IDENTIFICATION OF A LEAKING TRIGA FUEL ELEMENT AT
THE REACTOR FACILITY OF PAVIA.

A. Borio di Tigliole, M. Cagnazzo, F. Lana, A. Losi, G. Magrotti, S. Manera,
F. Marchetti, P. Pappalardo, A. Salvini, G. Vinciguerra.

Laboratorio Energia Nucleare Applicata (L.E.N.A.) of University of Pavia – 27100 Pavia, Italy

1. INTRODUCTION
On January 28th 2004, during a periodical activity of characterization of the ionic-exchange resins of
the demineralizer of the primary cooling circuit of the TRIGA Mark II reactor of the University
of Pavia a small but detectable amount of 137Cs contamination was measured. Since the reactor has
been running for several hundreds of hours at full power without showing any anomaly in the
radiometric and thermo-hydraulic parameters, the reactor was brought at the nominal power of 250
kW for one hour and a sample of water was collected from the reactor tank and analyzed in a low-
background gamma-ray detector.
As a result a small amount of fission products were detected in the reactor pool water (few Bq/g)
suggesting the existence of a possible clad defect in one ore more fuel elements. Since no halogens
such as iodine and bromine were detected in the sampled water, the more probable hypothesis, also
supported by literature, seemed to be a micro-fissure in the neck of an instrumented fuel element.

2. SUMMARY OF THE MEASUREMENTS
As a consequence of the unusual fission products activity detected in the water of the reactor pool a
campaign of gamma-ray spectrometry was implemented in order to evaluate the importance of the
release.
Using a HGe (1.72 keV FWHM – 31.3% efficiency – 58.5 Photo Peak/Compton) many analysis
were performed on January 28th 2004 and some of them, the most significative ones, are presented
below.
Notice that all the results of the measurements presented have a relative error less than 10% and that
the MDA was evaluated according to the “RISO” methodology, i.e.:

$$ MDA = 4.65 * \frac{\sqrt{\text{Background}}}{\text{LiveTime}} $$

a. Measurement of a sample of the ionic-exchange resins of the demineralizer of the primary
cooling circuit
Measurement results (Counting Time = 850 s; Activity reported to November 27th 2003, last
day of operation of the reactor at nominal power):

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>$T_{1/2}$</th>
<th>Bq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>5.26 y</td>
<td>129.8</td>
</tr>
<tr>
<td>Zn-65</td>
<td>244 d</td>
<td>17.4</td>
</tr>
<tr>
<td>Mn-54</td>
<td>312 d</td>
<td>123.8</td>
</tr>
<tr>
<td>Co-58</td>
<td>70.8 d</td>
<td>86.4</td>
</tr>
<tr>
<td>Cs-134</td>
<td>2 y</td>
<td>2.86</td>
</tr>
<tr>
<td>Cs-137</td>
<td>30.2 y</td>
<td>245</td>
</tr>
<tr>
<td>Cr-51</td>
<td>27.7 d</td>
<td>265</td>
</tr>
</tbody>
</table>
b. Measurement of a sample of a new charge of ionic-exchange resins
No 137Cs or other fission product were found in the sample.

c. Smear-Test of the external surface of a fresh fuel element.
The measure was performed in order to exclude the hypothesis that the clads of the new SST fuel elements were contaminated by a small amount of fission products. The measure didn’t show any presence of such contamination (MDA = 2,75 x 10^{-4} Bq/cm² at 661 keV).

d. Measurement of a sample of the filter of the water of the primary cooling circuit.
Measurement results (Counting Time = 50.000 s; Activity reported to November 27th 2003, last day of operation of the reactor at nominal power):

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>$T_{1/2}$</th>
<th>Bq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eu-152</td>
<td>13,6 y</td>
<td>10,5</td>
</tr>
<tr>
<td>Co-60</td>
<td>5,26 y</td>
<td>36,6</td>
</tr>
<tr>
<td>Fe-59</td>
<td>44 d</td>
<td>11,6</td>
</tr>
<tr>
<td>Eu-154</td>
<td>8,8 y</td>
<td>1,5</td>
</tr>
<tr>
<td>Zn-65</td>
<td>244 d</td>
<td>4,9</td>
</tr>
<tr>
<td>Sc-46</td>
<td>83,8 d</td>
<td>3,5</td>
</tr>
<tr>
<td>Mn-54</td>
<td>312 d</td>
<td>2,5</td>
</tr>
<tr>
<td>Co-58</td>
<td>70,8 d</td>
<td>1,04</td>
</tr>
<tr>
<td>Cs-134</td>
<td>2,0 y</td>
<td>0,38</td>
</tr>
<tr>
<td>Cs-137</td>
<td>30,2 y</td>
<td>1,19</td>
</tr>
<tr>
<td>Cr-51</td>
<td>27,7 d</td>
<td>204</td>
</tr>
</tbody>
</table>

e. Measurement of a sample of water collected from the reactor pool before the reactor start-up.
Measurement results (Counting Time = 25.700 s; Activity refereed to November 27th 2003, last day of operation of the reactor at nominal power):

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>$T_{1/2}$</th>
<th>Bq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co-60</td>
<td>5,26 y</td>
<td>5,60E-04</td>
</tr>
<tr>
<td>Zn-65</td>
<td>244 d</td>
<td>4,10E-04</td>
</tr>
<tr>
<td>Mn-54</td>
<td>312 d</td>
<td>2,80E-04</td>
</tr>
<tr>
<td>Co-58</td>
<td>70,8 d</td>
<td>3,50E-04</td>
</tr>
<tr>
<td>Cs-134</td>
<td>2,0 y</td>
<td>< 9,33E-05</td>
</tr>
<tr>
<td>Cs-137</td>
<td>30,2 y</td>
<td>1,50E-03</td>
</tr>
</tbody>
</table>

f. Measurement of a sample of water collected from the reactor pool after one hour of operation at 250 kW nominal power.
The sample was collected 30 cm below the pool water surface with the primary cooling system of the reactor off. The analysis was performed after 90 min from the collection of the sample and the results are the following (Counting Time = 1032 s; Activity reported to hour 14:39:00 of January 28th 2004) (see Fig.4):

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>$T_{1/2}$</th>
<th>Bq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs-138</td>
<td>32,2 m</td>
<td>7,08</td>
</tr>
<tr>
<td>Xe-138</td>
<td>14,13 m</td>
<td>5,51</td>
</tr>
</tbody>
</table>
The same sample was analyzed after 96 hours and 41 min in order to look for long life radioisotopes. The results of the measurement are the following (Counting Time = 50,000 s; Activity reported to hour 14:39:00 of January 28th 2004):

<table>
<thead>
<tr>
<th>Radioisotope</th>
<th>T_{1/2} (h)</th>
<th>Bq/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>La-140</td>
<td>40.22</td>
<td>4.46E-03</td>
</tr>
<tr>
<td>Na-24</td>
<td>15</td>
<td>3.68</td>
</tr>
<tr>
<td>Co-60</td>
<td>5.26</td>
<td>5.63E-04</td>
</tr>
<tr>
<td>Mn-54</td>
<td>312</td>
<td>6.66E-04</td>
</tr>
<tr>
<td>Co-58</td>
<td>70.58</td>
<td>7.69E-04</td>
</tr>
<tr>
<td>Cs-134</td>
<td>2.0</td>
<td><1.74E-04</td>
</tr>
<tr>
<td>Cs-137</td>
<td>30.2</td>
<td>1.84E-03</td>
</tr>
<tr>
<td>Cr-51</td>
<td>27.7</td>
<td>2.13E-03</td>
</tr>
</tbody>
</table>

The measurement of aerosol sample collected above the pool water surface.

The measurement was performed sampling 3 m3 of air on a active-carbon and absolute filter (porosity 4.5 μm). The spectrometry of the filter was performed 60 min after the sampling (Counting Time = 408 s) and besides natural radioisotopes only 22 Bq/m3 of 138Cs was detected.

The measurement of aerosol sample collected in the off-gas channel of the reactor.

The measurement was performed sampling 50 m3 of air on a active-carbon and absolute filter (porosity 4.5 μm) and only natural radioisotopes were detected (MDA for 138Cs = 7.5E-02 Bq/m3; MDA for 137Cs = 5.80E-04 Bq/m3).

3. PRELIMINARY EVALUATION OF THE RELEASE

In order to evaluate the typology of the release of the fission products the relative abundance of the noble gas was calculated and compared with the specific activities measured in the sampled water (2.f).

The calculation were performed using the well known equations:

- for $N_0^{235} \overset{R_Y}{\longrightarrow} N_A(t) \overset{\lambda_A}{\longrightarrow} N_B(t)$

 \[\lambda_A \cdot N_A(t) = R \cdot Y_A \cdot (1 - e^{-\lambda_A \cdot t}) \]

- for $N_A(t) \overset{\lambda_A}{\longrightarrow} N_B(t) \overset{\lambda_B}{\longrightarrow} N_C(t)$

 \[\lambda_B \cdot N_B(t) = \frac{\lambda_A \cdot \lambda_B}{\lambda_B - \lambda_A} N_{A0} \cdot (e^{-\lambda_A \cdot t} - e^{-\lambda_B \cdot t}) \]

- for $N_0^{235} \overset{R_Y}{\longrightarrow} N_A(t) \overset{\lambda_A}{\longrightarrow} N_B(t) \overset{\lambda_B}{\longrightarrow} N_C(t)$

\[\lambda_B \cdot N_B(t) = \frac{\lambda_A \cdot \lambda_B}{\lambda_B - \lambda_A} N_{A0} \cdot (e^{-\lambda_A \cdot t} - e^{-\lambda_B \cdot t}) \]
\[
\lambda_B \cdot N_B(t) = R \cdot Y_A \cdot \left(\frac{\lambda_B \cdot \lambda_A e^{-\sigma_f \phi t}}{(\lambda_A - \sigma_f \phi) \cdot (\lambda_B - \sigma_f \phi)} + \frac{\lambda_B \cdot \lambda_A e^{-\lambda_B t}}{(\lambda_A - \lambda_B) \cdot (\sigma_f \phi - \lambda_B)} \right)
\]

(3)

With:

\(\lambda = \) Radioisotope Decay Constant

\(R = \) Fission Reaction Rate \(= N_0^{235} \cdot \sigma_f \cdot \phi \approx 7.75 \times 10^{15} \text{ fission s}^{-1} \) at 250 kW

\(\phi = \) Average Reactor Thermal Flux \(\approx 2 \times 10^{12} \text{ n cm}^{-2} \text{ s}^{-1} \) at 250 kW

\(\sigma_f = \) Fission Microscopic Cross Section for \(^{235}\text{U} \) (583 barn)

\(N = \) Number of atoms

\(Y = \) Fission Yield

The results of the calculation as a function of the Fission Reaction Rate \((R)\) are reported below:

\[^{138}\text{Xe} \ [\lambda_XeN_{Xe}(1h) = 5.97 \times 10^{-2} R] \]

- direct production \((Y = 4.81\%)
- production from \(^{135}\text{I} \) \((Y = 1.49\%)

\[^{135}\text{Xe} \ [\lambda_XeN_{Xe}(1h) = 3.79 \times 10^{-4} R] \]

- direct production \((Y = 0.0785\%)
- production from \(^{135}\text{I} \) \((Y = 6.28\%)
- production from \(^{135m}\text{Xe} \) \((Y = 0.178\%)

N.B.: for the calculation it is necessary to consider the consumption of \(^{135}\text{Xe} \) due to neutron capture \((\sigma_c = 2.65 \times 10^6 \text{ barn})\). Thus, in the exponential and in the fraction of equation (3) \(\lambda_B = (\lambda_Xe + \sigma_c \phi)\).

\[^{88}\text{Kr} \ [\lambda_KrN_{Kr}(1h) = 7.69 \times 10^{-3} R] \]

- direct production \((Y = 3.55\%)

\[^{87}\text{Kr} \ [\lambda_KrN_{Kr}(1h) = 1.075 \times 10^{-2} R] \]

- direct production \((Y = 2.56\%)

\[^{85m}\text{Kr} \ [\lambda_KrN_{Kr}(1h) = 1.85 \times 10^{-3} R] \]

- direct production \((Y = 1.29\%)

The ratios between the calculated activity and the measured specific activities in the water of the reactor pool (measure 2.f) for the noble gas are the following:

<table>
<thead>
<tr>
<th>Radioisotopes</th>
<th>Calculate Ratio</th>
<th>Measured Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(^{138}\text{Xe}^{135}\text{Xe})</td>
<td>157</td>
<td>138</td>
</tr>
<tr>
<td>(^{87}\text{Kr}^{88}\text{Kr})</td>
<td>1.40</td>
<td>1.48</td>
</tr>
<tr>
<td>(^{138}\text{Xe}^{87}\text{Kr})</td>
<td>5.55</td>
<td>5.30</td>
</tr>
</tbody>
</table>

From this evaluation it seemed clear that the noble gas were released promptly in coincidence with the reactor operation at the power of 250 kW.
For what concerns the specific activity in air of 138Cs (22 Bq/m3) measured above the pool water surface, it was consistent with the specific concentration in water of the radionuclide, presuming an evaporation coefficient of $\sim 10^{-3}$, realistic for the reactor pool water temperature of 40 °C.

On the contrary, the increase of the specific activity in water of 137Cs after the operation of the reactor for 1 hour at the power of 250 kW (comparison between measures 2.e and 2.f), it was not consistent with the hypothesis of a prompt release unless about 30% of the fuel elements of the core were fissured. This hypothesis seems to be not realistic because, since no halogens such as iodine and bromine were detected in the sampled water, about 24 fuel elements should present a micro-fissure. A possible explanation of this anomalous increase was that 137Cs could be dissolved into the moisture that could be accumulated inside the damage fuel element when the reactor was not in operation and which could be released all at once when the fuel element was heated up.

4. THE MEASUREMENT APPARATUS

Many references were found in literature on the identification of the leaking of a TRIGA fuel element$^{(1,2,3,4,5,6,7)}$, but the situations experienced by the University of Utah Nuclear Engineering Laboratory (UUNEL) and presented in the TRIGA CONFERENCE March 11-14, 1990 TEXAS$^{(8)}$ seemed to fit better for ours purposes.

Following the experience of University of Utah Nuclear Engineering Laboratory, a sampling and measurement apparatus was realised with the following components:

- an aluminium anticorodal tube (length 6 m \varnothing 25.4 mm) with a funnel terminal (\varnothing 55 mm) (see Fig.1 and Fig.2)
- a hydraulic pomp OMAN mod. ALM25 in SST (max flow 43 lt/min – Prevalence 12 m)
- a rubber tube for water circulation (\varnothing 25.4 mm)
- a HPGe Ortec GMX (n-type, Coaxial Detector, Be Window) - FWHM 2.57 keV at 1.33 MeV 60Co – Efficiency 30% - Photopeak/Compton = 46/1 (see Fig.3)

![Fig. 1 Sampling apparatus lay-out](image_url)

Water was collected from the superior grid of the reactor core by means of the aluminium tube in different sectors and in different fuel element positions and was counted on-line using the HPGe detector positioned in the Radiochemistry Laboratory (about 20 m distance from the reactor top).

In order to allowed the decay of short half-life radioisotopes such as 19O, 16N, the pump suction flow was reduced to 5 lt/min, that means that the sampled water took at list 2 minutes to reach the detector.

The radioisotope considered for the measurements was 138Xe that presents three well defined and clean gamma-peak at 258 keV, 434 keV, 1768 keV.
5. IDENTIFICATION OF THE LEAKING FUEL ELEMENT

The reactor core was virtually divided into 4 sectors: N°1 (Sud-Est), N°2 (Sud-West), N°3 (Nord-West), N°4 (Nord-Est).

After testing the sampling apparatus before to start the reactor, the reactor was operated at the power of 1 kW and the water was sampled in all four sectors at a distance of about 15 cm from the superior grid. In this condition no fission products were detected in the water.

Thus the reactor power was raised up to 50 kW (i.e. a fuel temperature about 45 °C) and the same investigation in all four sectors was repeated, but no fission product released was detected either.

The reactor power was then raised up to 100 kW (i.e. a fuel temperature about 90 °C) and finally fission product were detected starting from sector N°3, giving the following results:

<table>
<thead>
<tr>
<th>Isotope</th>
<th>En Peak (keV)</th>
<th>Peak Area (cps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xe-138</td>
<td>258</td>
<td>9993</td>
</tr>
<tr>
<td></td>
<td>434</td>
<td>3543</td>
</tr>
<tr>
<td></td>
<td>1768</td>
<td>898</td>
</tr>
</tbody>
</table>

Unfortunately the specific activity measured in each sector ended up to be of the same magnitude suggesting two possible explanations: there were more than one fuel element fissured in the core and positioned in different sectors or the water of the pool mixed up very fast in proximity of the superior grid preventing the possibility of identifying the sector of origin of the release.

Anyway it was clear that a more systematic analysis, fuel element per fuel element, should have been performed.

Thus the aluminium tube was lowered down towards the grid in such a way that the funnel covered just one fuel element position.

The water sampling was repeated until when two SST clad fuel element, close one to the other in sector N°3 (position C5 and C6), seemed to be the possible origin of the release. These two elements, though, were close to three instrumented fuel elements and, knowing from literature that these kind of elements are more likely to undergo fissure, the hypothesis of their involvement in the release was still the more probable.

In order to verify this last hypothesis, the two SST clad fuel elements were moved to another position of the core where they were measured again. As expected no fission product were detected.

On the contrary, fission products were detected again in position C5 and C6 where two different fuel elements, previously verified for the absence of leakage, were inserted.

At that point it was clear that the release was caused not by the SST fuel elements in position C5 and C6 but by one or more fuel elements positioned nearby. Since three instrumented fuel elements were positioned close to positions C5 and C6 (in position D7, D8 and B3), the oldest of the three was removed from the core.

The measurements in position C5 and C6 were repeated and no fission products were detected.

The reactor power was raised up to 250 kW and the measurement of the water sampled in all four sector was repeated showing no presence of fission products.

A sample of water was collected from the reactor pool after one hour of operation of the reactor at the power of 250 kW with the primary cooling system off and it was measured in a low-background gamma detector. No fission products were revealed in the water (see. Fig.)

6. CONCLUSION

As expected the fission products leakage was due to a micro-fissure of a fuel element that released only noble gas only when the fuel element was heated up to a temperature around 90 °C, i.e. at the reactor power of about 100 kW. The fuel element identified as the origin of the release was the oldest SST clad instrumented fuel element present in the core.
The fuel element was removed from its position and stored in a rack of the reactor pool under 4 m of water shield. In this condition the element will not release any fission product any more but it will be necessary to condition it in a proper way after at least of couple of year of cooling down.

The reactor was back in regular operation on March 22nd 2004 and no other fission products leakages were detected. As a routine operation, the reactor pool water is now sampled and measured with a low-background gamma-ray detector every month before the reactor start-up and after one hour of operation of the reactor at full nominal power.

Bibliography

1. Anomaly of the TRIGA RC-1 Reactor during the execution of nuclear tests at 1 MW - Triga Conference 1970
2. Research programs carried out at the triga mark II reactor Vienna - Triga Conference settembre 15-17, 1982 Turkey
3. Operation and maintenance of the 250 kW TRIGA Marck II Reactor at the Jozef Stefan Institute in Ljubljana - Triga Conference august 21-23, 1984 Finland
4. Searching for a possible fuel element leak - Triga Conference april 6-9, 1986 Texas
5. Operation and maintenance experiences at the finnish Triga Reactor – European Triga Conference October 7-9, 1986 Roma
6. Failure of TRIGA fuel cladding at the Berkeley research Reactor - Triga Conference april 6-9, 1986 Texas
7. Operation experience with the TRIGA Reactor Vienna - Triga Conference September 14-16, 1988 Austria
8. Identification of leaking TRIGA fuel elements - Triga Conference march 11-14, 1990 Texas

Fig.1 The funnel at the end of the aluminium tube
Fig. 2 The funnel positioned on the superior grid of the reactor

Fig. 3 The HPGe detector and the measurement set-up
Fig. 4 Reactor pool water after 1 hour of operation at 250 kW power

Acquired: 28/01/2004 17.01.13
Detector: #2 L.E.N.A. DSPEC
Real Time: 1083.12 s. Live Time: 1032.20 s.

Fig. 5 Reactor pool water after 1 hour of operation at 250 kW power

Acquired: 19/03/2004 12.06.16
Detector: #2 L.E.N.A. DSPEC
Real Time: 1032.28 s. Live Time: 1000.00 s.