extension Theorem

We address here the following extension problem: let Y be a complex analytic
submanifold of a complex manifold X ; given a holomorphic function f on Y sat-
isfying suitable L? conditions on Y, find a holomorphic extension F of f to X,
together with a good L? estimate for F on X. The first satisfactory solution has
been obtained only rather recently by Ohsawa-Takegoshi [OT87, Ohs88]. We fol-
low here a more geometric approach due to Manivel [Man93], which provides a
generalized extension theorem in the general framework of vector bundles. As in
Ohsawa-Takegoshi’s fundamental paper, the main idea is to use a modified Bochner-
Kodaira-Nakano inequality. Such inequalities were originally introduced in the work
of Donnelly-Fefferman [DF83] and Donnelly-Xavier [DX84]. The main a priori in-
equality we are going to use is a simplified (and slightly extended) version of the
original Ohsawa-Takegoshi a priori inequality, as proposed recently by Ohsawa
[Ohs95].

(12.1) Lemma (Ohsawa [Ohs95]). Let E be a hermitian vector bundle on a complex
manifold X equipped with o Kdhler metric w. Let n, A > 0 be smooth functions
on X. Then for every form u € D(X, AP1T% @ E) with compact support we have

L1 1 1 _1
(02 + A2)D"*ul|* + [[n= D"ul” + |IA2 Dul|® + 2[]A"2d"n A ul]?
> ([niO(E) —id'd"n —ix"td'n Ad'y, Alu,u)).

Proof. Let us consider the “twisted” Laplace-Beltrami operators

DInDI* + DI*T’DI — n[DI,DI*] + [DI,T}]DI* + [DI*,T}]DI
=nA"+ (d'n)D™ — (d'n)*D’,
D”nDII* + _D”*nD” — T][D”, DII*] + [D", n]DII* + [D”*, n]D”
— nAII + (d”n)D”* _ (d”n)*D”,
where 7, (d'n), (d"n) are abbreviated notations for the multiplication operators 7e,

(d'n) Ae, (d"n) Ae. By subtracting the above equalities and taking into account the
Bochner-Kodaira-Nakano identity A" — A’ = [iO(E), 4], we get



Multiplier Ideal Sheaves and Analytic Methods 97
DIInDII* + D”*T].D” _ D,nDI* _ DI*nDI
(12.2) = nliO(E), A] + (d"n) D™ — (d"n)*D" + (d'n)*D" — (d'n)D"™.
Moreover, the Jacobi identity yields
[D”7 [d’777 A]] - [dln7 [A7 D”]] + [A7 [Dna dl’?]] =0

whilst [A, D"] = —iD™ by the basic commutation relations 4.5. A straightforward
computation shows that [D",d'n] = —(d'd"n) and [d'n, A] = i(d"n)*. Therefore we
get

i[D", (d"n)*] +i[d'n, D"] — [A, (d'd"n)] = 0,

that is,
[i dld"n, A] — [D”, (dlln)*] + [DI*, dln] — D”(d”n)*+ (dlln)*DII+DI*(dln) +(dln)Dl*-
After adding this to (12.2), we find

DII,',’DII* + DII*nDII _ DInDI* _ DI*nDI + [1 dld”n, A]
= nliO(E), A] + (d"n)D"* + D"(d"n)* + (d'n)*D' + D" (d'n).

We apply this identity to a form v € D(X, APYT% ® E) and take the inner bracket
with u. Then

((D"nD"™)u,w) = (nD"*u, D"*u) = |l D"*ul?,
and likewise for the other similar terms. The above equalities imply
l® D" ul|* + lln* D"ul|® — [l* D'ul® ~ ||n* D™ul]* =
(mio(E) —id'd"n, AJu, u)) + 2Re (D"*u, (d"n)*u)) + 2Re (D'u,d'n A u).
By neglecting the negative terms —||n2 D'ul|? — ||p? D"*u||> and adding the squares
IAZD"*u||? + 2 Re (D"*u, (d"n)*u)) + [|A~ 2 (d"n)*u|* > 0,
IAZD'u|)® + 2Re {(D'u,dn Au) + [[A2d'n Aul®> >0
we get
1% + A)D"ul[® + l? D"ull* + A2 D'ul|* + |\~ 2d'n A ul[® + [|A~ 2 (d"n) *u||?
> ([niO(E) —id'd"n, Alu,u).
Finally, we use the identities

(d'n)*(d'n) — (d"n)(d"n)* = i[d"n, A)(d'n) + i(d"n)[d'n, A] = [id"n A d'n, A,
IAN"Zd'n A ul® = A7 (@ ) ul® = =[N d'n Ad"n, Alu,u),
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The inequality asserted in Lemma 12.1 follows by adding the second identity to
our last inequality. O

In the special case of (n, ¢)-forms, the forms D'u and d'n A u are of bidegree
(n +1,q), hence the estimate takes the simpler form
(12.3)
It* +X)D"*ull* + |ln= D"ull* > ([iO(E) —id'd"y —ix~ d'n Ad"n, Au,u).

(12.4) Proposition. Let X be a complete Kihler manifold equipped with a (non ne-
cessarily complete) Kahler metric w, and let E be a hermitian vector bundle over X .
Assume that there are smooth and bounded functions n, A > 0 on X such that the

(hermitian) curvature operator B = Bg”‘i}m = iO(E)—id'd"n—ix"td'nAd'"n, A,)

is positive definite everywhere on A™IT% @ E, for some ¢ > 1. Then for every form
g € L*(X, AT} ® E) such that D"g = 0 and [y (B~'g,g) dV,, < +00, there exists
f € L2(Xa An,q—lT} & E) such that _D"f =g and

/ (n+ NPV, <2 / (B~'g,q) dV..
X X

Proof. The proof is almost identical to the proof of Theorem 5.1, except that we
use (12.3) instead of (4.7). Assume first that w is complete. With the same notation
as in 7.4, we get for every v = v; + vy € (Ker D") & (Ker D")* the inequalities

(g0 = oo < [ (Bg.00aV. [ (Buwi)av,
X X
and
/X (Buy,v1) dV, < [|(n? + A2)D" 1|2 + [[n? D"va|* = |(n* + A*)D"*0|]>
provided that v € Dom D"*. Combining both, we find
(o) < ([ (B g.00av. ) ln? + X2 D"l
This shows the existence of an element w € L?(X, A™9T% ® E) such that
ol < [ (B'g.g0av.  and
(v, 9) = ((n* + A%)D"*v,w) Vg € Dom D" N Dom D"*.

As (Y2 + X2)2 < 2(n + N), it follows that f = (p*/2 + A\2)w satisfies D" f = g
as well as the desired L? estimate. If w is not complete, we set w, = w + €& with
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some complete Kéhler metric &. The final conclusion is then obtained by passing
to the limit and using a monotonicity argument (the integrals are monotonic with
respect to €). O

(12.5) Remark. We will also need a variant of the L?-estimate, so as to obtain
approximate solutions with weaker requirements on the data: given § > 0 and
g € L*(X,A™1T% ® E) such that D"g = 0 and [, ((B + 6I)~'g,9)dV,, < +o0,
there exists an approximate solution f € L?(X, A™?"!T% ® E) and a correcting
term h € L*(X, A™9T% ® E) such that D" f + 6'/2h = g and

/ (n+ N1 f2dV, + / WP dV, < 2 / (B +61)~ g, 9) V.
X X

X

The proof is almost unchanged, we rely instead on the estimates

g, on)? < /X (B +61)" g, g dV,, /X (B + 6T)vr, v1) dV,

and
/ (B +dI)w1,v1) dVi < [|(n% + A3)D"™ || + 8v||. O
X

(12.6) Theorem. Let X be a weakly pseudoconvez n-dimensional complex manifold
equipped with a Kdhler metric w, let L (resp. E) be a hermitian holomorphic line
bundle (resp. a hermitian holomorphic vector bundle of rank r over X), and s a
global holomorphic section of E. Assume that s is generically transverse to the zero
section, and let

Y ={z€X; s(z) =0,4"ds(z) # 0}, p=dimY =n—r.

Moreover, assume that the (1,1)-form iO(L) + rid'd"log|s|? is semipositive and
that there is a continuous function o > 1 such that the following two inequalities
hold everywhere on X :

a) iO(L) +rid'd"log|s]* > a ™" {19(|8|)23 , S}

b) |s| < e

Then for every smooth D" -closed (0, q)-form f overY with values in the line bundle
A"T% @ L (restricted to V), such that [, |f|*|A"(ds)|72dV,, < 400, there ezists a
D"-closed (0,q)-form F over X with values in A"T% ® L, such that F' is smooth
over X \ {s = A"(ds) = 0}, satisfies Fiy = f and

e / I
<
/ P (—loglal? 0 <G | T @R e
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where C,. is a numerical constant depending only on r.

Observe that the differential ds (which is intrinsically defined only at points
where s vanishes) induces a vector bundle isomorphism ds : Tx /Ty — E along Y,
hence a non vanishing section A"(ds), taking values in

A (Tx|/Ty)* ®@det E C A"T% @ det E.

The norm |A"(ds)| is computed here with respect to the metrics on A"T% and det E
induced by the Kahler metric w and by the given metric on E. Also notice that if
hypothesis a) is satisfied for some a, one can always achieve b) by multiplying the
metric of F with a sufficiently small weight e X°¥ (with 1 a psh exhaustion on X
and x a convex increasing function; property a) remains valid after we multiply the
metric of L by e~ (e )Xo where ag = infyex a(z).

Proof. Let us first assume that the singularity set X' = {s = 0} N {A"(ds) = 0} is
empty, so that Y is closed and nonsingular. We claim that there exists a smooth

section
Fp € C®(X,A™T% ® L) = C®°(X, AT% @ A"T% ® L)

such that F, coincides with f on Y and D" F,, = 0 at every point of Y. In fact,
let us consider a covering of ¥ by open coordinates patches U; C X such that
there are holomorphic retractions p; : U; = Y NU; of U; onto Y NY;, and let ¢;
be a non vanishing holomorphic section of A"T% ® Ljy,;. On Y NUj;, we can write
the form f as f = w; ® ejjyny; with a d"-closed (0, ¢)-form w; on Y N Uj, hence
fi= (Pjwj) @ e; is a d"-closed extension of f to U;. Let 6; € D(U;) be a partition
of unity such that ) 6; =1 on a neighborhood of Y. Then

Fo =Y 0f;
satisfies all requirements, for
D'"F =Y d"0;Afj, D'"Fu=3» d'9;Af=0 onY.

Since we do not know about F,, far from Y, we will consider a truncation F; of Fy,
with support in a small tubular neighborhood |s| < € of Y, and solve the equation
D"u, = D"F, with the constraint that u, should be 0 on Y. As codimY = r, this
will be the case if we can guarantee that |uc|?|s|~2" is locally integrable near Y.
For this, we will apply Proposition 12.4 with a suitable choice of the functions 7
and ), and an additional weight |s|~2" in the metric of L.

Let us consider the smooth strictly convex function xp : ] — 00,0] = ] — 00,0]
defined by xo(t) =t —log(1 —¢) for ¢ < 0, which is such that xo(¢) <¢,1 < x; <2
and xg (t) = 1/(1 —t)%. We set
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s =log(|s]” +€?),  n-=e— xo(0z).
As |s| < e7® < e7!, we have 0. < 0 for e small, and
ne > € — 0. >e—log(e 2™ +¢&?).

Given a relatively compact subset X, = {¢ < ¢}CCX, we thus have 7. > 2a for
€ < g(c) small enough. Simple calculations yield

. i{D's, s}
1d'05 = W,
i dd" . — i{D's,D's} i{D's,s} A{s,D's} {iO(E)s,s}
: |s|? + &2 (|s]? +€2)? |s|? + &2
S e? i{D's,s} A {s,D's} {iO(E)s, s}
s (sl +€2)? |s|* + &2
s & ido. nd'g, - OB s}
|s[? |5 + &2

thanks to Lagrange’s inequality i{D's, s} A{s, D's} < |s|?i{{D’s, D's}. On the other
hand, we have d'n. = —x{(o.)do. with 1 < x{(oc) < 2, hence

—id'd"n. = xy(0.)id'd" 0. + xp (02)id' 0. Ad" o,
0 0

2 " .
> ( € + Xo (0:) )idlns Ad'n. — 2{1@(E)3a3}‘

2lsl* * xo(oe)? |5 + &2

We consider the original metric of L multiplied by the weight |s|2". In this way,
we get a curvature form

~1{i6(E)s, s}

iO(L) +rid'd"log|s|* > a P

by hypothesis a) [the inequality is still valid with |s|* + 2 in the denominator in
place of |s|?, thanks to the semipositivity of the left-hand side]. As . > 2a on X,
for € small, we infer
" 2
n-GO(L) +id d"log |s|?) — id'd"n. — X909 30 A qin. > 5 iam. nd'.
Xo(0¢)? 2|s|?

on X,. Hence, if \. = x§(0:)?/x4(0-), we obtain

B, := [n.(10(L) +id'd" log|s|*) —id'd"n. — A 'id'n: Ad'"n. , 4]

2
(d” Ne) (d” ne)*

2
€ €
> | ———=id'n. Ad'"n. A]
_[2|8|21d77 Ad'ne,

~2sP?

as an operator on (n, ¢)-forms (see the proof of Lemma 12.1).
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Let 6 : R — [0, 1] be a smooth cut-off function such that 6(¢t) =1 on ] —o0,1/2],
Suppf C ] — 00,1 and |#'| < 3. For ¢ > 0 small, we consider the (n,g)-form
F. = 0(c ?|s]?)F and its D"-derivative

ge = D"F. = (14+¢72|s|*)8' (¢ %|s|*)d" 0. A Fso + 0(c2|5|*)D" F,

[as is easily seen from the equality 1 + e ?|s|* = e~ 2e%¢ |. We observe that g. has
its support contained in the tubular neighborhood |s| < €; moreover, as € — 0, the
second term on the right-hand side converges uniformly to 0 on every compact set;
it will therefore produce no contribution in the limit. On the other hand, the first
term has the same order of magnitude as d"o. and d'"'7., and can be controlled in
terms of B.. In fact, for any (n, ¢)-form « and any (n,q + 1)-form v we have

[{d"ne A u,0)|* = [, (d"n)*0)* < [ul|(d"ne) v|* = [ul*((d"ne) (d" 1) v, v)
2|s|?
< 2o up(Bov, 0.
This implies
—1/ g1 1" 2|3|2 2

(B2 (d"ne Aw), (d"1e Au)) < == ul”.

The main term in g. can be written
g = (1 +e72s)0' (72|52 xh (o) " d" e A Fro.

As 2% <2 and (14 £72|s2)x4(0=) " < 2 on Supp gt C {|s| < e}, we find

£2

(B71gM, gMy < 86'(e72[s[%)?| Fuo |2

Instead of working on X itself, we will work rather on the relatively compact subset
XcNY., where Y, =Y NX, =Y N{y < c}. We know that X.\Y, is again complete
Kéhler by Lemma 11.9. In this way, we avoid the singularity of the weight |s|=2"
along Y. We find

/ (B gV, gM) |s|>rdv, < 8 / |Foo 6" (£ 5[?)?s| " dV,.
X N\Y. X.\Y,
As F, coincides with f on Y, it is not hard to see that the right-hand side converges

to 8¢, [, |fI?|A™(ds)|~2dVy,, where ¢, is the “universal” constant

o= o AN @)
z€Cr, |z|<1 |z|27'

depending only on r. The second term

g§2) — 0(5_2|3|2)d”Foo
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in g. satisfies Supp(gg)) C {|s| < €} and |g£2)| = O(|s]) (just look at the Taylor
expansion of d" F, near Y'). From this we easily conclude that

/ (B9, g |s| *rdVx . = O(?),
X NY.

provided that B. remains locally uniformly bounded below near Y (this is the
case for instance if we have strict inequalities in the curvature assumption a)). If
this holds true, we apply Proposition 12.4 on X, \ Y, with the additional weight
factor |s|27. Otherwise, we use the modified estimate stated in Remark 12.5 in
order to solve the approximate equation D"u + 6'/2h = g, with § > 0 small. This
yields sections u = uc ¢ 6, h = h¢ s such that

/ (1 + X))~ uc,e, 68| 72" dVe, +/ |he,e.6%]8| 72" dV,,
XNYe

NYe

< 2/ (B. +61) " ge, g)|s| 72" Vi,
X.\Y.

and the right-hand side is under control in all cases. The extra error term §'/2h can
be removed at the end by letting § tend to 0. Since there is essentially no additional
difficulty involved in this process, we will assume for simplicity of exposition that
we do have the required lower bound for B. and the estimates of gél) and g§2)
as above. For § = 0, the above estimate provides a solution u.. of the equation

D"u.. = g. = D"F, on X, \ Y, such that

/ (1 +Ae) ™ e ls| ™ dVxw < 2/ (BZ1ge19e) |s| 7" dVx o
X N\Y,. X N\Y,.

fI?
< — .
<16¢, /Y |Ar(ds)|2dVY*“ + O(e)

Here we have
o. = log(|s|* + %) <log(e™?* +£?) < —2a + 0(e?) < -2+ O(e?),
e = €= xo(0e) < (1+0(e))oz,
A = Xo(0e)?
: X (02)
M+ A < (4+0(0)0? < (44 0()) ( —log(s? +¢)”.

= (1 - 05)2 + (1 - UE) S (3 + 0(8))0—3a

As F_ is uniformly bounded with support in {|s| < £}, we conclude from an obvious
volume estimate that

|F-)? Const
dVx., < ,
/Xc (Is]2 + e2)r (—log([s[? + €2))2" “ = (loge)?

hence F, . = F; — u.. satisfies
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/ |Fe.c|?

x.~Y. ([s[* +€?)7(—log(]s|* +£?))
In addition to this, we have d"F, . = 0 by construction, and this equation extends
from X, \ Y, to X, by Lemma 11.10.

If ¢ = 0, then u. must also be smooth, and the non integrability of the weight
|s|=2" along Y shows that u. . vanishes on Y, therefore

Vg Const

dVx., < 64c, ——dVy, .
34V X = /Y A ds)E " Y T loge)?

Feetv =Fgy =Fiy = f.

The theorem and its final estimate are thus obtained by extracting weak limits, first
as € = 0, and then as ¢ — 4o00. The initial assumption that ¥ = {s = A" (ds) = 0}
is empty can easily be removed in two steps: i) the result is true if X is Stein,
since we can always find a complex hypersurface Z in X such that ¥ C Y N
Z C Y, and then apply the extension theorem on the Stein manifold X \ Z,
in combination with Lemma 11.10; ii) the whole procedure still works when X
is nowhere dense in Y (and possibly nonempty). Indeed local L? extensions f]
still exist by step i) applied on small coordinate balls U;; we then set Fpy =
> 0]-]7]- and observe that | D" F, |?|s| 72 is locally integrable, thanks to the estimate
Ju, |7i1%1s|=2" (log |s|)"2dV < +oco and the fact that | d"6; /\~fj| = O(|s|°) for
suitable 6 > 0 [as follows from Hilbert’s Nullstensatz applied to f; — fx at singular
points of Y.

When ¢ > 1, the arguments needed to get a smooth solution involve more
delicate considerations, and we will skip the details, which are extremely technical
and not very enlightening.

(12.7) Remarks.

a) When ¢ = 0, the estimates provided by Theorem 12.6 are independent of the
Kahler metric w. In fact, if f and F' are holomorphic sections of A"T% ® L over Y’
(resp. X), viewed as (n,0)-forms with values in L, we can “divide” f by A"(ds) €
AT(TX/TY)* ® det E to get a section f/A"(ds) of APTy: @ L ® (det E)~! over Y.
We then find
|F|?dVx,, =i" {F,F},
Fik

WdVY,w =i"{f/A"(ds), [/ A" (ds)},

where {e, ¢} is the canonical bilinear pairing described in (6.3).

b) The hermitian structure on E is not really used in depth. In fact, one only needs
E to be equipped with a Finsler metric, that is, a smooth complex homogeneous
function of degree 2 on E [or equivalently, a smooth hermitian metric on the tau-
tological bundle Op(g)(—1) of lines of E over the projectivized bundle P(E)]. The
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section s of E induces a section [s] of P(E) over X \ s 1(0) and a corresponding
section 3 of the pull-back line bundle [s]*Op(g)(—1). A trivial check shows that
Theorem 12.6 as well as its proof extend to the case of a Finsler metric on E, if we
replace everywhere {iO(E)s, s} by {iO([s]*Op(g)(—1))5,5} (especially in hypoth-
esis 12.6 b)). A minor issue is that |A"(ds)| is (a priori) no longer defined, since no
obvious hermitian norm exists on det E. A posteriori, we have the following ad hoc
definition of a metric on (det E)* which makes the L? estimates work as before: for
z € X and £ € ATE}, we set

1 i"ENE
T Ao
Cr z€E,

|z|2r

where |z| is the Finsler norm on E, [the constant c, is there to make the result
agree with the hermitian case; it is not hard to see that this metric does not depend
on the choice of §]. O

We now present a few interesting corollaries. The first one is a surjectivity
theorem for restriction morphisms in Dolbeault cohomology.

(12.8) Corollary. Let X be a projective algebraic manifold and E o holomorphic
vector bundle of rank r over X, s a holomorphic section of E which is every-
where transverse to the zero section, Y = s71(0), and let L be a holomorphic line
bundle such that F = L'/" @ E* is Griffiths positive (we just mean formally that
%i@(L) ® Idg —1O(E) >aGrir 0). Then the restriction morphism

HYY(X, A"T% ® L) — HYU(Y, A"T% ® L)

is surjective for every q > 0.

Proof. A short computation gives

id'd" log|s|? = id’(%)
_ ,({D’s,D’s} B {D's,s} A {s,D’'s} . {s,@(E)s})

- [ |s[* [

S _{io(g)s, s}

- [

thanks to Lagrange’s inequality and the fact that O(F) is antisymmetric. Hence,
if § is a small positive constant such that

1
—i@(E) + FIO(L) RIdg >grir 0w ® Idg > 0,

we find
iO(L) +rid'd"log|s|* > réw.
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The compactness of X implies iO(E) < Cw ® Idg for some C' > 0. Theorem 12.6
can thus be applied with @ = rd/C and Corollary 12.8 follows. By remark 12.7 b),
the above surjectivity property even holds if L!/” ® E* is just assumed to be ample
(in the sense that the associated line bundle 7*L'/" Op(k)(1) is positive on the
projectivized bundle 7 : P(E) — X of lines of E). O

Another interesting corollary is the following special case, dealing with bounded
pseudoconvex domains 2CCC". Even this simple version retains highly interesting
information on the behavior of holomorphic and plurisubharmonic functions.

(12.9) Corollary. Let 2 C C™ be a bounded pseudoconvexr domain, and let Y C X
be a nonsingular complexr submanifold defined by a section s of some hermitian
vector bundle E with bounded curvature tensor on 2. Assume that s is everywhere
transverse to the zero section and that |s| < e™! on 2. Then there is a constant
C > 0 (depending only on E), with the following property: for every psh function
¢ on 12, every holomorphic function f on'Y with [, |f|?|A7(ds)| > ¥dVy < +o0,
there exists an extension F' of f to (2 such that

/ Leﬂodv{) <C/ ﬂeﬂﬂdvy
o |s[*"(—log|s])? = Jy |Ar(ds)|? '

Proof. We apply essentially the same idea as for the previous corollary, in the
special case when L = (2 x C is the trivial bundle equipped with a weight function
e—#=Alz” The choice of a sufficiently large constant A > 0 guarantees that the
curvature assumption 12.6 a) is satisfied (A4 just depends on the presupposed bound
for the curvature tensor of E). O

(12.10) Remark. The special case when Y = {24} is a point is especially interesting.
In that case, we just take s(z) = (ediam £2)~1(z — 2¢), viewed as a section of the
rank r = n trivial vector bundle 2 x C* with |s| < e~!. We take a = 1 and replace
|s|2™(—log|s|)? in the denominator by |s|2("~%), using the inequality

1 1
—logls| = Elog|s|_5 < E|s|_5, Ve > 0.

For any given value fo, we then find a holomorphic function f such that f(2¢) = fo

and ) c
|f(2’)| e—cp(z)dVQ < n

Al 2,—¢(z0)
a |z = 2?2 ~ e2(diam £2)2(n—e) [fole :

We prove here, as an application of the Ohsawa-Takegoshi extension theorem,
that every psh function on a pseudoconvex open set 2 C C" can be approximated
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very accurately by functions of the form clog|f|, where ¢ > 0 and f is a holo-
morphic function. The main idea is taken from [Dem92]. For other applications
to algebraic geometry, see [Dem93b] and Demailly-Kolldr [DK99]. Recall that the
Lelong number of a function ¢ € Psh({2) at a point z¢ is defined to be

1 su
v(p,w0) = liminf 2Ly SPBGon ®
zZ2—To IOg |Z - $0| r—04 IOg r

In particular, if ¢ = log|f| with f € O(£2), then v(y, o) is equal to the vanishing
order ord,, (f) = sup{k € N; D* f(z0) =0, V|a| < k}.

(12.11) Theorem. Let ¢ be a plurisubharmonic function on a bounded pseudoconvex
open set 2 C C*. For everym > 0, let Ho(my) be the Hilbert space of holomorphic
functions f on 2 such that [, |f[?e™>™?d\ < 400 and let o = 5--log " |og|?
where (o4) is an orthonormal basis of Ha(me). Then there are constants C1,Ca > 0
independent of m such that

C 1 C
W) @(2) o Sen() < s Q)+ Tlog T

for every z € 2 and r < d(z,002). In particular, @, converges to ¢ pointwise
and in L}, . topology on 2 when m — +oo and

b) v(p,2) - % S v(em,2) Sv(p,2) for every z € .

Proof. Note that > |o4(2)|? is the square of the norm of the evaluation linear form
f = f(z) on Ho(mep). As ¢ is locally bounded above, the L? topology is actually
stronger than the topology of uniform convergence on compact subsets of (2. It
follows that the series Y |o¢|? converges uniformly on {2 and that its sum is real
analytic. Moreover we have

1
om(z) = sup —log|f(2)]
feB() M

where B(1) is the unit ball of H(me). For r < d(z,d(2), the mean value inequality
applied to the psh function |f|? implies

1
anr2n [n!
1
- w2 [n)

1P < [ 0P

exp (Zm sup go(())/0|f|2e_2m“’d)\.

[¢—z|<r
If we take the supremum over all f € B(1) we get
1 1

(2) < — log ————
om(z) < |C§1§><T90(C) +g—log Tl
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and the second inequality in a) is proved. Conversely, the Ohsawa-Takegoshi ex-
tension theorem (Corollary 12.9) applied to the 0-dimensional subvariety {z} C 2
shows that for any a € C there is a holomorphic function f on {2 such that f(z) = a
and
/ |f|2€72m<pd/\ < 03|a|2672m<p(z)7
Q

where C3 only depends on n and diam 2. We fix a such that the right-hand side
is 1. This gives the other inequality

1 log C:
#m(2) > —logla] = p(2) — 2.

The above inequality implies v(pm,, z) < v(p, z). In the opposite direction, we find

1
sup ¢m(z) < sup () + — log —.
|e—z|<r |¢—z|<2r m r
Divide by logr and take the limit as r tends to 0. The quotient by logr of the
supremum of a psh function over B(z,r) tends to the Lelong number at x. Thus
we obtain

n

V(SOmal")ZV(%ﬂ?)—R- u

Theorem 12.11 implies in a straightforward manner the deep result of [Siu74]
on the analyticity of the Lelong number sublevel sets.

(12.12) Corollary. Let ¢ be a plurisubharmonic function on a complex manifold X .
Then, for every ¢ > 0, the Lelong number sublevel set

Ec(p) ={z € X; v(p,2) >c}

is an analytic subset of X.

Proof. Since analyticity is a local property, it is enough to consider the case of a
psh function ¢ on a pseudoconvex open set 2 C C". The inequalities obtained in
12.11 b) imply that
E.(p) = ﬂ Ec—n/m(‘pm)-
m>mo

Now, it is clear that E.(¢.,) is the analytic set defined by the equations aga) (z)=0

for all multi-indices « such that |a| < me. Thus E. () is analytic as a (countable)
intersection of analytic sets. O

We now translate Theorem 12.11 into a more geometric setting. Let X be a
projective manifold and L a line bundle over X. A singular hermitian metric h on
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L is a metric such that the weight function ¢ of h is L{, _ in any local trivialization

(such that Ly ~ U x C and ||¢[|n = [¢]e™#®), £ € L, ~ C). The curvature of L
can then be computed in the sense of distributions

i i,
and L is said to be pseudoeffective if L admits a singular hermitian metric h such
that the curvature current T = ;-0 (L) is semipositive [The weight functions ¢ of
L are thus plurisubharmonic]. Our goal is to approximate T in the weak topology by
divisors which have roughly the same Lelong numbers as T'. The existence of weak
approximations by divisors has already been proved in [Lel72] for currents defined
on a pseudoconvex open set 2 C C" with H2(2,R) = 0, and in [Dem92, 93b]
in the situation considered here (cf. also [Dem82b], although the argument given
there is somewhat incorrect). We take the opportunity to present here a slightly
simpler derivation. In what follows, we use an additive notation for Pic(X), i.e. kL
is meant for the line bundle L&,

(12.13) Proposition. For any T = %@h(L) > 0 and any ample line bundle F,
there is a sequence of non-zero sections hy € H°(X,p,F + qsL) with ps,qs > 0,
limg, = 400 and limp,s/qs = 0, such that the divisors Dy = qisdiv(hs) satisfy
T =lim D, in the weak topology and sup,cx |v(Ds,z) —v(T,z)| = 0 as s = +00.

(12.14) Remark. The proof will actually show, with very slight modifications, that
Proposition 12.13 also holds when X is a Stein manifold and L is an arbitrary
holomorphic line bundle.

Proof. We first use Hérmander’s L? estimates to construct a suitable family of
holomorphic sections and combine this with some ideas of [Lel72] in a second step.
Select a smooth metric with positive curvature on F, choose w = ;-O(F) > 0 as
a Kahler metric on X and fix some large integer k (how large k must be will be
specified later). For all m > 1 we define

1
wm(z) = sup - logllf;(2)ll

where (f1,..., fn) is an orthonormal basis of the space of sections of O(kF + mL)
with finite global L? norm [y [|f||?dV,,. Let er and er be non vanishing holo-
morphic sections of F' and L on a trivializing open set {2, and let e% = |ler||,
e% = |ler|| be the corresponding weights. If f is a section of O(kF + mL)
and if we still denote by f the associated complex valued function on {2 with
respect to the holomorphic frame ek ® e, we have || f(2)|| = | f(2)|e~*¥(z)—me(2) ;



110 J.-P. Demailly

here ¢ is plurisubharmonic, v is smooth and strictly plurisubharmonic, and
T= %8590, w= %651#. In 2, we can write

wn() = sup Llogfi(e)| - ple) ~ ot(2)

1<GSN M

In particular 7}, := %6511),,1 +T+ %w is a closed positive current belonging to the

cohomology class ¢1 (L) + £¢, (F).
Step 1. We claim that T, converges to T as m tends to +oo and that T, satisfies
the inequalities

(12.15) (T, z) — % < V(T ) < (T, z)

at every point # € X. Note that T}, is defined on 2 by Tp, = £00vp,, o with

Umale) = sup loglfi)l, [ fPe M Iav, <1
1<GSN M Q

We proceed in the same way as for the proof of Theorem 12.11. We suppose

here that (2 is a coordinate open set with analytic coordinates (z1,.. ., 2,). Take

z € 2'CC and r < ro = 3d(£2',002). By the L? estimate and the mean value

inequality for subharmonic functions, we obtain

C Co
fi I < 5 £i(QPAAQ) < - sup ™90
P Jlg—z|<r T g—zl<r
with constants C1, Cy independent of m and r (the smooth function %) is bounded
on any compact subset of 2). Hence we infer

1 C
(12.16) Uma(:) < sup_ (Q)+ 5 log .

If we choose for example r = 1/m and use the upper semi-continuity of ¢, we
infer limsup, ,, ., vm,@ < ¢. Moreover, if v = v(p,2) = v(T,z), then ¢({) <
vlog|¢ — x| + O(1) near z. By taking r = |z — z| in (12.16), we find

n n

m.0(2) < su — —logr+0(1) < — —)loglz —z| + O(1),

a@) < swp 9(¢) = T logr+0() < (7= ) loglz —al + O
n

V(T,z) = v(vm,0,2) > (7 — %)+ >v(T,z) — e

In the opposite direction, the inequalities require deeper arguments since we ac-
tually have to construct sections in H°(X,kF + mL). Assume that {2 is chosen
isomorphic to a bounded pseudoconvex open set in C". By the Ohsawa-Takegoshi
L? extension theorem (Corollary 12.9), for every point z € (2, there is a holomor-
phic function g on 2 such that g(x) = ¢™#(®) and
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[ la@)Pe o) < G,
[0}

where C3 depends only on n and diam({2). For = € {2, set
o(z) = 0(|z - w|/r) g(z)er(2)* ® er(2)™, r=min (1,2_1d(9',6!2)),

where § : R — [0,1] is a cut-off function such that 8(t) = 1 for t < 1/2 and
6(t) = 0 for t > 1. We solve the global equation du = v on X with v = do, after
multiplication of the metric of kF' + mL with the weight

e 2e=(2) ) (2) =6(|z — z|/r) log|z — | < 0.

The (0, 1)-form v can be considered as a (n, 1)-form with values in the line bundle
O(—Kx + kF + mL) and the resulting curvature form of this bundle is

Ricci(w) + kw + mT + niagpw.
™

Here the first two summands are smooth, i089p, is smooth on X \ {z} and > 0 on
B(z,r/2), and T is a positive current. Hence by choosing k large enough, we can
suppose that this curvature form is > w, uniformly for z € 2'. By Hérmander’s
standard L? estimates [AV65, Hor65, 66], we get a solution u on X such that

/ ||u||2672npJE de S 04/ |g|2ef2kd)72m<p72npmde S 05 :
X r/2<|z—z|<r

to get the estimate, we observe that v has support in the corona /2 < |z —z| <r
and that p, is bounded there. Thanks to the logarithmic pole of p,, we infer that
u(z) = 0. Moreover

/ lo|Pdv,, < / lg[2e~2k0—2meqy,, <
2 Q'+B(0,r/2)

hence f = 0 —u € H*(X,kF + mL) satisfies [ ||f[|*dV,, < C; and

1F @)l = llo@)l = llg@)l ller @)™ ler (@)™ = ller(@)|* = e

In our orthonormal basis (f;), we can write f = Y \; f; with 3 |A;]?> < C7. There-
fore

e = £ @) < Y | sup @] < VCrN emen@),
wn(@) > —1og(CoN) £ @) >~ (1og(CN) /2 + k()

where N = dim H*(X,kF + mL) = O(m™). By adding ¢ + £4, we get vm,0 >
@ —Csm~tlogm. Thus lim,, Um, = @ everywhere, T, = %651;,“, © converges
weakly to T = £99¢p, and
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V(Tm, ) = v(vm,0,2) <vip,z) =v(T,z).
Note that v(vy,,0,%) = - minord,(f;) where ord,(f;) is the vanishing order of f;

at x, so our initial lower bound for v(T,,, ) combined with the last inequality gives
n 1
(12.17) v(T,x) — = < . min ord, (f;) < v(T,x).

Step 2: Construction of the divisors Dg.

Select sections (g1,...,g9n) € H%(X,koF) with ko so large that koF is very
ample, and set

hen = figi + ...+ fgn € H(X, (ko + £k)F + ¢mL).

For almost every N-tuple (g1, .. .,gn), Lemma 12.18 below and the weak continuity
of 90 show that

1 ¢ = 1 .
Al,m = %;aalOg |hli,m| - % dlv(hl,m)

converges weakly to Ty, = £00vp, o as £ tends to +00, and that

T

1 1
V(Tr,z) < V(%Aﬂ,max) <v(T,z) + m

This, together with the first step, implies the proposition for some subsequence
D, = Ay),s, £(5) > s > 1. We even obtain the more explicit inequality

1 1
I/(T,.Z’)—% Su(%Ag’m,x) Su(T,w)—i—%. O

(12.18) Lemma. Let 2 be an open subset in C* and let f1,...,fn € H°(£2,0q)
be non-zero functions. Let G C H°(2,0q) be a finite dimensional subspace whose
elements generate all 1-jets at any point of £2. Finally, set v = suplog|f;| and

he = figi +...+ fhgn, gj € G~ {0}.

Then for all (g1,...,9n) in (G ~ {0})N except a set of measure 0, the sequence

+1og |he| converges to v in Li (£2) and

1 1
v(v,z) < V(Zlog|hg|) <v(v,z)+ 7’ Vee X, V> 1.

Proof. The sequence % log || is locally uniformly bounded above and we have

lim %log |h4g(z)| = v(z)

{—+400
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at every point z where all absolute values |f;(z)| are distinct and all g;(z) are
nonzero. This is a set of full measure in {2 because the sets {|f;|* = |fi|?, j # I}
and {g; = 0} are real analytic and thus of zero measure (without loss of generality,
we may assume that (2 is connected and that the f;’s are not pairwise proportional).
The well-known uniform integrability properties of plurisubharmonic functions then
show that §log|he| converges to v in L (£2). It is easy to see that v(v,z) is the
minimum of the vanishing orders ord, (f;), hence

v(log|hel|,z) = ordz(he) > Lv(v, ).
In the opposite direction, consider the set & of all (N + 1)-tuples
(magla"'agN) € 2 x GN

for which v(log |he|,z) > £v(v,z) + 2. Then & is a constructible set in 2 x GV: it
has a locally finite stratification by analytic sets, since

&= ( U {z; D*fi(=) # 0} x GN) N [ {(=(9)); D’he(x) = 0}.
520 j,|a|=s |B]<fs+1
The fiber &N ({z}xG"N) over a point = € 2 where v(v,z) = minord,(f;) = s is the
vector space of N-tuples (g;) € GV satisfying the equations D? (Y ffg;(x)) = 0,
|8| < €s + 1. However, if ord;(f;) = s, the linear map

0,---,0,95,0,-..,0) — (D?(f{9;(2))) 15 < o1

has rank n + 1, because it factorizes into an injective map Jlg; = JE! (ffg;). Tt
follows that the fiber & N ({z} x GV) has codimension at least n + 1. Therefore

dim & < dim(2 x GY) — (n+1) = dimGY -1

and the projection of £ on GV has measure zero by Sard’s theorem. By definition
of &, any choice of (g1,...,9n8) € GV \ U>; pr(€e) produces functions ke such
that v(log|he|,z) < Lv(v,z) + 1 on 2. O

13. Invariance of Plurigenera of Varieties of General Type

The goal of this section is to give a proof of the following fundamental result on
the invariance of plurigenera, proved by Y.T. Siu [Siu98]. A generalized version was
obtained shortly afterwards by Y. Kawamata [Kaw99], using only algebraic tools.

(13.0) Theorem (Siu). Let X — S be a smooth projective family of varieties of
general type on a connected base S. Then the plurigenus py,(X;) = h°(Xy, mKx,)
of fibers is independent of t for all m > 0.
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Given a family v : X — S of projective varieties, the proof of the invariance
of the plurigenera of fibers X; = y~1(t) is easily reduced to the case when the
base is the unit disk A C C (in general, one can always connect two arbitrary
points of S by a chain of small analytic disks, and one can take the pull-back of
the family in restriction to each of those disks). We can therefore suppose that
7v: X — A. In that case, we have a canonical isomorphism Kx, ~ Kx|x, on each
fiber, given by u — dt A u [in this way, we will allow ourselves to identify Kx, and
Kx|x, in the sequel]. We know from Grauert’s direct image theorem [Gra60] that
the direct image sheaves v,O(mKx) are coherent, and moreover, the plurigenera,
pm(Xy) = h°(Xy, (mKx)x,) are upper semi-continuous functions of ¢. The jumps
occur precisely if a section on some fiber X;, does not extend to nearby fibers.
Proving the invariance of plurigenera is thus equivalent to proving that a section of
mKX|Xi0 on a fiber X;, can be extended to a neighborhood of Xy, in X. We can
assume without loss of generality that tg = 0. The strategy of Siu’s proof consists
more or less in the use of suitable singular hermitian metrics on Kx and Kx,
(with “minimal singularities”), combined with L? extension theorems with respect
to these metrics.

13.1. Metrics with minimal singularities

One of the main ideas in the proof of the invariance of plurigenera — although it
is not completely explicit in [Siu98] — rests on the fact that the singularities of
hermitian metrics on a line bundle L can reflect very accurately the base loci of the
sequence of linear systems |mL|, precisely when metrics with minimal singularities
are used. We follow here the approach of [DPS00].

(13.1.1) Definition. Let L be a pseudo-effective line bundle on a compact complex
manifold X . Consider two hermitian metrics hy, ha on L with curvature iOp, (L) >
0 in the sense of currents.

(i) We will write hy < h2, and say that hy is less singular than ha, if there exists
a constant C' > 0 such that hy < Chs.

(il) We will write hy ~ ha, and say that hy, he are equivalent with respect to sin-
gularities, if there exists a constant C > 0 such that C~thy < hy < Chs.

Of course h; X hy if and only if the associated weights in suitable trivializations
locally satisfy @2 < ¢1 + C. This implies in particular v(p;,z) < v(p2,z) at each
point. The above definition is motivated by the following observation.

(13.1.2) Theorem. For every pseudo-effective line bundle L over a compact com-
plex manifold X, there exists up to equivalence of singularities a unique class of
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hermitian metrics h with minimal singularities such that i©p(L) > 0.

Proof. The proof is almost trivial. We fix once for all a smooth metric ho, (whose
curvature is of random sign and signature), and we write singular metrics of L under
the form h = hoe™2¥. The condition i@y(L) > 0 is equivalent to %651& > —u
where u = i@}, (L). This condition implies that ¢ is plurisubharmonic up to the
addition of the weight ¢ of hso, and therefore locally bounded from above. Since
we are concerned with metrics only up to equivalence of singularities, it is always
possible to adjust 9 by a constant in such a way that supy ¢ = 0. We now set

i = hooe™2¥™m thin(z) = it »(x)

where the supremum is extended to all functions ¢ such that supy ¢ = 0 and
%851& > —u. By standard results on plurisubharmonic functions (see Lelong
[Lel69]), Ymin still satisfies £00Ymin > —u (ie. the weight Yoo + Ymin de Amin
is plurisubharmonic), and hmin is obviously the metric with minimal singularities
that we were looking for. O

Now, given a section 0 € H°(X,mL), the expression h(§) = |[€™/o(z)|?/™
defines a singular metric on L, which therefore necessarily has at least as much
singularity as Amin as, i.e. # log|o|?> < @min + C locally. In particular, |o|?e~™¢min
is locally bounded, hence o € H°(X,mL ® Z(h&™)). For all m > 0 we therefore
have an isomorphism

H°(X,mL ® Z(h&")) —— H°(X,mL).

By the well-known properties of Lelong numbers (see Skoda [Sko72a]), the union
of all zero varieties of the ideals Z(h®™) is equal to the Lelong sublevel set

(13.1.3) Ei(hmin) = {z € X; v(¢min,z) > 0}.

We will call this set the wirtual base locus of L. It is always contained in the
“algebraic” base locus

— — —1
Biy= () Bmz,  Bmry=  [)  o7'(0),
m>0 oc€H%(X,mL)

but there may be a strict inclusion. This is the case for instance if L € Pic®(X)
is such that all positive multiples mL have no nonzero sections; in that case
E (hmin) = 0 but (5 Bimz| = X. Another general situation where E (hmin)
and By can differ is given by the following result.

(13.1.4) Proposition. Let L be a big nef line bundle. Then hmin has zero Lelong
numbers everywhere, i.e. Ey(hmin) = 0.
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Proof. Recall that L is big if its Kodaira-litaka dimension (L) is equal to n =
dim X. In that case, it is well known that one can write moL = A + E with A
ample and E effective, for mg sufficiently large. Then mL = ((m —mo)L+ A) + E
is the sum of an ample divisor A,, = (m —myg)L + A plus a (fixed) effective divisor,
so that there is a hermitian metric hy, on L for which i@, (L) = Li0(4,,)+ L [E],
with a suitable smooth positive form i@(A,,). This shows that the Lelong numbers
of the weight of h,, are O(1/m), hence in the limit those of hyin are zero.

If h is a singular hermitian metric such that i@, (L) > 0 and
(13.1.5) HY(X,mL®Z(h®™)) ~ H*(X,mL)  for allm >0,

we say that h is an analytic Zariski decomposition of L. We have just seen that such
a decomposition always exists and that h = hn;in is a solution. The concept of ana-
lytic Zariski decomposition is motivated by its algebraic counterpart (the existence
of which generally fails) : one says that L admits an algebraic Zariski decomposition
if there exists an integer mg such that moL ~ O(E + D) where E is an effective
divisor and D a nef divisor, in such a way that H°(X, kD) ~ H°(X, kmyL) for all
k > 0. If O(xD) is generated by sections, there is a smooth metric with semiposi-
tive curvature on O(D), and this metric induces a singular hermitian metric h on
L of curvature current -(i0(O(D)) + [E]). Its poles are defined by the effective
Q-divisor mLOE For this metric, we of course have Z(h®F™0) = O(—kE), hence
(13.1.5) holds true at least when m is a multiple of my.

13.2. A uniform global generation property

The “uniform global generation property” shows in some sense that the curvature
of the tensor product sheaf L ® Z(h) is uniformly bounded below, for any singular
hermitian metric A with nonnegative curvature on L.

(13.2.1) Proposition. There ezists an ample line bundle G on X such that for every
pseudoeffective line bundle (L,h), the sheaf O(G + L) ® Z(h) is generated by its
global sections. In fact, G can be chosen as follows: pick any very ample line bundle
A, and take G such that G — (Kx + nA) is ample, e.g. G = Kx + (n + 1)A.

Proof. Let ¢ be the weight of the metric h on a small neighborhood of a point 2y €
X. Assume that we have a local section u of O(G + L) ® Z(h) on a coordinate open
ball B = B(zo,d), such that

/ [u(2)2e™ 223 |z — 20| 2"+ dV (2) < +o0.
B
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Then Skoda’s division theorem [Sko72b] implies u(z) = > (2; — z;,0)v;(2) with
/ |vj (2)[Pe 293 |z — 25| 2" 1) GV (2) < 400,
B

in particular u,, € O(G + L) ® Z(h) ® mx .,. Select a very ample line bundle A
on X. We take a basis ¢ = (o;) of sections of H*(X,G ® mx_,) and multiply
the metric h of G by the factor |o|~2("t¢). The weight of the above metric has
singularity (n + ¢)log |2z — z|? at zo, and its curvature is

(13.2.2) iO(G) + (n +¢€)iddlog |o|* > iO(G) — (n + £)O(A).

Now, let f be a local section in H°(B,O(G + L) ® Z(h)) on B = B(zp,6), § small.
We solve the global 8 equation

u=0(0f) onX

with a cut-off function 6 supported near zg and with the weight associated with
our above choice of metric on G+ L. Thanks to Nadel’s Theorem 5.11, the solution
exists if the metric of G + L — Kx has positive curvature. As i@y (L) > 0 in the
sense of currents, (13.2.2) shows that a sufficient condition is G — Kx —nA > 0
(provided that ¢ is small enough). We then find a smooth solution u such that
Uz € O(G+ L)@ I(h) ® mx ,,, hence

F:=0f —ue H'X,0(G + L) ® Z(h))

is a global section differing from f by a germ in O(G+L)®Z(h)®@mx ... Nakayama’s
lemma implies that H°(X, O(G+L)®Z(h)) generates the stalks of O(G+L)®Z(h).

13.3. A special case of the Ohsawa-Takegoshi-Manivel .2 extension
theorem

We will need the special case below of the Ohsawa-Takegoshi L? extension theorem.
(Notice that, in this way, the proof of the theorem on invariance of plurigenera
requires 3 essentially different types of L? existence theorems !).

(13.3.1) Theorem. Let v : X — A be a projective family of projective manifolds
parametrized by the open unit disk A C C. Let Xo = v~ 1(0), n = dim¢ Xy, and let
L — X be a line bundle equipped with o hermitian metric written locally as e™X,
such that i00x > w in the sense of currents, with a suitable positive (1,1)-form w
on X. Let 0 <r <1and A, = {t € A; |t| < r}. Then there ezists a positive
constant A, such that the following statement holds. For every holomorphic n-form
f on Xo with values in L such that
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/ |fI?e XdV < oo,
Xo

there exists a holomorphic (n + 1)-form f on v~1(A,) with values in L, such that
flxo = f Ay*(dt) on X and

/ |f|2eXdV SAT/ |f|2eXdV.
X Xo

(13.3.2) Remark. It should be noticed that no hermitian metric on the tangent
bundle of X or X is required in order to define the integral of the square of the
norm of holomorphic forms f and f on Xo and X ; in fact, it suffices to integrate
the volume forms " f A f and i("+1* f A f.

13.4. Construction of a hermitian metric with positive curvature
on Kx,

From now on, we suppose that X — A is a family of projective manifolds of general
type (i.e. that all fibers X; are of general type). A technical point to be settled first
is that the hermitian metric on K x must be chosen in such a way that its curvature
current dominates a smooth positive definite (1, 1)-form, so that the Skoda division
theorem and the Ohsawa-Takegoshi-Manivel L? extension theorem can be applied.
This point is easily settled by means of a variation of Kodaira’s technique which
consists in expressing a sufficiently large multiple of a big line bundle as the sum
of an effective divisor and of an ample line bundle.

(13.4.1) Lemma. There exists a positive integer a such that aKx = D+ F, where D
is an effective divisor on X which does not contain Xy, and where F is a positive
line bundle on X.

Proof. Let F be a positive line bundle on X, and let r, be the generic rank of
H(X;,aKx, — F), which is achieved for t € A \ S, in the complement of a
suitable locally finite subset S, C A. Fix t; € A~ |JS,. Since Xy, is of general
type, we know that h°(X;,,aKx, ) > ca”, hence h%(Xy,,aKx, — F) > c'a™ for
suitable ¢, ¢’ > 0 and a large enough. By the choice of t;, every non-zero section of
H°(Xy,,aKx, — F) can be extended into a section s of H*(X,aKx — F), hence
aKx = D + F where D is the zero divisor of s. If necessary, we can eliminate any
unwanted component X in the decomposition of D by dividing s with a suitable
power of ¢t. O
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The next step is to construct hermitian metrics on Kx, and Kx, respectively,
and to compare their multiplier ideal sheaves. By the results of section 13.1, there
exists a metric with minimal singularities on X¢ (unique up to equivalence of sin-
gularities). We will denote by (o the weight of this metric. Similarly, there exists
a metric with minimal singularities on every relatively compact neighborhood of
Xo in X, and by shrinking the base A, we can suppose that this metric exists on
the whole space X. We will denote by ¢ the restriction to Xo of the weight of this
metric. By definition, ¢ is at least as singular as ¢y on Xj, hence by adding a
constant, we may eventually assume that ¢ < ¢q.

On the other hand, Lemma 13.4.1 shows that we can choose an integer a > 2
such that aKx = D + F, where D is an effective divisor on X which does not
contain Xg as a component, and F' is an ample line bundle on X. After a has been
replaced with a sufficiently large multiple, we can make the following additional
assumptions:

(134.2) F — Kx > Kx + nA for some very ample line bundle A on X.
(13.4.3) there is a basis of sections of H*(X, F) x, providing an embedding of X,
onto a subvariety of projective space.

Let sp be the canonical section of the line bundle O(D), so that the divisor of
spis D. Let uy,...,un € H°(X, F) be sections such that

U1 Xgs -+ UN|Xg

form a basis of H%(X,F) x,. Since spu; € H°(X,aKx) (1 < j < N), we get a

hermitian metric .

. 1 :
e =l
[sp|? X Jujl

on the line bundle K x. Moreover

1
Y= a (log lsp|? +x)

where x = log(>" |u;|*) defines a smooth hermitian metric with positive curvature
on F. Therefore, 00y is a positive definite current. Furthermore, the singularities
of ¢ on X are at least as large as those of the weight ¢ which is by definition
the weight with minimal singularities on X. By adjusting again the weights with
constants, we can state:

(13.4.4) Lemma. The hermitian metric e~¥ has positive definite curvature and
Y < <o on Xo.

The crucial argument is a comparison result for the multiplier ideal sheaves on
Xo defined by £pg and £y, respectively, when £ is large. In the sequel, the notation
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Z((£ +a—e)p +ey) will stand for an ideal sheaf on Xy (and not for an ideal sheaf
on X, even when the weight is possibly defined on the whole space X).

(13.4.5) Proposition. Select 0 < ¢ < 1 so small that e=¥ is locally integrable on X
(possibly after shrinking the base A) and el_;;p is locally integrable on Xo. Then

I((t—e)po + (a+e)p) CI(( -1+ a—e)p+ey)

for every integer £ > 1.

Proof. We argue by induction on £. For £ = 1, Lemma 13.4.4 implies
(1—e)po+(at+e)p < (1—e)pot+ap+ey <C+(a—e)p+eyp

since ¢y is locally bounded above by a constant C. Thus we get

Z((A = e)po + (a +€)¢) C I((a — &)y + ),

as desired.

Now, suppose that the induction step ¢ has been settled. Take an arbitrary
germ of function f in the ideal sheaf Z((£+1—¢)po + (a+¢€)1)), defined on a small
neighborhood U of a point P € Xj. Fix a local non vanishing holomorphic section
eof ({+a)Kx, on U. Then s = fe is a section of

O((t+ a)Kx,) ® Z((£ + 1 — )po + (a + €)¢)
on U. Observe that, given an arbitrary plurisubharmonic function &, we have
Z(¢ +1og|sp|?) = Z(§) ® O(-D).

Writing aKx, = (D + F)x, thanks to Lemma 13.4.1 and ay) = log |sp|> + x by
definition of 1), we can reinterpret s as a section of

O(Kx, + (D + F)|x,) @ Z((L + 1 — &)po + ¢ +1og [sp|* + X)
=0((l+2)Kx, + Ejx,) Z((L + 1 — €)po + €¢),
where E = F — 2Kx (since x is smooth, adding x does not change the multiplier
ideal sheaf). Let us observe that (£+ 1 —¢)pg + €1 defines a hermitian metric with

positive curvature on (£ + 1)K x,. By the above hypothesis (13.4.2) and Proposi-
tion 13.2.1 applied with ¥ = Xy and L = (£ + 1)K x,, we conclude that

O((t+2)Kx, + Eix,) ®Z((L + 1 —€)yo + €¢)

is generated by global sections on Xy. We can therefore, without loss of generality,
restrict ourselves to the case of germs f such that fe coincides on U with a global
section
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s € H° (Xo,0((t +2)Kx, + Ejx,) ®Z((L + 1 — &)po + €1))) .
By reversing the order of calculations, we find
H® (Xo,0((€+2)Kx, + Ex,) ® Z((£ + 1 —€)po + 1))
= H" (Xo, O((L + a)Kx,) ® Z((£+ 1 = £)po + (a + €)¥))
C H (Xo, O((£ + a)Kx,) @ Z((£ — €)po + (a +€)¢))
H® (Xo,0((t + a)Kx,) ® (L +a—1~e)p +e9)),

[the first inclusion is obtained by neglecting the term g in the weight, and the
second one is a consequence of the induction hypothesis for step £]. Now, the weight

l+a—-1—¢e)p+ey

defines a hermitian metric with positive definite curvature on L = ({+a—1)Kx, and
Theorem 13.3.1 implies that s can be extended into a global section § € H(X, ({+
a)Kx) (maybe after shrinking A). The definition of ¢ implies |3]> < Celé+o)%,
hence

|§|Qe,(g+a)¥,,€¢ <Ce ¥

is integrable on X. From there, we conclude that
fe=5=3x, € O((l +a)Kx,) @ Z((L + a)p + £¥),

hence f € Z((€ + a)p + ev). The step £+ 1 of the induction is proved.

13.5. Proof of the invariance of plurigenera.

Fix an integer m > 0 and an arbitrary section s € H°(Xy, mKx,). By definition of
o, we have |s|2 < Ce™¥° on Xy. If sp is the canonical section of O(—D) of divisor
D, we conclude that ssp is locally L? with respect to the weight e~¢meo—(a+e)d
for aty has the same singularities as log |sp|?> and e ¥ is supposed to be locally
integrable on Xy. The functions s‘sp are locally in the ideal sheaf Z((fm — €)yo +
(a + €)1). By Proposition 13.4.5, they belong to Z((fm — 1 — &)y + 7)), i.e

/ |SZSD|2€7(£m7175)<p75¢ < 400
U

on each sufficiently small open set U such that Kx,|U and O(—D)|U are trivial.
In an equivalent way, we can write

/ |8|2167(lm7175)¢+(a75)¢ < +00.
U
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Take £ large enough so that a/(£ — 1) < e. Then e¥~ 1% < Ce =¥ is integrable on
U. By Holder inequality with conjugate exponents ¢, £' = £/(£ — 1), we find

1/¢ (6=1)/¢
too > (/ |S|2ee—(em—1—s>w+(a—s)¢) (/ ew—ﬁzb)
U U

Z/ |3|26—(m—%—%)w+(%—%)¢e(1—%)w—%¢:/ |s[2e(m=1-6)p—0
U U

with § = £/£. We can consider s as a section of Kx, + L x, with L = (m — 1)Kx.
The weight (m — 1 — §)¢ — 07 defines a hermitian metric on L with positive
definite curvature, and s is globally L? with respect to this metric. By the
Ohsawa-Takegoshi-Manivel extension theorem, we can extend s into a section
§€ H'(X,Kx+L) = H°(X,mKx), possibly after shrinking A again. This achieves
the proof of the main theorem. O

14. Subadditivity of Multiplier Ideals and Fujita’s
Approximate Zariski Decompostion

We first notice the following basic restriction formula, which is just a rephrasing of
the Ohsawa-Takegoshi extension theorem.

(14.1) Restriction formula. Let ¢ be a plurisubharmonic function on a complex
manifold X, and let Y C X be a submanifold. Then

Z(p)y) CZ(9)y-

Thus, in some sense, the singularities of ¢ can only get worse if we restrict to a
submanifold (if the restriction of ¢ to some connected component of Y is identically
—00, we agree that the corresponding multiplier ideal sheaf is zero). The proof is
straightforward and just amounts to extending locally a germ of function f on Y
near a point yo € Y to a function f on a small Stein neighborhood of y¢ in X, which
is possible by the Ohsawa-Takegoshi extension theorem. As a direct consequence,
we get:

(14.2) Subadditivity Theorem.
(i) Let X1, Xo be complexr manifolds, m; : X1 x Xo — X;, i = 1,2 the projections,
and let ¢; be a plurisubharmonic function on X;. Then

T(p1 0w + pa o m2) = w1 L(1) - T L(p2).
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(ii) Let X be a complex manifold and let ¢, v be plurisubharmonic functions on X.
Then

(e +4) CZ(p) - Z(¥)

Proof. (i) Let us fix two relatively compact Stein open subsets Uy C X1, Uy C Xo.
Then H2(Uy x Us, 1 0 71 + @2 0 T, mFdVi ® w5dVs) is the Hilbert tensor product
of H*(Uy,¢1,dV1) and H?(Us, p2,dV5), and admits (f; X f;') as a Hilbert basis,
where (f;) and (f;) are respective Hilbert bases. Since Z(1 o 1 + 2 0 2) |1, xUs
is generated as an Oy, xu, module by the (f; X f;') (Proposition 5.7), we conclude
that (i) holds true.

(ii) We apply (i) to X1 = X2 = X and the restriction formula to ¥ = diagonal of
X x X. Then

Ip+¢) =I((pom +yom)y) CI(pom +¢om),
= (MT) e mIW)) |, =) - T().

(14.3) Proposition. Let f : X — Y be an arbirary holomorphic map, and let ¢ be a
plurisubharmonic function on'Y . Then Z(p o f) C f*Z(p).

Proof. Let
I'y={(z,f(z);z€ X} CX XY

be the graph of f, and let 7x : X XY — X, ny : X xY — Y be the natural
projections. Then we can view ¢ o f as the restriction of p oy to I, as mx is a
biholomorphism from Iy to X. Hence the restriction formula implies

I(po f) =I((pomv)ir,) CL(pomy)ir, = (MI(P)) r, = FI(p). g

As an application of subadditivity, we now reprove a result of Fujita [Fuj93],
relating the growth of sections of multiples of a line bundle to the Chern numbers
of its “largest nef part”. Fujita’s original proof is by contradiction, using the Hodge
index theorem and intersection inequalities. The present method arose in the course
of joint work with R. Lazarsfeld [Laz99].

Let X be a projective n-dimensional algebraic variety and L a line bundle
over X. We define the volume of L to be

|
v(L) = limsup %hO(X, kL) € [0, +o0].
k—+00 k
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The line bundle is said to be big if v(L) > 0. If L is ample, we have h?(X,kL) =0
for ¢ > 1 and k£ > 1 by the Kodaira-Serre vanishing theorem, hence

LTL
KO(X, kL) ~ X(X, kL) ~ k"

by the Riemann-Roch formula. Thus v(L) = L™ ( = ¢1(L)") if L is ample. This
is still true if L is nef (numerically effective), i.e. if L - C' > 0 for every effective
curve C. In fact, one can show that h?(X, kL) = O(k™ ?) in that case. The following
well-known proposition characterizes big line bundles.

(14.4) Proposition. The line bundle L is big if and only if there is a multiple moL
such that moL = E + A, where E is an effective divisor and A an ample divisor.

Proof. If the condition is satisfied, the decomposition kmoL = kE+ kA gives rise to
an injection H%(X,kA) — H°(X,kmoL), thus v(L) > my"v(A) > 0. Conversely,
assume that L is big, and take A to be a very ample nonsingular divisor in X. The
exact sequence

0— Ox(kL —A) — Ox (kL) — Oa(kLj4) — 0
gives rise to a cohomology exact sequence
0— H(X,kL — A) — H°(X,kL) — HO(A,kL‘A),

and h°(A,kLj4) = O(k™ ') since dim A = n — 1. Now, the assumption that L is
big implies that h°(X, kL) > ck™ for infinitely many k, hence H°(X,moL — A) # 0
for some large integer mg. If E is the divisor of a section in H(X, moL — A), we
find moL — A = E, as required. O

(14.5) Lemma. Let G be an arbitrary line bundle. For every € > 0, there exists a
positive integer m and a sequence £, T +00 such that

m n
m

R (X, 6, (mL - G)) > n!

(v(L) —e),

in other words, v(mL — G) > m™(v(L) — €) for m large enough.

Proof. Clearly, v(mL — G) > v(mL — (G + E)) for every effective divisor E. We
can take F so large that G + E is very ample, and we are thus reduced to the case
where G is very ample by replacing G with G + E. By definition of v(L), there
exists a sequence k, 1T 400 such that

hO(X, k, L) > %(U(L) - g)
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We take m >> 1 (to be precisely chosen later), and £, = [£2], so that k, = £,m+r,,
0<r, <m. Then
£L,(mL—-G)=k,L—(r,L+1,QG).

Fix a constant a € N such that aG — L is an effective divisor. Then r,L < maG
(with respect to the cone of effective divisors), hence

R°(X,4,(mL — G)) > h®(X,k,L — (£, + am)G).

We select a smooth divisor D in the very ample linear system |G|. By looking at
global sections associated with the exact sequences of sheaves

02 0(-{+1)D)® O(k,L) = O(-jD) ® O(k,L) = Op(k,L — jD) — 0,
0 < j < s, we infer inductively that

h°(X,k,L—sD) > h°(X,k,L)— Y h°(D,0p(k,L - jD))
0<j<s
> h%(X,k,L) — sh°(D, k, L p)

n

> %(’U(L) - %) —sCk™ !

where C' depends only on L and G. Hence, by putting s = £, + am, we get

k! € n—
KO(X,6,(mL - G)) > -~ (U(L) - 5) — O, + am)k™!
f;‘m" € n—1,n—1
> 2 (u(1) - ) = Oty + am)(l + )" 'm
and the desired conclusion follows by taking £, > m > 1. O

We are now ready to prove Fujita’s decomposition theorem, as reproved in
[DELO0O].

(14.6) Theorem (Fujita). Let L be a big line bundle. Then for every e > 0, there
ezists a modification p: X — X and a decomposition u*L = E+ A, where E is an
effective Q-divisor and A an ample Q-divisor, such that A™ > v(L) —e.

(14.7) Remark. Of course, if p*L = E + A with E effective and A nef, we get an
injection

H°(X,kA) — H*(X,kE + kA) = H*(X, kp*L) = H°(X, kL)

for every integer k which is a multiple of the denominator of E, hence A™ < v(L).
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(14.8) Remark. Once Theorem 14.6 is proved, the same kind of argument easily
shows that

|
o(L) = lim %ho (X, kL),

k—+oco

because the formula is true for every ample line bundle A.

Proof of Theorem 14.6. It is enough to prove the theorem with A being a big and
nef divisor. In fact, Proposition 14.4 then shows that we can write A = E' + A’
where E’ is an effective Q-divisor and A’ an ample Q-divisor, hence

E4+A=E+eE +(1—e)A+ed

where A" = (1 —e)A + €A’ is ample and the intersection number A”™ approaches
A™ as closely as we want. Let G be as in Lemma 13.2.1 (uniform global generation).
Lemma 14.5 implies that v(mL—G) > m™(v(L)—e¢) for m large. By Theorem 13.1.2,
there exists a hermitian metric h,, of weight ¢,, on mL — G such that

H°(X,¢(mL - @) = H*(X,¢(mL — G) @ Z(lm))
for every £ > 0. We take a smooth modification p : X — X such that

W I(pm) = Ox(-E)

is an invertible ideal sheaf in O. This is possible by taking the blow-up of X
with respect to the ideal Z(p,,) and by resolving singularities (Hironaka [Hir64]).
Lemma 13.2.1 applied to L' = mL — G implies that O(mL) ® Z(pn,) is generated
by its global sections, hence its pull-back O(m p*L — E) is also generated. This
implies

muL=E+A

where E is an effective divisor and A is a nef (semi-ample) divisor in X. We find

H°(X,tA) = H*(X,£(m p*L — E))
> H° ()Z', p*(O(mL) ® Z(pm)"))
> HY (X, pu*(O(¢tmL) @ I(Lpm))),
thanks to the subadditivity property of multiplier ideals. Moreover, the direct image
s pt*I(Lpyy,) coincides with the integral closure of Z(£yp,,), hence with Z(ly,,),
because a multiplier ideal sheaf is always integrally closed. From this we infer
H°(X,¢A) D H°(X,0((mL) @ T(¢p,))
D H(X,0(t(mL — G)) @ I(Lpy,))
=H° (X,0((mL - Q))).
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By Lemma 14.5, we find

mn

h(X,LA) > %m" (v(L) —¢)

for infinitely many £, therefore v(A) = A™ > m™(v(L) —¢€). Theorem 14.6 is proved,
up to a minor change of notation £ — %E, A #A. O

We conclude by using Fujita’s theorem to establish a geometric interpretation of
the volume v(L). Suppose as above that X is a smooth projective variety of dimen-
sion n, and that L is a big line bundle on X. Given a large integer k > 0, denote
by Bj C X the base-locus of the linear system |kL|. The moving self-intersection
number (kL) of |kL| is defined by choosing n general divisors Dy, ..., D, € |kL|
and putting

(kL) = ;&,&(D1 N...0 DN (X - Bk)).

In other words, we simply count the number of intersection points away from the
base locus of n general divisors in the linear system |kL|. This notion arises for
example in Matsusaka’s proof of his “big theorem”. We show that the volume v(L)
of L measures the rate of growth with respect to k of these moving self-intersection
numbers:

(14.9) Proposition. One has

kL)
v(L) = limsup (kL) .

k—o0 k

Proof. We start by interpreting (kL)!"™) geometrically. Let pj : X — X be a
modification of |kL| such that u}|kL| = |Vi| + F}, where

Pk = /Lz(kL) - Fk

is generated by sections, and H°(X,Ox (kL)) = V}, = H°(Xy, Ox, (P)), so that
By = px(Fy). Then evidently (EL)™ counts the number of intersection points of
n general divisors in Py, and consequently

(kL) = (P)".

Since then Py is big (and nef) for k > 0, we have v(P;) = (P)™. Also, v(kL) >
v(Py) since P, embeds in ypj(kL). Hence

v(kL) > (kD)™ V> o0.

On the other hand, an easy argument in the spirit of Lemma (14.5) shows that
v(kL) = k™ - v(L) (cf. also [ELN96], Lemma 3.4), and so we conclude that
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(kL)[”]
kno

(14.10) v(L) >

for every k > 0.

For the reverse inequality we use Fujita’s theorem. Fix € > 0, and consider the
decomposition y*L = A+ FE on pu : X — X constructed in Fujita’s theorem. Let k
be any positive integer such that kA is integral and globally generated. By taking
a common resolution we can assume that X dominates X , and hence we can write

ppkL ~ Ay + Ey,
with A globally generated and
(Ap)" 2 k™ - (v(L) —&).

But then Aj embeds in Py and both O(A) and O(P;) are globally generated,
consequently
(AR)" < (Py)" = (kL)

Therefore
(kL)
(14.11) o > (L) —e.
But (14.11) holds for any sufficiently large and divisible k, and in view of (14.10)
the Proposition follows. O

15. Hard Lefschetz Theorem with Multiplier Ideal Sheaves

15.1. Main statement

The goal of this section is to prove the following surjectivity theorem, which can be
seen as an extension of the hard Lefschetz theorem. We closely follow the exposition
of [DPS00].

(15.1.1) Theorem. Let (L, h) be a pseudo-effective line bundle on a compact Kihler
manifold (X,w), of dimension n, let On(L) > 0 be its curvature current and Z(h)
the associated multiplier ideal sheaf. Then, the wedge multiplication operator wi A e
induces a surjective morphism

&, HO(X, 0% "® L I(h)) — HY(X, 2% ® Lo I(h)).

The special case when L is nef is due to Takegoshi [Tak97]. An even more special
case is when L is semi-positive, i.e. possesses a smooth metric with semi-positive
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curvature. In that case the multiple ideal sheaf Z(h) coincides with Ox and we get
the following consequence already observed by Mourougane [Mou99].

(15.1.2) Corollary. Let (L,h) be a semi-positive line bundle on a compact Kdhler
manifold (X,w) of dimension n. Then, the wedge multiplication operator w? A o
induces a surjective morphism

&1 HY(X, 0% "® L) — HY(X,N% ® L).

The proof of Theorem (15.1.1) is based on the Bochner formula, combined with
a use of harmonic forms with values in the hermitian line bundle (L, h). The method
can be applied only after h has been made smooth at least in the complement of
an analytic set. However, we have to accept singularities even in the regularized
metrics because only a very small incompressible loss of positivity is acceptable in
the Bochner estimate (by the results of [Dem92], singularities can only be removed
at the expense of a fixed loss of positivity). Also, we need the multiplier ideal
sheaves to be preserved by the smoothing process. This is possible thanks to a
suitable “equisingular” regularization process.

15.2. Equisingular approximations of quasi plurisubharmonic functions

A quasi-plurisubharmonic (quasi-psh) function is by definition a function ¢ which is
locally equal to the sum of a psh function and of a smooth function, or equivalently,
a locally integrable function ¢ such that i@0¢ is locally bounded below by —Cw
where w is a hermitian metric and C' a constant. We say that ¢ has logarithmic
poles if ¢ is locally bounded outside an analytic set A and has singularities of the
form
p(z) = clog ) |grl* +0(1)
k

with ¢ > 0 and g holomorphic, on a neighborhood of every point of A. Our goal
is to show the following

(15.2.1) Theorem. Let T = a + i00yp be a closed (1,1)-current on a compact her-
mitian manifold (X,w), where a is a smooth closed (1,1)-form and ¢ a quasi-psh
function. Let v be a continuous real (1,1)-form such that T > ~. Then one can
write p = lim, 4 ¢, where

a) , is smooth in the complement X \ Z, of an analytic set Z, C X ;
b) (¢v) is a decreasing sequence, and Z, C Z,41 for all v;

¢) [x(e72% —e2¢v)dV,, is finite for every v and converges to 0 as v — +00;
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d) Z(pw) = Z(p) for all v ( “equisingularity”);

e) T, = a+iddy, satisfies T, > v — €,w, where lim, ;o &, = 0.

(15.2.2) Remark. It would be interesting to know whether the ¢, can be taken to
have logarithmic poles along Z,,. Unfortunately, the proof given below destroys this
property in the last step. Getting it to hold true seems to be more or less equivalent
to proving the semi-continuity property
lim Z((1 +¢e)p) = Z(y).
e—04

Actually, this can be checked in dimensions 1 and 2, but is unknown in higher
dimensions (and probably quite hard to establish).

Proof of Theorem 15.2.1. Clearly, by replacing T' with T' — a and v with v — a,
we may assume that a = 0 and T' = i00p > ~. We divide the proof in four steps.

Step 1. Approzimation by quasi-psh functions with logarithmic poles.

By [Dem92], there is a decreasing sequence (¢,) of quasi-psh functions with log-
arithmic poles such that ¢ = lim+, and i(‘i@w,, > v —¢g,w. We need a little bit
more information on those functions, hence we first recall the main techniques used
for the construction of (¢,). For ¢ > 0 given, fix a covering of X by open balls
B; = {|2\0)| < r;} with coordinates 2 = (2. .. 2%, such that

(15.2.3) 0<7y+¢jiddz 9 <ew on B;,

for some real number c;. This is possible by selecting coordinates in which ~ is
diagonalized at the center of the ball, and by taking the radii 7; > 0 small enough
(thanks to the fact that «y is continuous). We may assume that these coordinates
come from a finite sample of coordinates patches covering X, on which we perform
suitable linear coordinate changes (by invertible matrices lying in some compact
subset of the complex linear group). By taking additional balls, we may also assume
that X = J B} where
Bj cCB;CcCB;

are concentric balls B} = {|z\)| < r} =r;/2}, B = {|2U)| < r}l = r;/4}. We
define
1

15.2.4 v =
(5 ) d},,] 2w

log Y | foinl* —cilzPF  on B
keN

where (f, jk)ken is an orthonormal basis of the Hilbert space H,,; of holomorphic
functions on B; with finite L? norm
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P = [ et = Par e,
B

(The dependence of 9., ; on € is through the choice of the open covering (B;)).

Observe that the choice of ¢; in (15.2.3) guarantees that ¢ + ¢;j|z(9)|? is plurisub-

harmonic on Bj, and notice also that

(15.2.5) Slfvir@P = sup  |f(2)

kEN .fEHu,jvllf”SI

is the square of the norm of the continuous linear form #, ; — C, f — f(z). We
claim that there exist constants C;, i = 1,2,... depending only on X and ~ (thus
independent of £ and v), such that the following uniform estimates hold:

(15.2.6)i00,,; > —c;i00|zV > >y —ew  on B} (BSCCB;),

C
(15.2.7)¢(2) < 9ep,j(z) < sup () + %log Tl + Cyr? Vz € B, r<r;—r},
[¢—z|<r

C
(15.2.8)|%e,u,j — Ve k| < 73 + C4s(min(rj,rk))2 on B} N By.

Actually, the Hessian estimate (15.2.6) is obvious from (15.2.3) and (15.2.4). As in
the proof of ([Dem92], Prop. 3.1), (15.2.7) results from the Ohsawa-Takegoshi L?
extension theorem (left-hand inequality) and from the mean value inequality (right-
hand inequality). Finally, as in ([Dem92], Lemma 3.6 and Lemma 4.6), (15.2.8) is
a consequence of Hormander’s L? estimates. We briefly sketch the idea. Assume
that the balls B; are small enough, so that the coordinates z(?) are still defined on
a neighborhood of all balls By, which intersect B; (these coordinates can be taken
to be linear transforms of coordinates belonging to a fixed finite set of coordinate
patches covering X, selected once for all). Fix a point 29 € B; N By. By (15.2.4)
and (15.2.5), we have

1 .
¢5,u,j(20) = > log |f(z0)| — cj|z(7)|2

for some holomorphic function f on B; with ||f|| = 1. We consider the weight
function
B(2) = 2w(p(2) + cr|2P)?) + 2nlog |2*) — zék)|,

on both B; and Bj. The trouble is that a priori we have to deal with different
weights, hence a comparison of weights is needed. By the Taylor formula applied
at zp, we get

enlz®) — z((]k)|2 — ¢j]2) — z(()j)|2‘ < Ca‘(min(rj,rk))2 on B; N By,

[the only nonzero term of degree 2 has type (1,1) and its Hessian satisfies
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—ew < i00(ck| 2P 2 — ¢]29?) < ew

by (15.2.3); we may suppose r; < € so that the terms of order 3 and more are
negligible]. By writing [2() > = |2(9) — z(gj)|2 + |z(()J)|2 + 2Re(z() — z(()]),zéj)), we
obtain
erlz® P = ¢j|zD 2 = 2¢, Re(z®) — z(gk),zék)) — 2¢jRe(2\9) — zéj),z(gj))
+ ck|zék)|2 - cj|z(()j)|2 + Ce(min(rj,rg))2.
We use a cut-off function 6 equal to 1 in a neighborhood of zy and with support
in Bj N By; as zg € B;- N By, the function # can be taken to have its derivatives

uniformly bounded when 2o varies. We solve the equation du = 9(ffe*9) on By,
where g is the holomorphic function

9(2) = cp(z®) = 28 0y _ ¢ (o0) _ 0 L)y,
Thanks to Hormander’s L? estimates [Hor66], the L? solution for the weight &

yields a holomorphic function f’ = 6fe”9 — u on By, such that f'(z9) = f(z0) and

[ rpet e ey <o [ ettt ane) <
By

BjﬁB)c

c’ exp (2V(Ck|z(()k)|2 — c]'|z(()j)|2 + Cs(min(rj, Tk))2))/ |f|2€_2u(‘p+cd|z(j)|2)d)\(z(j)).
B;

Let us take the supremum of Llog|f(z)| = Llog|f’(z0)| over all f with [|f|| < 1.

By the definition of ¢, , 1 ((15.2.4) and (15.2.5)) and the bound on || f'||, we find
log C'

Ve, (20) < thu,j(20) + + Ce(min(ry, rx))?,

whence (15.2.8) by symmetry. Assume that v is so large that C3/v < Cae(inf; r;)%.
We “glue” all functions 1., ; into a function 1., globally defined on X, and for
this we set

Ve (2) = sup ('gbg,,,,j (2) +12 046(1";2 — |z(j)|2)) on X.
7 B;Bz

Every point of X belongs to some ball B}/, and for such a point we get
C
12Cue(r? — |z®)2) > 12 Cue(r2 — i) > 20472 > 73 + Cye(min(rj,ry))?.

This, together with (15.2.8), implies that in ¢ ,(2) the supremum is never reached
for indices j such that z € 63;-, hence )., is well defined and continuous, and by
standard properties of upper envelopes of (quasi)-plurisubharmonic functions we
get
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(15.2.9) i00e,, > v — Csew

for v > vy(e) large enough. By inequality (15.2.7) applied with r = e~ V", we see
that lim,_, 4 9, (2) = ¢(2). At this point, the difficulty is to show that 1, is
decreasing with v — this may not be formally true, but we will see at Step 3 that
this is essentially true. Another difficulty is that we must simultaneously let € go to
0, forcing us to change the covering as we want the error to get smaller and smaller
in (15.2.9).

Step 2. A comparison of integrals.
We claim that

(15.2.10) I:= / (e72¢ — e 2max(errdv) ) gy < 4o
X

for every £ € ]11,v] and a € R. In fact

IS/ e 29qv, :/ 2t De—2te gy
{o<iiive,v+al} {o<i5ve,v}+a

<e2(€71)a/ e2tWev—0)qy < C(/ ezu(d)s,f«p)de);

by Hélder’s inequality. In order to show that these integrals are finite, it is enough,
by the definition and properties of the functions 1., and 1., ;, to prove that

J

By the strong Noetherian property of coherent ideal sheaves (see e.g. [GR84]), we
know that the sequence of ideal sheaves generated by the holomorphic functions

(fu,j.k(2) fuj,k(@))k<k, o0 B; X Bj is locally stationary as ko increases, hence inde-
pendant of kg on B} x B;CCB; x B; for ko large enough. As the sum of the series

>k fv,jk(2) fu,j,k (W) is bounded by

(D 1fin@ |f"ﬂ"k(m)|2)1/2
k k

and thus uniformly convergent on every compact subset of B; x Bj, and as the

space of sections of a coherent ideal sheaf is closed under the topology of uniform

convergence on compact subsets, we infer from the Noetherian property that the
holomorphic function 3.0 f,.;.k(2) fu.;,k (@) is a section of the coherent ideal sheaf

generated by (fy,j,k(2) fv,j,k(@))k<k, over B x B}, for ko large enough. Hence, by
restricting to the conjugate diagonal w = Z, we get

+oo
M VeriT2Ve )\ = / <z |f,,,j,k|2)e_2"“’d)\ < +o0.
B’
i k=0

’
J
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400 ko
D k@ <CY |fujn(2)P on Bj.
k=0 k=0

This implies

+oo k
/ (3" 1fsnl?)e22ar < 0/ (Z [Fogal?)e20dA = Clho +1).
Bj k=0 Bj k=0

Property (15.2.10) is proved.

Step 3. Subadditivity of the approzimating sequence . , .

We want to compare ¢ 1, v, and e ., Ve ., for every pair of indices vy, vs, first
when the functions are associated with the same covering X = |J B;. Consider a
function f € Hy, 40, ; With

/B [f()Pe (195 dN(z) <1, () = w(2) + ¢z

We may view f as a function f (2, 2) defined on the diagonal A of B; x B;. Consider
the Hilbert space of holomorphic functions « on B; x B; such that

/ (2, w) =23 () =225 () 4 () dA(w) < +oo.
BJ' XB]'

By the Ohsawa-Takegoshi L? extension theorem [OT87], there exists a function

f(z,w) on B; x Bj; such that f(z,2) = f(2) and
[ Ifeu)pe e @i w)
BjXBJ'

< 07/ |f(z)|Qe*2(”1+"2)‘91‘(z)d}\(z) = Cy,

B;

where the constant C7 only depends on the dimension n (it is actually independent
of the radius r; if say 0 < r; < 1). As the Hilbert space under consideration on
B; x Bj is the completed tensor product H,, ; ® H,, ;, we infer that

fN'(Z,U)) = Z ckl,szlll,j,kl (z)fllz,j,kz (’11))

k1,k2

with 37, . ks k5 |* < Cr. By restricting to the diagonal, we obtain

|f(2’)|2 = |f(2’,2’)|2 < Z |ck17k2|2 Z |fl/1,j,k1 (Z)|2 Z |fl/2,]'7k2 (z)|2'
k2

kl ,kz kl

From (15.2.3) and (15.2.4), we get
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IOg 07 141 1 2]
+ 'ébs,w,j + _ws,uz,ja
vi+rve v+ V1 + 12

¢6,V1 +v2,j =

in particular
Cs
¢5’2uaj S ¢5,2V_17j + 2_1/7
and we see that 1. 2» + C327" is a decreasing sequence. By Step 2 and Lebesgue’s
monotone convergence theorem, we infer that for every €,6 > 0 and a < a9 < 0

fixed, the integral
IE,&,V = / (6—290 - 6_2max(¢7(1+5)(¢2”,5+a)))de
X

converges to 0 as v tends to +oo (take £ = % + 1 and 2¥ > £ and ag such that
dsupy ¢ + ag < 0; we do not have monotonicity strictly speaking but need only
replace a by a + Cg27" to get it, thereby slightly enlarging the integral).

Step 4. Selection of a suitable upper envelope.

For the simplicity of notation, we assume here that supy ¢ = 0 (possibly after
subtracting a constant), hence we can take ag = 0 in the above. We may even
further assume that all our functions %), are nonpositive. By Step 3, for each
§ =& =27*% we can select an index v = p(k) such that

(15.2.11) [2_k,2_k,p(k) :/ (efzw _ e—2max(w,(1+2—k)¢2_k,2p(k)))de < 9k
X

By construction, we have an estimate i85¢2—k,2p(k) > v—C52~*w, and the functions
Yok 9p() are quasi-psh with logarithmic poles. Our estimates (especially (15.2.7))
imply that img_, o0 Yo 2s (2) = @(2) as soon as 277 log (1/inf; r;(k)) — 0
(notice that the r;’s now depend on & = 27F). We set

(15.2.12) @u(2) = sup(l + 27F)hyi o (2).
k>v

By construction (¢, ) is a decreasing sequence and satisfies the estimates
@y > max (¢, (1+27")hy—v o)), i00¢p, > v —Cs2 " w.

Inequality (15.2.11) implies that

400

/ (e720 —e 2#v)dV, < Y 27k =2
X

k=v

Finally, if Z, is the set of poles of ¢5-. 5.0, then Z, C Z, 4 and ¢, is continuous
on X \ Z,. The reason is that in a neighborhood of every point 2o € X \ Z,,
the term (14 27%)4y—s 9pr) contributes to ¢, only when it is larger than (1 +
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27")99-v 900y . Hence, by the almost-monotonicity, the relevant terms of the sup
in (15.2.12) are squeezed between (14 27")¢hy—» 5oy and (1 +27%) (g o0y +
Cs277), and therefore there is uniform convergence in a neighborhood of zp. Finally,
condition ¢) implies that

/ FI2(e72¢ — e20v)dV], < +00
U

for every germ of holomorphic function f € O(U) at a point z € X. Therefore
both integrals [, |f|?e~2%dV,, and [, |f|*’e~>#*dV,, are simultaneously convergent
or divergent, i.e. Z(p) = Z(py). Theorem 15.2.1 is proved, except that ¢, is possi-
bly just continuous instead of being smooth. This can be arranged by Richberg’s
regularization theorem [Ri68], at the expense of an arbitrary small loss in the Hes-
sian form. d

(15.2.13) Remark. By a very slight variation of the proof, we can strengthen con-
dition ¢) and obtain that for every ¢ > 0

/ (e72t0 — e72tev)qV,
X

is finite for v large enough and converges to 0 as v — +oo. This implies that
the sequence of multiplier ideals Z(ty, ) is a stationary decreasing sequence, with
Z(tp,) = Z(tp) for v large.

15.3. A Bochner type inequality

Let (L, h) be a smooth hermitian line bundle on a (non necessarily compact) Kéhler

manifold (Y,w). We denote by | | = | |s,» the pointwise hermitian norm on
APITY @ L associated with w and h, and by || || = || |lo,» the global L? norm
wn
a2 :/ w2dV,  where dv, =
y n!

We consider the 8 operator acting on (p, ¢)-forms with values in L, its adjoint 3y,
with respect to h and the complex Laplace-Beltrami operator A} = %Z + 5;5.
Let v be a smooth (n — ¢,0)-form with compact support in Y. Then u = w? A v
satisfies

(15.3.1) [ulf? + @5l = 150l + | 3 (32 2 s
I,J

jed
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where Ay < ... < A, are the curvature eigenvalues of (L) expressed in an
orthonormal frame (9/8z1, . ..,0/0z,) (at some fixed point zg € Y'), in such a way
that

Weo =1 Y dzj AdZ;,  On(L)a, =i00ps, =i Y Ndzj AdZ;.

1<j<n 1<j<n
The proof of (15.3.1) proceeds by checking that
=% 5 | "A* =% & _ .a7A 1
(15.3.2) (0,0+00,)(vAw?) = (9,0v) Aw! = qiddp Aw!™" A,

taking the inner product with v = w? A v and integrating by parts on the left-
hand side. In order to check (15.3.2), we use the identity 9, = € (e ¥s) =
0"+ V%' 1 o . Let us work in a local trivialization of L such that ¢(zo) = 0 and
V(zg) = 0. At z¢ we then find

=% =  =R* e —

(0,0+009,)(w! Av) —w? A (9, 0v) =
(@ +03") (W Av) —wl A @ Fv)] + (Ve I (W Av)).
However, the term [...] corresponds to the case of a trivial vector bundle and it is
well known in that case that [A”,w? A ¢] =0, hence [...] = 0. On the other hand
VOl 1 (W Av) = ¢V Jw)Aw?T P Av=—qidp Aw? L Aw,
and so o o B
@,0+03,)(w! Av) —w! A (T, 0v) = qiddp Awi™t Av.

Our formula is thus proved when v is smooth and compactly supported. In general,
we have:

(15.3.3) Proposition. Let (Y,w) be a complete Kdhler manifold and (L, h) a smooth
hermitian line bundle such that the curvature possesses a uniform lower bound
On(L) > —Cw. For every measurable (n — q,0)-form v with L? coefficients and
values in L such that u = w? Av has differentials Ou, 3w also in L2, we have

[ul? + @5l = 150l + | 3 (32 ) s P
I,J

jed

(here, all differentials are computed in the sense of distributions).

Proof. Since (Y,w) is assumed to be complete, there exists a sequence of smooth
forms v, with compact support in Y (obtained by truncating v and taking the
convolution with a regularizing kernel) such that v, — v in L? and such that
u, = w9 A v, satisfies u, — u, Ou, — Ou, O u, — O u in L2. By the curvature
assumption, the final integral on the right-hand side of (15.3.1) must be under
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control (i.e. the integrand becomes nonnegative if we add a term C|ul|?> on both
sides, C' > 0). We thus get the equality by passing to the limit and using Lebesgue’s
monotone convergence theorem. ]

15.4. Proof of Theorem (15.1.1)

To fix the ideas, we first indicate the proof in the much simpler case when (L, h)
is hermitian semipositive, and then treat the general case.

(15.4.1) Special case. (L, h) is (smooth) hermitian semipositive.

Let {8} € HY(X,% ® L) be an arbitrary cohomology class. By standard L?
Hodge theory, {8} can be represented by a smooth harmonic (0, ¢)-form S with
values in 2% ® L. We can also view S as a (n,q)-form with values in L. The
pointwise Lefschetz isomorphism produces a unique (n — g,0)-form « such that
B = w? A a. Proposition 15.3.3 then yields

Ball + [ 3 (S0 lansl = 18I + 133617 =
1,J

JjeJ

and the curvature eigenvalues \; are nonnegative by our assumption. Hence fa=0
and {a} € H°(X, 2% ? ® L) is mapped to {3} by P, =wiNe.

(15.4.2) General case.

There are several difficulties. The first difficulty is that the metric h is no longer
smooth and we cannot directly represent cohomology classes by harmonic forms.
We circumvent this problem by smoothing the metric on an (analytic) Zariski open
subset and by avoiding the remaining poles on the complement. However, some
careful estimates have to be made in order to take the error terms into account.

Fix € = ¢, and let h. = h., be an approximation of A, such that h. is smooth
on X \ Z. (Z. being an analytic subset of X), Oy, (L) > —ew, he < hand Z(h.) =
Z(h). This is possible by Theorem 15.2.1. Now, we can find a family

We s = w + 6(i00Y: + w), 6>0

of complete Kdhler metrics on X \ Z., where 9. is a quasi-psh function on X with
the = —o0 on Z., . on X \ Z. and i09y. + w > 0 (see e.g. [Dem82], Théoreme
1.5). By construction, w5 > w and lims_o we s = w. We look at the L? Dolbeault
complex K¢ ; of (n,e)-forms on X \ Z., where the L* norms are induced by we s
on differential forms and by h. on elements in L. Specifically

Kq,& = {’LLZX\ZE_)A”"IT;}@L;/ (lga"’qwﬁ,s@hs+|5u|31"’q+1w5,5®h5)dv“’5,6 < OO}

5
X\Z.
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Let IC;’, s be the corresponding sheaf of germs of locally L? sections on X (the local
L? condition should hold on X, not only on X \ Z.!). Then, for all ¢ > 0 and
§ >0, (K 5,0) is a resolution of the sheaf 2% ® L ® Z(h.) = 2% ® L®Z(h). This
is because L? estimates hold locally on small Stein open sets, and the L? condition
on X \ Z. forces holomorphic sections to extend across Z. ([Dem82], Lemme 6.9).

Let {8} € H1(X, 2% ® LQZ(h)) be a cohomology class represented by a smooth
form with values in 2% ® L ® Z(h) (one can use a Cech cocycle and convert it to
an element in the C'* Dolbeault complex by means of a partition of unity, thanks
to the usual De Rham-Weil isomorphism). Then

181125 < 1BI1* = [ |BFin.augndVi < +00.
X

The reason is that |S|%n q,e,dV.. decreases as w increases. This is just an easy
calculation, shown by comparing two metrics w, w’ which are expressed in diagonal
form in suitable coordinates; the norm |3 |ﬁn,qw® ,, turns out to decrease faster than
the volume dV,, increases; see e.g. [Dem82], Lemme 3.2; a special case is ¢ = 0, then
1B)%n awondVe = i’ B A B with the identification L ® L ~ C given by the metric h,
hence the integrand is even independent of w in that case.

By the proof of the De Rham-Weil isomorphism, the map a — {a} from the
cocycle space Z9(K? 5) equipped with its L? topology, into H¥(X, 2% ® L ® Z(h))
equipped with its finite vector space topology, is continuous. Also, Banach’s open
mapping theorem implies that the coboundary space B?(K? ;) is closed in Z¢(K? ;).
This is true for all § > 0 (the limit case § = 0 yields the strongest L? topology in
bidegree (n,q)). Now, 3 is a 0-closed form in the Hilbert space defined by w. s on
X \ Z, so there is a w, s-harmonic form u, s in the same cohomology class as 3,
such that

e 5lle,s < 11B]ls,6-

(15.4.3) Remark. The existence of a harmonic representative holds true only for
d > 0, because we need to have a complete Kahler metric on X \ Z.. The trick of
employing w, s instead of a fixed metric w, however, is not needed when Z; is (or
can be taken to be) empty. This is the case if (L, h) is such that Z(h) = Ox and L
is nef. Indeed, in that case, from the very definition of nefness, it is easy to prove
that we can take the ¢,’s to be everywhere smooth in Theorem 15.2.1. However,
we will see in § 15.5 that multiplier ideal sheaves are needed even in case L is nef,
when Z(h) # Ox.

Let v, 5 be the unique (n — ¢,0)-form such that u.,5 = ve,5 A wg’a (ve,s exists by
the pointwise Lefschetz isomorphism). Then
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l[ve.slle.s = llueslle,s < MIBlles < B

As 37 icsAj > —ge by the assumption on O, (L), the Bochner formula yields

10ve,5112 5 < gellucsll2 5 < gellBII*.

These uniform bounds imply that there are subsequences u. s, and v, 5, with §, —
0, possessing weak-L? limits u. = lim, o0 e 5, and v. = lim, 4o ve5,. The
limit ue = lim, o0 ue 5, is With respect to L?(w) = L?(we,0). To check this, notice
that in bidegree (n — ¢,0), the space L?(w) has the weakest topology of all spaces
L?(w,5); indeed, an easy calculation as in ([Dem82], Lemme 3.2) yields

|f|in_q,ow®thw < |f|i"_q,0w5’5®thw€’5 if f is of type (n — ¢,0).

On the other hand, the limit v. = lim,_, o ve s, takes place in all spaces L?(we s),
d > 0, since the topology gets stronger and stronger as § |, 0 [ possibly not in L?(w),
though, because in bidegree (n, q) the topology of L?(w) might be strictly stronger
than that of all spaces L?(w,¢) ]. The above estimates yield

o120 = /X [0 i ason, Ve < 18I,

[0vel1Z 0 < aellBIIZ o,
U =wlANv. =0 in HI(X, 2% ® L ® Z(h)).

Again, by arguing in a given Hilbert space L?(h,), we find L? convergent subse-
quences us — u, v — v as € — 0, and in this way get Ov = 0 and

lloll* < 118117,
u=wiAv=p in HY(X, 2% @ L®ZI(h)).

Theorem 15.1.1 is proved. Notice that the equisingularity property Z(h.) = Z(h)
is crucial in the above proof, otherwise we could not infer that © = 8 from the fact
that ue = 8. This is true only because all cohomology classes {u.} lie in the same
fixed cohomology group H?(X, 2% ® L ® Z(h)), whose topology is induced by the
topology of L?(w) on d-closed forms (e.g. through the De Rham-Weil isomorphism).

O

15.5. A counterexample

In view of Corollary 15.1.2, one might wonder whether the morphism & would
not still be surjective when L is a nef vector bundle. We will show that this is
unfortunately not so, even in the case of algebraic surfaces.
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Let B be an elliptic curve and let V' be the rank 2 vector bundle over B which
is defined as the (unique) non split extension

0-0p—>V —>0—0.

In particular, the bundle V' is numerically flat, i.e. ¢1(V) = 0, c2(V) = 0. We
consider the ruled surface X = P(V). On that surface there is a unique section
C =P(0p) C X with C? =0 and

Ox(C) = Opv)(1)
is a nef line bundle. It is easy to see that
h*(X, Op(vy(m)) = h°(B,S™V) =1

for all m € N (otherwise we would have mC = aC + M where aC is the fixed part
of the linear system |mC/| and M # 0 the moving part, thus M? > 0and C-M > 0,
contradiction). We claim that

h%(X, 2% (kC)) = 2
for all £ > 2. This follows by tensoring the exact sequence
0= Q%0 = 2% =70 = 0c =0
by Ox (kC) and observing that
9}(\0 =Kx = Ox(-20C).
From this, we get
0 - H°(X,0x((k —2)C)) - H*(X, 25 O(kC)) - H°(X,0x (kC))

where h?(X,Ox((k — 2)C)) = h°(X,0x(kC)) = 1 for all k£ > 2. Moreover, the
last arrow is surjective because we can multiply a section of H°(X,Ox(kC)) by
a nonzero section in H%(X,7*2}) to get a preimage. Our claim follows. We now
consider the diagram

HOX, 0L (20)) 295 H(X,Kx(20))

=] e

HO(X,0L(30)) DY HI(X,Kx(30)).

Since Kx(2C) ~ Ox and Kx(3C) ~ Ox(C), the cohomology sequence of

0— Kx(QC) — Kx(30) — Kx(30)|0 ~ OC —0
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immediately implies ¢ = 0 (notice that h'(X, Kx(2C)) = h}(X,Kx(3C)) = 1,
since h!'(B,0p) = h'(B,V) = 1), and h*(X, Kx(2C)) = h*(B,0p) = 0). There-
fore the diagram implies ¢ = 0, and we get:

(15.5.1) Proposition. L = Op(y(3) is a counterample to (15.1.2) in the nef case.
O

By Corollary (15.1.2), we infer that Ox (3) cannot be hermitian semi-positive and
we thus again obtain — by a quite different method — the result of [DPS94], exam-
ple 1.7.

(15.5.2) Corollary. Let B be an elliptic curve, V the vector bundle given by the
unique non-split extension
00—V —>0—0.

Let X = P(V). Then L = Ox(1) is nef but not hermitian semi-positive (nor does
any multiple, e.g. the anticanonical line bundle —Kx = Ox(—2) is nef but not
semi-positive).
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