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Tag der mündlichen Prüfung: 23. Februar 2007
Vorsitzender der Promotionskommission: Prof. Dr. E. Bänsch
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Zusammenfassung

In dieser Arbeit werden Baryonen und baryonische Materie in einfachen Theorien mit Vier-
Fermion-Wechselwirkung behandelt, dem Gross-Neveu Modell und dem Nambu-Jona-Lasinio
Modell in 1+1 und 2+1 Raumzeitdimensionen. Diese Modelle sind als Spielzeugmodelle für
dynamische Symmetriebrechung in der Physik der starken Wechselwirkung konzipiert. Die
volle, durch Gluonaustausch vermittelte Wechselwirkung der Quantenchromodynamik wird
dabei durch eine punktartige (“Vier-Fermion”) Wechselwirkung ersetzt. Die Theorie wird im
Limes einer großen Zahl an Fermionflavors betrachtet. Hier ist die mittlere Feldnäherung
exakt, die äquivalent zu der aus der relativistischen Vielteilchentheorie bekannten Hartree-
Fock Näherung ist.

In 1+1 Dimensionen werden bekannte Resultate für den Grundzustand auf Modelle erweitert,
in denen die chirale Symmetrie durch einen Massenterm explizit gebrochen ist. Für das
Gross-Neveu Modell ergibt sich eine exakte selbstkonsistente Lösung für den Grundzustand
bei endlicher Dichte, der aus einer eindimensionalen Kette von Potentialmulden besteht, dem
Baryonenkristall. Für das Nambu-Jona-Lasinio Modell führt die Gradientenentwicklung auf
eine Näherung für die Gesamtenergie in Potenzen des mittleren Feldes. Das Baryon ergibt
sich als ein topologisches Soliton, ähnlich wie im Skyrme Modell der Kernphysik. Die Lösung
für das einzelne Baryon und baryonische Materie kann in einer systematischen Entwicklung
in Potenzen der Pionmasse angegeben werden.

In 2+1 Dimensionen ist die Lösung der Hartree-Fock Gleichungen schwieriger. Im masselosen
Gross-Neveu Modell kann eine exakt selbst-konsistente Lösung hergeleitet werden, die den
Baryonenkristall des 1+1 dimensionalen Modells so erweitert, dass die Translationssymme-
trie in einer Raumrichtung beibehalten wird. Diese eindimensionale Feldkonfiguration ist zur
translationssymmetrischen Lösung energetisch entartet, was als Hinweis auf die Möglichkeit
der Brechung der Translationssymmetrie durch allgemeinere geometrische Strukturen gewer-
tet werden kann. Im Nambu-Jona-Lasinio Modell indudziert ein topologisches Soliton eine
endliche Baryonzahl. Im Gegensatz zum 1+1 dimensionalen Modell ist das einzelne Baryon
aber nicht masselos, sondern ein Zustand mit verschwindender Bindungsenergie.



Abstract

In this work we discuss baryons and baryonic matter in simple four-fermion interaction theo-
ries, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time
dimensions. These models are designed as toy models for dynamical symmetry breaking in
strong interaction physics. Pointlike interactions (“four-fermion” interactions) between quarks
replace the full gluon mediated interaction of quantum chromodynamics. We consider the
limit of a large number of fermion flavors, where a mean field approach becomes exact. This
method is formulated in the language of relativistic many particle theory and is equivalent to
the Hartree-Fock approximation.

In 1+1 dimensions, we generalize known results on the ground state to the case where chi-
ral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we
derive an exact self-consistent solution for the finite density ground state, consisting of a
one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu-
Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy
in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear
physics, the baryon emerges as a topological soliton. The solution for both the single baryon
and dense baryonic matter is given in a systematic expansion in powers of the pion mass.

The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the
massless Gross-Neveu model we derive an exact self-consistent solution by extending the
baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one
spatial direction. This one-dimensional configuration is energetically degenerate to the trans-
lationally invariant solution, a hint in favor of a possible translational symmetry breakdown
by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soli-
ton configurations induce a finite baryon number. In contrast to the 1+1 dimensional model
we do not find a massless baryon, but a state with zero binding energy.
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1. Introduction

The description of dense relativistic matter is a major field of current research in quantum
field theory. An important question in this area is: What are the properties of strongly
interacting matter under extreme conditions, for instance in the center of a neutron star?
For a theoretical treatment of this question from first principles one has to consider a region
occupied by quarks described by Quantum Chromodynamics (QCD). The basic task is to
determine the ground state at zero temperature. When the density of quarks is increased,
one expects phase transitions from a gas of hadrons to nuclear matter and eventually to quark
matter. Apart from this basic picture, there is a very rich spectrum of possibilities for the
ground state, e.g. color superconducting phases, where quark pairing occurs via the BCS
mechanism of superconductivity [1].

The most important framework for a numerical description of QCD is lattice gauge theory.
With this method it is possible to determine numerically the properties of single baryons
as bound states of quarks, whereas the treatment of dense baryonic matter is not accessible
with the standard Monte Carlo techniques. The results for the ground state of QCD in this
regime thus rely mostly on effective models. The most commonly used model is the Nambu-
Jona-Lasinio (NJL) model [2, 3] in which pointlike interactions (“four-fermion” interactions)
between quarks replace the full gluon mediated quark interaction. This model reproduces the
spontaneous breakdown of chiral symmetry observed in QCD: The ground state consists of
a homogeneous condensate of quark-antiquark pairs which acts as an effective mass of the
“constituent quarks”.

In this work, we will discuss the properties of dense matter in four-fermion models in 1+1
and 2+1 dimensions. In contrast to the 3+1 dimensional case, these toy models are renor-
malizable, which is an important property of QCD. In order to implement the breakdown of
chiral symmetry in the vacuum, we will take the limit of a large number of fermion flavors,
the ’t Hooft limit. This circumvents no-go theorems which forbid spontaneous symmetry
breakdown in low dimensions. In addition, mean field methods become exact in this limit,
which makes it possible to find an analytical solution in some cases.

The restriction to low dimensions is interesting from a theoretical point of view: In the
1+1 dimensional models we can find an analytical, non-perturbative description of the finite
density ground state including baryons as bound states of fermions. This is very rare in
quantum field theory. Since it is more desirable to study the physically relevant case of 3+1
dimensions, the transition from 1+1 to 2+1 dimensions is particularly interesting. Naturally,
the complexity added by the extra spatial dimension will require further approximations and
numerical calculations.

The best known 1+1 dimensional four-fermion model is the Gross-Neveu (GN) model [4],
which was designed as a toy model for chiral symmetry breakdown. It is perhaps the most
simple interacting field theory of fermions one can write down. The four-fermion interac-
tion term ∼ (ψ̄ψ)2 is the fermionic analog of the φ4 model often used to introduce the basic
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1. Introduction

concepts of field theory. In the ’t Hooft limit the GN model uncovers a surprising num-
ber of phenomena of interest to strong interaction physics. These are asymptotic freedom,
dimensional transmutation, the existence of mesons and spontaneous breakdown of chiral
symmetry. In addition, shortly after the initial work by Gross and Neveu, localized bound
states of fermions were found [5]. They are interpreted as the“baryons”of the model and have
a kink-antikink like structure: The baryon carves out a spatial region around itself, wherein
the fermion condensate is suppressed, thus reducing its effective mass at the expense of vol-
ume and gradient energy associated with the deviation of the condensate from its vacuum
value.

The properties of the GN model at finite density where first investigated in 1985 [6]. At
zero temperature, a first order phase transition from a massive Fermi gas to a chirally sym-
metric state was found. This description did not take into account the existence of baryons,
which form a one-dimensional crystal at finite density. Following a variational calculation to
approximate the correct ground state for dense matter [7], the exact solution was found in
2003 [8]. The emergence of such an inhomogeneous state of cold, dense matter is also dis-
cussed in QCD, where it is analogous to the “LOFF” state of superconductivity, first explored
by Larkin, Ovchinnikov, Fulde and Ferrell (see Ref. [9]).

The mechanism which drives spontaneous breakdown of translational invariance in the GN
model is closely related to the Peierls effect known from condensed matter physics. In fact,
apart from its use as a toy model in particle physics, the GN model describes a variety
of quasi-one-dimensional condensed matter systems such as the Peierls-Fröhlich model, con-
ducting polymers like polyacetylene, or inhomogeneous superconductors. Of course, the Dirac
description of fermions has a different origin in these systems than in high energy physics.
It is derived from a linearized dispersion relation of the electrons at the Fermi surface in a
(nearly) half-filled band, where the Fermi velocity plays the role of the velocity of light and
the band width the role of the ultra-violet (UV) cutoff (see Ref. [10] for a review).

The second 1+1 dimensional toy model we will discuss in this work is the 1+1 dimensional
version of the NJL model with a continuous rather than a discrete chiral symmetry, also
discussed in the work by Gross and Neveu [4]. The higher symmetry is motivated by the
approximate continuous chiral symmetry of QCD and has important consequences for the
properties of the ground state. The baryons in this model emerge as topologically non-trivial
excitations of the Goldstone boson field. This leads to a picture similar to the Skyrme model
of nuclear physics, which describes nucleons as chiral solitons [11]: A finite winding number
of the meson field induces baryon number through the interaction with the fermions. At finite
density, the baryons in the 1+1 dimensional NJL model form a crystal with a helical shape,
the “chiral spiral” [12].

Since quarks are massive in nature, it is worthwhile to discuss these toy models including a
bare mass of the fermions, breaking chiral symmetry explicitly. In view of the fact that a lot of
effort is presently devoted to computing chiral corrections, the 1+1 dimensional four-fermion
models could be used as testing ground for new theoretical approaches. As described above,
the massless models have been studied comprehensively by now. In contrast, the massive
versions have not yet been solved in any systematic manner. In Part I of this work we will
be able to give a consistent picture of the properties of dense matter in both the massive
GN model and the massive NJL model. As compared to the chirally symmetric limit, the
calculations become significantly more complex.
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1. Introduction

In Part II of this work we will discuss the 2+1 dimensional versions of the massless GN and
the NJL model. As in the 1+1 dimensional case, the models have been studied extensively
assuming a translationally symmetric ground state [13, 14, 15]. However, baryons as localized
multi-fermion bound states are not known so far, so that the initial situation for a description
of dense matter is rather different. Hence, in the case of the NJL model, this work concentrates
on the question whether the four-fermion interaction in 2+1 dimensions is strong enough to
support baryonic bound states. The extra spatial dimension induces additional complexity, so
that an analytical treatment like in the 1+1 dimensional model does not seem to be possible.
One has to rely on approximation techniques and numerical calculations to get information
on the ground state. For the GN model, we choose a different approach. We extend the
baryon crystal solution of the 1+1 dimensional model assuming translational invariance in
one spatial direction. This “stripe” ansatz is not motivated by physics arguments, but should
be viewed as a preliminary calculation to explore the possibility of a spontaneous breakdown
of translational symmetry.

This work is organized as follows. Chapter 2 gives the basic definitions for the four-fermion
models discussed in this work and describes the techniques needed to calculate the ground
state. This includes the mean field, or Hartree-Fock method, the renormalization procedure,
the definition of the baryon number and the derivative expansion. The subject of Chapter 3
is the massive GN model in 1+1 dimensions. We first give the self-consistent solution for
the single baryon and then investigate the properties of the baryon crystal which emerges
at finite density. In Chapter 4, the massive NJL model is discussed using the derivative
expansion technique. In contrast to the GN model, here we aim at an expansion of ground
state properties for small bare mass parameters and low densities.

In Chapter 5 of Part II, we derive a self-consistent solution of the 2+1 dimensional GN model
with a stripe structure based on the baryon crystal in 1+1 dimensions. In Chapter 6 we
describe the search for stable baryon solutions of the NJL model in 2+1 dimensions. In order
to calculate the total energy for a given configuration, we use the derivative expansion for
slowly varying fields and a numerical technique for small sized solitons. In Chapter 7 we
summarize our results and give a brief outlook. Appendix A discusses some subtleties of the
description of Dirac fermions in 1+1 and 2+1 space-time dimensions. The known results with
a translationally invariant mean field are reviewed in Appendix B and C for the 1+1 and 2+1
dimensional models, respectively. Appendices D-H contain further technical details.
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2. Basic definitions and methods

Four-fermion interaction models are relativistic, fermionic quantum field theories with a self-
interaction term consisting of four fermion fields. In the literature a large variety of such
models can be found, designed for applications in high energy, nuclear and condensed matter
physics. The theories differ in the number of space-time dimensions, the number of different
fermion field species and in the symmetries of the underlying Lagrangian. The best known
four-fermion models are the Gross-Neveu (GN) model and the Nambu-Jona-Lasinio (NJL)
model. In this work, we work out the properties of these basic models in 1+1 and 2+1 space-
time dimensions. The following chapter gives an overview of the vacuum properties of the
models and introduces the methods used to describe the ground state.

2.1. Lagrangians and symmetries

In its original form, the GN model [4] is a renormalizable quantum field theory of N species
of fermions in 1+1 dimension with the Lagrangian

LGN2 =
N∑

n=1

ψ̄(n)(iγµ∂µ −m0)ψ(n) +
1
2
g2

(
N∑

n=1

ψ̄(n)ψ(n)

)2

. (2.1)

The bare mass term ∼ m0 explicitly breaks the discrete chiral symmetry ψ → γ5ψ of the
massless model. Gross and Neveu also introduced the corresponding model with continuous
chiral symmetry ψ → eiαγ5

ψ, which is nothing but the Nambu-Jona-Lasinio (NJL) [2, 3]
model in 1+1 dimensions. It is defined by the Lagrangian

LNJL2 = ψ̄ (iγµ∂µ −m0)ψ +
1
2
g2

[
(ψ̄ψ)2 + (ψ̄iγ5ψ)2

]
, (2.2)

where the sum over fermion species is suppressed. In 1+1 dimensions, ψ is a two-component
spinor. The two gamma matrices γµ can be chosen proportional to two Pauli matrices. The
chiral gamma matrix γ5 = γ0γ1 is then proportional to the third Pauli matrix (see Appendix A
for details).

In 2+1 dimensions, the GN model is defined by the same Lagrangian (2.1), with the index µ
summed over 3 space-time directions [15]. Due to the additional spatial dimension the fermion
fields are defined in a different representation of the Lorentz group in 2+1 dimensions. With
a two-dimensional representation of the Dirac algebra {γµ, γν} = 2gµν , e.g.

γ0 = σ3 γ1 = iσ1 γ2 = iσ2,

there does not exist a matrix γ5 which anticommutes with all these γµ. This shows that chiral
symmetry cannot be defined in the usual sense. Moreover, the standard mass term ∼ ψ̄ψ vio-
lates parity, which in 2+1 dimensions can be defined by inversion of one spatial coordinate

(t, x1, x2) → (t,−x1, x2) ψP = −iγ1ψ.
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2. Basic definitions and methods

A common way around this problem is to introduce an additional “isospin” degree of freedom
for the fermion fields [16, 17, 15]. The fields ψ become 4-component spinors with a spin and
an isospin index. A mass term is then defined with an additional matrix acting in isospin
space (see Appendix A for details). In terms of isospin matrices τi = σi, the Lagrangian of
the massless GN model in 2+1 dimension reads

LGN3 = iψ̄γµ∂µψ +
g2

2
(ψ̄τ3ψ)2.

The theory is invariant under the discrete “chiral” symmetry transformations

ψ 7→ τ1ψ, ψ 7→ τ2ψ.

The symmetry is dynamically broken if ψ̄τ3ψ acquires a non-zero ground state expectation
value, because this scalar is odd under discrete chiral transformations. In the literature one
also finds the same model with an interaction term proportional to (ψ̄ψ)2 [18]. In such a
model, the vacuum breaks parity spontaneously.

The 2+1 dimensional analog of a continuous “chiral” symmetry is the set of global U(2)
transformations generated by the isospin matrices τa and the unit matrix. The four-fermion
model which respects this continuous symmetry will be referred to as the NJL model in 2+1
dimensions. Its Lagrangian reads

LNJL3 = ψ̄iγµ∂µψ +
g2

2
[
(ψ̄τ1ψ)2 + (ψ̄τ2ψ)2 + (ψ̄τ3ψ)2

]
.

If ψ̄τ3ψ acquires a ground state expectation value, the symmetry group U(2) is broken down
to U(1)×U(1). This corresponds to conservation of fermion number and the 3-component of
the isospin with the Noether currents

jµ = ψ̄γµψ, jµ
3 = ψ̄γµτ3ψ.

Like in 1+1 dimensions one can also consider a mass term ∼ m0ψ̄τ3ψ, explicitly breaking
chiral symmetry. In this work we only consider the chirally symmetric 2+1 dimensional
models.

2.2. Hartree-Fock method

The four-fermion models described above will be discussed in the ’t Hooft limit N → ∞,
g2 ∼ 1/N . In the models discussed in this work, this limit is taken for different reasons.
In the 1+1 dimensional models the large N limit is used to circumvent the Mermin-Wagner
theorem [19, 20] which rules out spontaneous breakdown of a continuous symmetry at zero
temperature or of a discrete symmetry at finite temperature. In the 2+1 dimensional models
this theorem does not apply for zero temperature. Here the large N limit is needed to define
a non-perturbative renormalization procedure in a similar way as in 1+1 dimensions (see
Ref. [13]). For the finite temperature case Hohenberg showed that a continuous symmetry
cannot be broken spontaneously in 2+1 dimensions [21]. This restriction is again circumvented
by the ’t Hooft limit.

Apart from that, semiclassical methods become exact in the large N limit, which is crucial for
the solvability of the models. In order to determine the properties of the ground state, we can
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2. Basic definitions and methods

use a mean field method. This is a common approach also for more elaborate four-fermion
models in 3+1 dimensions aiming to describe quark matter. In the language of many particle
physics, we apply the Hartree-Fock (HF) approximation. This method will be described in
the following.

The large N limit implies that interaction terms like ψ̄ψ in GN2 are equal to their expectation
value up to terms of order 1/N [22]. The Euler-Lagrange equation for GN2

[
iγµ∂µ −m0 + g2(ψ̄ψ)

]
ψ = 0

can be interpreted as a theory of independent particles in the mean field potential 〈ψ̄ψ〉. For
stationary states the mean field is time-independent. The field is then expressed in terms of
the solutions of the single particle Dirac-Hartree-Fock equation

[−iγ5∂1 + γ0σ(x)
]
ψα(x) = Eαψα(x). (2.3)

The mean field σ is subject to the self-consistency condition

σ = −g2〈ψ̄ψ〉+m0. (2.4)

This relativistic HF approach can also be formulated in the functional integral formalism.
Here, it is equivalent to the saddle-point condition for the generating functional (see Refs. [5,
23]).

We apply the HF method also to the large N limit of NJL2 and to both models in 2+1
dimensions. The HF Hamiltonians for the models with continuous chiral symmetry are

HNJL2 = −iγ5∂1 + γ0σ + iγ1π (2.5)

HNJL3 = −iγ0γk∂k + γ0
3∑

a=1

φaτa, (2.6)

where the index k runs over the two spatial directions. The self-consistency conditions read

σ = −g2〈ψ̄ψ〉+m0, π = −g2〈ψ̄iγ5ψ〉 (2.7)

φa = −g2〈ψ̄τaψ〉 (a = 1, 2, 3). (2.8)

The Hamiltonians for the models with discrete chiral symmetry in 1+1 and 2+1 dimensions
are obtained by setting π = 0 and φ1 = φ2 = 0, respectively. In the following we will use
vector notation for the 3 mean fields in 2+1 dimensions,

φ · τ ≡
3∑

a=1

φaτa.

The fields σ, π and φ serve as order parameters for the corresponding chiral symmetries. If
they are spatially varying, the ground state breaks translational symmetry.

For finite N and finite temperature, quantum fluctuations of the mean field potentials destroy
any long range order. This is the essence of the no-go theorems mentioned in the beginning
of this section. The large N limit suppresses quantum fluctuations of σ, π and φ and thus
lifts this restriction.
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2. Basic definitions and methods

In the HF approach, the ground state energy is calculated by summing over single particle
energies of all occupied states and adding a term correcting the double counting of the inter-
action energy. The occupation is determined by the fermion number of the system. With the
HF energies from Eq. (2.3) this is

Egs =
occupied∑

α

Eα + Edcc, (2.9)

with the double counting correction (dcc) terms (set π = 0 and φ1 = φ2 = 0 for GN2 and
GN3)

ENJL2
dcc =

∫
dx

(σ −m0)2 + π2

2Ng2
, ENJL3

dcc =
∫

d2x
φ2

2Ng2
. (2.10)

Due to the Dirac sea, the sum in Eq. (2.9) diverges. The next section introduces the standard
regularization and renormalization procedure for the HF method.

2.3. Vacuum and renormalization

In 1+1 dimensions, the coupling constant g is dimensionless and four-fermion models are
therefore perturbatively renormalizable. This is different in 2+1 dimensions, where the models
are renormalizable in every order of an expansion in 1/N [13]. Using the HF method, a
consistent renormalization scheme can be defined for both cases in which the bare coupling
constant is traded for the physical fermion mass.

In all models considered here, chiral symmetry is broken in the vacuum if the mean fields are
non-vanishing. Homogeneous self-consistent fields act as a dynamical fermion mass generated
by the four-fermion interaction. In the chiral limit (m0 = 0), the possible ground states for
NJL2 lie on the chiral circle σ2 + π2 = m2, for NJL3 on the chiral sphere φ2 = m2. For the
1+1 dimensional models with a bare mass term m0 > 0, the vacuum is unique with σ = m,
π = 0. In order to find the self-consistent fermion mass m, we calculate the total HF vacuum
energy density regulated with the momentum cutoff Λ,

(1+1) E(0) = −
∫ Λ/2

−Λ/2

dp
2π

√
p2 +m2 +

(m−m0)2

2Ng2
(2.11)

(2+1) E(0) = −2
∫

|p|<Λ

d2p

(2π)2
√

p2 +m2 +
m2

2Ng2
. (2.12)

The energy is now minimized with respect to m,

∂E(0)

∂m
= 0. (2.13)

As is well-known from HF theory, the minimum condition is equivalent to the self-consistency
conditions (2.7) and (2.8). It leads to the gap equations

(1+1)
(m−m0)
Ng2

=
m

π
ln

Λ
m

(2.14)

(2+1)
1

Ng2
=

1
π

(Λ−m). (2.15)
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2. Basic definitions and methods

In the 1+1 dimensional case, Eq. (2.14) determines a global minimum for all values of the
dimensionless coupling constant. In 2+1 dimensions however, the gap equation leads to the
minimum of E(0) only if the coupling constant is tuned to be above a critical value, i.e.,
Ng2 > Ng2

c = π/Λ. In this work, we will only consider this case where chiral symmetry is
broken by the vacuum and the dynamical fermion mass is determined by Eq. (2.15).

The gap equations are now used to eliminate the coupling constant g in favor ofm in physically
meaningful quantities like the fermion density or the chiral condensate. Renormalizability of
the model then leads to the cancellation of all divergent terms involving the cutoff Λ. The
remaining finite part is expressed in terms of the vacuum fermion mass m as the only mass
scale. Hence, the gap equations (2.14) summarize the renormalization scheme for four-fermion
models in the large N limit.

In the massive case in 1+1 dimensions, a second physically meaningful, renormalization group
invariant parameter appears, m0/Ng

2. It enters the renormalized vacuum energy (2.11) and
observables like the fermion-antifermion scattering amplitude or the mass of the “pion” in the
NJL2 model [24]. The σ-meson is unbound and disappears from the spectrum for any m0 6= 0,
the π-meson becomes massive in the familiar way (Gell-Mann, Oakes, Renner relation). We
introduce the physical parameter1

γ =
π

Ng2

m0

m
=
m0

m
ln

Λ
m
.

Notice that it can also be expressed in terms of the physical fermion masses at bare mass m0

and in the chiral limit

γ = ln
m[m0]
m[0]

. (2.16)

Whereas the gap equation (2.14) introduces the vacuum fermion mass m as the overall mass
scale, the parameter γ ≥ 0 labels different physical theories. It measures the amount of chiral
symmetry breaking and vanishes in the massless (m0 = 0) case. The gap equation (2.14) can
now be written as

π

Ng2
= γ + ln

Λ
m
. (2.17)

Using the gap equation, the renormalized vacuum energy density (2.11) and (2.12) becomes

(1+1) Eren
(0) = −m

2

4π
− γm2

2π
(2.18)

(2+1) Eren
(0) = −m

3

6π
. (2.19)

Divergent terms independent of m have been dropped (−Λ2/8π and Λ3/3π).

2.4. Baryon number

In order to study fermionic matter or antimatter, the number of filled levels in the single
particle spectrum as compared to the vacuum case has to be increased or reduced. In GN2

and GN3 this can only be achieved by filling positive energy levels or leaving holes in the
1Note the different definition without the factor of π in [25] and [23]
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2. Basic definitions and methods

Dirac sea, since the spectrum of the HF Hamiltonian of these models is symmetric, i.e., every
eigenstate with energy E has a corresponding eigenstate with energy −E. This is due to the
fact that there exists a matrix in spin/isospin space which anticommutes with H, such as
γ1 in 1+1 dimensions, and for example γ0τ2 in 2+1 dimensions (cp. (2.5) and (2.6)). The
fermion number of a single bound state is now determined by the occupation fraction of the
valence state ν = n/N .

In the models with continuous chiral symmetry, NJL2 and NJL3, topologically nontrivial
configurations of the mean field (σ, π in 1+1 dimensions and φ in 2+1 dimensions) can lead
to additional negative/positive energy levels in the single particle spectrum as compared to
the topologically trivial vacuum. This spectral asymmetry induces a finite fermion number
in the system. If all negative energy states are filled completely, this number is an integer
multiple of N . We can define the baryon number by

B = −1
2
(# positive eigenvalues−# negative eigenvalues). (2.20)

Each additional positive energy level is interpreted as a bound state of N fermions, i.e., a
baryon. Note that it is also possible to describe partially filled bound states, where the valence
state is filled with n < N fermions [26].

For mean field configurations restricted to a sphere of degenerate ground states, φ2 = m2 and
σ2 + π2 = m2, it can be shown that B is determined by a topological invariant of these fields
(see Refs. [27, 28, 29, 30, 31]).

In 1+1 dimensions we define the chiral angle χ(x) by

σ = m cos 2χ π = −m sin 2χ. (2.21)

The topological invariant is the winding number, which counts the number of times the mean
field wraps around the circle of ground states. It labels the elements of the homotopy group
π1(S1) = Z and can be written as

Btop =
1
π

∫
dxχ′. (2.22)

In 2+1 dimensions the topological invariant is the wrapping number (related to the homotopy
group π2(S2) = Z)

Btop =
1
4π

∫
d2xφ · [(∂1φ)× (∂2φ)] . (2.23)

These two results will be derived in Sections 4.1 and 6.1, where the derivative expansion
method is applied to calculate the baryon number. It will be shown that Eqs. (2.22), (2.23)
hold in every order of an expansion for slowly varying mean fields.

2.5. Derivative expansion method

The principle of the relativistic HF method described above is quite simple. In order to
calculate baryon number and ground state energy, the HF equations have to be solved. This
is done by minimization of the HF energy in a space of trial functions for the mean fields.
However, the eigenvalue problem for the Hamiltonians in (2.5) and (2.6) can in general not be

11



2. Basic definitions and methods

treated analytically and a numerical solution is quite involved due to the Dirac sea. In specific
cases, one may be able to circumvent the HF procedure. One important example is the case
of slowly varying fields, where energy and baryon number can be calculated in an expansion
in powers of derivatives of the mean field. This derivative expansion will be introduced in the
following, based on Refs. [32],[31]. Basic formulae and the notation are taken over from the
latter reference.

The central quantity for the calculation of total energy and baryon number is the spectral
density, for which we write down the formal expression

σ(E) = Tr δ(H − E) =
1
π

ImR(E + iε),

where we have introduced the resolvent

R(z) = Tr
1

H − z
= Tr

H + z

H2 − z2
.

The induced baryon number (2.20) is

B = −1
2

∫ ∞

−∞
dE σ(E) sgn(E) = − 1

2π
Im

∫ ∞

0
dE [R(E + iε) +R(−E − iε)] , (2.24)

whereas the ground state energy can be written as an integral over the HF energies plus the
double counting correction (cp. (2.9))

Egs −Edcc =
∫ 0

−∞
dE E σ(E) =

1
π

Im
∫ 0

−∞
dE ER(E + iε). (2.25)

The derivative expansion involves a systematic expansion of the resolvent in powers of deriva-
tives of the mean fields. In a notation similar to Ref. [31] we decompose H and H2 formally
into a kinetic part and an interaction part which contains the mean field,

H = K + I , H2 = H2
0 + V (2.26)

and expand the resolvent in powers of V ,

R(z) = Tr(K + I + z)
1

H2
0 − z2 + V

= Tr(K + I + z)

(
G

∞∑

n=0

(−V G)n

)
(2.27)

with the “free Green’s function”
G =

1
H2

0 − z2
.

If one commutes the V ’s through the G’s by repeatedly applying the identity

GV = V G+G
[
V,H2

0

]
G,

one generates the derivative expansion, because the commutator [V,H2
0 ] involves derivatives

of V . As is well known, this method quickly becomes tedious due to the proliferation of higher
order terms. Therefore we shall use another technique, which can be more easily realized using
computer algebra programs such as Maple. The trace in the basic building blocks of the
expansion (2.27)

Tr(K + I + z)G(V G)n (2.28)

12



2. Basic definitions and methods

is evaluated in momentum space. We first consider the 1+1 dimensional case, which can be
easily generalized to higher dimensions. In momentum space the term proportional to z is

TrG(V G)n =
∫

dp
2π

dq1
2π

. . .
dqn−1

2π
G(p)2G(p+ q1) . . .

G(p+ qn−1) trV (q1)V (q2 − q1) . . . V (−qn−1),

where now tr is only the Dirac trace. In p-space, the potentials vary rapidly as compared to
the Green’s functions. We can therefore expand the product of G’s in a power series in the
qi’s. Once this is done, we transform the potentials back to coordinate space and carry out
most of the integrations. The qi’s are replaced by derivatives acting on the V ’s,

TrG(V G)n =
∫

dx
∫

dp
2π
G(p)2G(p+ q1) . . . G(p+ qn−1)|qk=i(∂1+...+∂k)

· tr V (x1)V (x2) . . . V (xn)|xk=x .

(2.29)

We have suppressed the Taylor expansion in Eq. (2.29) in order to keep the structure of the
formula transparent. The other two terms in Eq. (2.28) can be handled similarly with the
result

TrIG(V G)n =
∫

dx
∫

dp
2π
G(p)G(p+ q1) . . . G(p+ qn)|qk=i(∂1+...+∂k)

· tr I(x1)V (x2)V (x3) . . . V (xn+1)|xk=x

TrKG(V G)n =
∫

dx
∫

dp
2π
pG(p)2G(p+ q1) . . . G(p+ qn−1)|qk=i(∂1+...+∂k)

· tr σ3V (x1)V (x2) . . . V (xn)|xk=x .

(2.30)

In 2+1 dimensions, the same formulas apply if we replace the one-dimensional integrals over
x and p in the results Eqs. (2.29,2.30) by two-dimensional integrals, dx → d2x, dp/(2π) →
d2p/(2π)2.

Note, that this procedure is not expected to give a good approximation of the spectral density
but only of integrals over σ(E). This is sufficient for our purpose.

13



Part I.

1+1 dimensional models

14



3. Model with discrete chiral symmetry

The bound states of fermions in the massless 1+1 dimensional GN model have been found by
Dashen, Hasslacher and Neveu (DHN) [5] shortly after the model was proposed. These bound
states (“baryons”) were derived by DHN with functional and inverse scattering methods. A
different approach using methods from relativistic many particle physics [22] (introduced in
Chapter 2) prepared the ground for the description of dense baryonic matter in the massless
model [8].

Since the GN model is used as a toy model for dense relativistic quark matter, and since
quarks in nature are massive, it is worthwhile to study the extension of the GN model to
massive fermions. It turns out that with this additional complication, it is still possible to
apply the same methods as in the chiral limit to get an analytical solution of the ground state
of the theory. The baryons and the behavior of dense baryonic matter of the massive 1+1
dimensional GN model are the subject of this chapter (published in [25] and [33]).

The starting point of the discussion is the HF equation (2.3). We choose a representation of
the γ-matrices where γ1 is diagonal,

γ0 = −σ1, γ1 = iσ3, γ5 = γ0γ1 = −σ2. (3.1)

In this representation, the equations for the upper and lower components φ± of the Dirac
spinor ψ can be decoupled by squaring the Hamiltonian,

(−∂2
x ∓ σ′ + σ2

)
φ± = E2φ±. (3.2)

Eq. (3.2) states that the Schrödinger-type Hamiltonians with potentials U± = σ2 ± σ′ have
the same spectrum, a textbook example of supersymmetric quantum mechanics with super-
potential σ [34].

The Schrödinger potentials of static localized solutions of the GN2 model have to be reflec-
tionless. A proof of this fact is given in Refs. [5] and [35]. In these references the energy
density is written in terms of “scattering data”, i.e., the reflection amplitude and parameters
specifying the bound states. The minimization of the energy as a function of the scattering
data then leads to reflectionless Schrödinger potentials. This fact will guide our choice of the
ansatz for the mean field potential σ(x).

3.1. Baryons

In the search for bound states in the massive GN model, Feinberg and Zee [23] have performed
a variational calculation, based on the scalar potential of the DHN kink-antikink baryon.
They compute the energy of the baryon and discuss the limiting cases of small and large bare
quark masses. They conclude that their ansatz does not satisfy the self-consistency condition.
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3. Model with discrete chiral symmetry

Claims made in this paper about the non-existence of static bags in the massive GN model
have later been retracted by the authors [36]. In this section, we will revise the result of
Ref. [23] by proving that the ansatz for the baryon potential is a self-consistent solution to
the HF equation.

Our trial scalar potential for baryons is the same as in the m0 = 0 case [22],

σ(x) = m [1 + y (tanh ξ− − tanh ξ+)] (3.3)

with
ξ± = ymx± 1

2
arctanh y,

where m is the physical fermion mass in the vacuum and y ∈ [0, 1] the only variational
parameter. The mean field leads to the Schrödinger potentials in Eq. (3.2)

σ2 ± σ′ = m2

[
1− 2y2

cosh2 ξ±

]
, (3.4)

which differ only by a translation in space (they are “self-isospectral” in the terminology of
supersymmetric quantum mechanics). Since these are the unique reflectionless potentials
with a single bound state, the ansatz (3.3) is a good candidate for the self-consistent single
baryon potential. As compared to the massless case we will get a different relation between
the variational parameter y and the occupation fraction ν = n/N of the valence state.

We first evaluate the baryon mass which is the ground state energy (2.9) of the baryon
configuration minus the vacuum energy. In order to calculate the difference between the two
spectra, the system is enclosed in a box with periodic boundary conditions. The divergent
sum over the energy differences is regulated with a momentum cutoff Λ. This calculation is
identical to the massless case from where we take over the result for the mass contribution
from the continuum states (see Eqs. (3.42) and (3.44) in [22])

∆Econt =
2Nym
π

+ 2Nym
∫ Λ/2

−Λ/2

dk
2π

1√
k2 +m2

+
2Nm
π

√
1− y2 arctan

√
1− y2

y

=
2Nym
π

[
1 + ln

Λ
m

+

√
1− y2

y
arctan

√
1− y2

y

]
,

(3.5)

and the discrete states
∆Ediscr = −N(1− ν)m

√
1− y2. (3.6)

The only difference to the chiral limit stems from the double counting correction Eq. (2.10)

∆Edcc =
∫

dx
(σ −m0)2 − (m−m0)2

2g2
.

Using the gap equation (2.17), this becomes

∆Edcc =
N

2π
ln

Λ
m

∫
dx (σ2 −m2) +

N

2π
γ

∫
dx (σ −m)2.

Carrying out the integrations then yields

∆Edcc = −2Nym
π

ln
Λ
m
− 2Nmγ

π
(y − arctanh y). (3.7)
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3. Model with discrete chiral symmetry

Collecting the results (3.5), (3.6) and (3.7), the logarithmically divergent terms cancel and
we get the baryon mass for our variational ansatz

MB

Nm
=

2y
π

+
2
π

√
1− y2 arctan

√
1− y2

y
− (1− ν)

√
1− y2 − 2γ

π
(y − arctanh y). (3.8)

We now choose ν (i.e., the fermion number Nν) and vary MB with respect to y

∂MB

∂y
= 0,

or (discarding the trivial solution y = 0)

√
1− y2

[
1
π

arctan

√
1− y2

y
− 1− ν

2

]
=
γy

π
. (3.9)

Introducing the angle θ via y = sin θ (0 ≤ θ ≤ π/2), we obtain

πν

2
= θ + γ tan θ. (3.10)

If we eliminate ν from Eq. (3.8) with the help of Eq. (3.10), the baryon mass at the minimum
finally becomes

MB

N
=

2m
π

sin θ +
2mγ
π

arctanh(sin θ). (3.11)

The last two equations agree with Ref. [36].

Now consider the self-consistency condition (2.4) for the condensate and scalar potential

− (σ −m0)
Ng2

=
occ∑

ψ̄ψ. (3.12)

The r.h.s. of Eq. (3.12) gets contributions from the discrete states

occ∑

discr

ψ̄ψ = (1− ν)
m

2

√
1− y2 (tanh ξ− − tanh ξ+)

= (1− ν)

√
1− y2

2y
(σ −m)

(3.13)

and from the negative energy continuum,

occ∑
cont

ψ̄ψ=−σ
∫ Λ/2

−Λ/2

dk
2π

1
E(k)

−m3y(1− y2)(tanh ξ− − tanh ξ+)
∫

dk
2π

1
E(k)(k2 +m2y2)

= −σ
π

ln
Λ
m
− (σ −m)

π

√
1− y2

y
arctan

√
1− y2

y
,

(3.14)

where we have again taken over results from Ref. [22]. The l.h.s. of Eq. (3.12) can be rewritten
with the help of the gap equation (2.17),

− (σ −m0)
Ng2

= −σ
π

ln
Λ
m
− σ −m

π
γ. (3.15)

17



3. Model with discrete chiral symmetry

Combining Eqs. (3.13), (3.14) and (3.15), the self-consistency condition assumes the form

1− ν

2

√
1− y2

y
− 1
π

√
1− y2

y
arctan

√
1− y2

y
+
γ

π
= 0

which coincides with the variational equation (3.9). Therefore the variational potential turns
out to be self-consistent and hence provides us with the exact baryon of the massive GN
model in the large N limit. Although our variational calculation agrees with Ref. [36], we
have come to a different conclusion concerning the self-consistency of this ansatz.

3.2. Dense matter

Due to the existence of baryons as localized bound states of fermions, we expect the ground
state of the massive GN2 model at finite density to break translational symmetry. In the mass-
less limit γ = 0, a self-consistent solution of the HF equation consisting of a one-dimensional
array of baryons, also referred to as baryon “crystal”, was found analytically in Ref. [8]. In
this section we will show that this analysis can be generalized to the massive case with an
ansatz for the scalar potential taken from condensed matter physics literature. We will pro-
ceed as follows. After the periodic ansatz for the mean field is introduced, the ground state
energy of such a configuration will be calculated with the HF method of Section 2.2. The self-
consistency conditions (2.7) for this ansatz are derived in Subsection 3.2.3. Then it remains
to prove that the self-consistent baryon crystal is energetically favored over the HF solution
with translationally invariant mean field, summarized in Appendix B. This is done in the
limit of low and high density in Section 3.2.4. The stability of the baryon crystal is shown
numerically for all densities in Section 3.2.5.

3.2.1. Physical origin of the mean field ansatz

Apart from its use as a toy model in high energy physics, the GN model can serve to describe a
variety of quasi-one-dimensional systems in condensed matter physics (see [37] for a review and
further references). In particular, the massive GN2 model describes electrons in a conducting
polymer (cis-polyacetylene) in the vicinity of a half-filled band. Since the interpretation of
the results in condensed matter physics is very different from high energy physics, we merely
borrow the ansatz for the mean field and verify its self-consistency.

In order to find the right choice for the mean field σ in the HF equation (2.3), we follow
references [38, 39] and extend the Schrödinger potential (3.4) to an array of infinitely many,
equidistant potential wells. The lattice sum can be performed (see Eq. (6) in [38]) yielding a
potential of the Lamé type

∞∑
n=−∞

1
cosh2(x− nd)

=
(

2κK′

π

)2 [
E′

κ2K′ − sn2

(
2K′

π
x

)]
. (3.16)

It involves the complete elliptic integrals of first and second kind E and K, the elliptic
integrals E′, K′ with complementary elliptic modulus κ′ =

√
1− κ2 and the Jacobi elliptic
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3. Model with discrete chiral symmetry

function sn(x, κ) where the argument κ will be suppressed in the following (see Appendix D).
Comparing the spatial period of both sides of Eq. (3.16), we can relate d and κ via

d = π
K
K′ .

How does the fact that the single potential wells (3.4) are reflectionless manifest itself in the
periodic extension (3.16)? This has been discussed in mathematical physics [40] and con-
densed matter physics [41] some time ago: The periodic potential has a single gap (or, in
general, a finite number of gaps), in contrast to generic periodic potentials with infinitely
many gaps. Thus reflectionless potentials generalize to “finite band potentials” as one pro-
ceeds from a single well to a periodic array. In the same way as the sech2-potential is the
unique reflectionless potential with one bound state, the sn2-potential is the unique single
gap potential.

Guided by these considerations, let us try to find the most general superpotential of the Lamé
potential (plus an additive constant). After a scale transformation

σ(x) = Aσ̃(ξ) ξ = Ax,

the Schrödinger potentials U± = σ2±σ′ should assume the form of the Lamé potential (3.16)
plus constant. Allowing for a translation in space between U±(x) = A2Ũ±(ξ), we have to
solve the equations (ξ+ = ξ + b)

Ũ+ = σ̃2 + σ̃′ = 2κ2sn2ξ+ + η

Ũ− = σ̃2 − σ̃′ = 2κ2sn2ξ + η,
(3.17)

for σ̃ or, equivalently,

σ̃2 = κ2[sn2(ξ+) + sn2ξ] + η

σ̃′ = κ2[sn2(ξ+)− sn2ξ].
(3.18)

Differentiating the upper equation and dividing the result by the lower equation yields an
ansatz for the scalar potential depending on the three real parameters A, κ, b

σ̃(ξ) =
sn ξ+cn ξ+dn ξ+ + sn ξ cn ξ dn ξ

sn2ξ+ − sn2ξ
. (3.19)

By specializing Eq. (3.18) to ξ = 0 we can determine the constant η

η =
1

sn2b
− 1− κ2.

The scale factor A is not constrained by these considerations. Thus we conclude that the
ansatz (3.19) is the most general Dirac potential leading to a single gap Lamé potential (plus
constant) in the corresponding second order equations. This makes it a good starting point
for finding periodic, static solutions.

The ansatz (3.19) can be cast into the simpler form

σ̃(ξ) = κ2sn b sn ξ sn(ξ + b) +
cn bdn b

sn b
, (3.20)
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3. Model with discrete chiral symmetry

from which the symmetries can easily be read off. Apart from the translational symmetry in
ξ and b with period 2K

σ̃(ξ, b) = σ̃(ξ + 2K, b) = σ̃(ξ, b+ 2K),

it is antisymmetric under simultaneous reflections of ξ and b

σ̃(ξ, b) = σ̃(−b− ξ, b) = −σ̃(−ξ,−b).

From the Dirac HF equation (2.3) we see that σ(x) and −σ(−x) are equivalent. Therefore
we find that the space of different configurations is parametrized by

A ≥ 0, 0 ≤ b ≤ K, 0 ≤ κ ≤ 1. (3.21)

In the limit κ→ 0 the mean field ansatz becomes constant, since

lim
κ→0

σ̃(ξ) = cot b,

Hence, the ansatz for σ is capable of parameterizing both a periodic crystal and a spatially
homogeneous state.

3.2.2. Ground state energy

In the HF approach, the task is now to calculate the total energy of a mean field configuration
(cp. Eq. (2.9)). For the self-consistent solution this equals the ground state energy density,
written as

Egs = E1 +E2.

E1 is the sum (or rather integral) over single particle energies of all filled orbits (including
the negative energy states in the Dirac sea) and E2 the double counting correction. We first
find the density of state for our ansatz and evaluate E1.

When inserted into the Schrödinger type equation (3.2), our ansatz leads by construction to
the single gap Lamé equation

[−∂2
ξ + 2κ2sn2(ξ + (b∓ b)/2)

]
φ± = Eφ±. (3.22)

The Lamé eigenvalues E are related to the Dirac energies E through

E =
E2

A2
− η. (3.23)

Note that Eq. (3.22) is the same as in the chiral limit [8]. The differences lie in the relation
between Lamé and Dirac energies (3.23) and in the reconstruction of solutions of the original
first order HF equations (2.3), where the shape of the potential enters. The finite bare mass
also enters the self-consistency conditions (2.7), cf. Section 3.2.3.

As is well known from quasi-one-dimensional condensed matter systems, the physics behind
the appearance of periodic structures is the Peierls instability — the system lowers its energy
by generating dynamically an energy gap at the Fermi surface. This was already observed
in the chiral limit of the GN model where the state of lowest energy has a completely filled
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Figure 3.1.: The dispersion relation (3.18) for the Lamé potential for κ = 0.8 and b = 1.7. The
Bloch momentum p is projected onto the Brillouin zone ranging from −π/2K to
π/2K. The filled single particle states for antimatter with density ρ = A/2K are
marked as a dotted line.

(for matter) or empty (for antimatter) valence band. Assuming that the gap is located at the
Fermi surface, the scale factor A takes on the same value as in the chiral limit

A =
2pfK
π

,

with the Fermi momentum pf related to the spatially averaged baryon density via ρ = pf/π.
The two real parameters which determine σ(x) are the elliptic modulus κ and the shift b.

The solutions to the eigenvalue problem (3.22) are well known [42]. The eigenfunctions can
be expressed in terms of H, Θ, and Z, the Jacobi eta, theta, and zeta functions

φ+(ξ) = N H(ξ + α)
Θ(ξ)

e−Z(α)ξ, (3.24)

with a normalization factor N . To any Lamé-eigenvalue E there exist two complex conjugate
eigenfunctions parameterized by ±α. For ±α = K + iK′ . . . K one obtains the solutions of
the lower band κ2 ≤ E ≤ 1 whereas ±α = 0 . . . iK′ provides the upper band E ≥ 1 +κ2. The
eigenfunctions are presented in the form anti-periodic function times complex phase. This
gives them a definite Bloch momentum which is opposite for α and −α. The energy eigen-
value together with the Bloch momentum give a parametric representation of the dispersion
relation,

E = 1 + κ2cn2α, p = −iZ(α)± π

2K
, (3.25)

The offset ±π/(2K) to the momentum was added to give the periodic lowest energy solution
α = ±(K + iK′) zero Bloch momentum. The dispersion relation is illustrated in Fig. 3.1.
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From Eq. (3.25) we can calculate the density of states and determine its high momentum
asymptotics,

dp
dE =

|E − κ2 −E/K|
2
√

(E − κ2)(E − 1)(E − 1− κ2)
,

E = p2 + 2(1−E/K) +O(p−2).
(3.26)

With this we can now calculate the integral over single particle energies of all filled orbits

E1 = −2A2

∫ E>

E<

dE
2π

∣∣∣∣
dp
dE

∣∣∣∣
√
E + η, (3.27)

with the integration limits (Λ/2 is the UV cutoff)

E< = 1 + κ2, E> =
(

Λ
2A

)2

+ 2u,

where we introduce
u = 1− E

K
, χ =

dn b
sn b

for recurring expressions to ease the notation. We consider antimatter here, filling only the
negative energy states below the gap. This yields the same ground state energy as for matter,
albeit in a simpler way. The integration in Eq. (3.27) using Eq. (3.26) is more involved than
in the massless case, but can be done along similar lines as in Ref. [43]. The result is best
expressed in terms of incomplete elliptic integrals F,E,Π of the first, second and third kind
(see Appendix D) as follows,

2π
A2
E1 = −

√
(E> − κ2)(E> − 1− κ2)(E> + η)

(E> − 1)
+ χ(κ2 − 2u)F (p, q)

+ χE(p, q)− κ2

χ
(η + 2u)Π(p, n, q),

(3.28)

The arguments of the elliptic integrals are

n =
1

dn2b
, p = dn b

√
E> − 1− κ2

E> − 1
, q = κ′

1
dn b

. (3.29)

For the renormalization of the total energy we need the asymptotic behavior of E1 for large
E>. The first term in Eq. (3.28) yields an irrelevant quadratic divergence −Λ2/(8π) which can
be dropped, as well as a finite term. In the 2nd and 3rd terms, we can replace p by p̃ = dn b
in E(p, q) and F (p, q), all corrections being 1/E> suppressed. The last term in Eq. (3.28) is
more delicate, since Π(p, n, q) has a logarithmic singularity at p = p̃. Expanding

p ≈ dn b− κ2dn b
2E>

= p̃− ε

and using a standard identity [44] in the form

Π(p̃−ε, n, q) =
1
2

√
n

(n− 1)(n− q2)
ln

2(n− q2)(n− 1)√
n(n2 − q2)ε

+F (p̃, q)−Π
(
p̃,
q2

n
, q

)
+O(ε), (3.30)
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3. Model with discrete chiral symmetry

we finally arrive at

2π
A2
E1 = κ2 − 2u− η

2
+ χ

[
E(p̃, q) + (κ2 − 2u)F (p̃, q)

]

− (η + 2u)
[
ln

Λ
A
√

2 + η
+
κ2

χ

(
F (p̃, q)−Π

(
p̃, κ′2, q

))]
.

(3.31)

The logarithmic divergence of the sum over single particle energies (the lnΛ term in the 2nd
line) will be cured once we add the double counting correction E2, to which we now turn. For
finite bare quark mass m0 it is given by (cp. Eq. (2.10), ` = 2K is the spatial period in ξ),

E2 =
1

2Ng2

1
`

∫ `

0
dξ(Aσ̃(ξ)−m0)2.

We invoke the vacuum gap equation (2.14) to eliminate the bare coupling constant. We then
find

E2 =
A2〈σ̃2〉

2π

(
γ + ln

Λ
m

)
− Am〈σ̃〉γ

π
, (3.32)

with the spatial averages

〈σ̃2〉 = η + 2u 〈σ̃〉 = Z(α) +
cn bdn b

sn b
. (3.33)

Eqs. (3.31) and (3.32) are the main result of this section. Upon adding up E1 and E2 to get
the ground state energy density Egs, the logarithmically divergent terms are cancelled and a
finite result involving only physical parameters is obtained. It depends on the 4 parameters
κ, b, pf , γ. Out of these 4 parameters, pf and γ are determined by the baryon density and the
bare fermion mass, respectively, whereas κ and b are so far unspecified parameters of the trial
potential. They will be determined in the following section by demanding self-consistency.

3.2.3. Self-consistency conditions

In the present section we check the self-consistency of the ansatz scalar potential (3.19). This
ansatz contains two free parameters, κ and b. We proceed to show that the self-consistency
condition (2.4) is satisfied provided that κ and b take on definite values depending on the
density and the parameter γ. The main result of this section will be a pair of transcendental
equations for κ and b, Eqs. (3.41), which are equivalent to the self-consistency equation.

The self-consistency condition for the scalar potential, Eq. (2.4) can be written as (cp.
Eq. (3.12))

− σ

π
(γ + ln

Λ
m

) +
γm

π
=

occ.∑
α

ψ̄α(x)ψα(x). (3.34)

As for the single baryon, the task is to evaluate the scalar density ψ̄αψα for an arbitrary single
particle solution of the HF equation and perform the sum over all occupied states. With φ+

given in (3.24), φ− follows from the Dirac equation

φ− = − 1
E

(
∂

∂x
+ σ

)
φ+.
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3. Model with discrete chiral symmetry

Since φ− fulfills the same Lamé equation with a Schrödinger potential shifted by b (see
Eq. (3.17)), it differs from φ+(ξ+b) only by a complex phase. First, this enables us to impose
the normalization condition

1 = 〈ψ†ψ〉 = 〈|φ+|2〉+ 〈|φ−|2〉 = 2〈|φ+|2〉,
which fixes the normalization factor in (3.24)

|N |2 =
Kκκ′

πΘ2(α)|dn2α−E/K| .

Second, this leads to the scalar density of a single mode, expressing the ξ-dependence in terms
of σ̃(ξ) with

ψ̄ψ =
σ̃ω − (η + 1)(η + κ2)(η + 1 + κ2)/ω

E − κ2 −E/K
. (3.35)

For the present purpose it turns out to be convenient to decompose the potential in the
form (3.19)

σ̃ =
sn ξ+cn ξ+dn ξ+
sn2ξ+ − sn2ξ

+
sn ξ cn ξ dn ξ
sn2ξ+ − sn2ξ

= σ̃1 + σ̃2.

Eq. (3.35) is written as

ψ̄ψ =
σ̃(E − 1− κ2) + κ2(σ̃1sn2ξ + σ̃2sn2ξ+)

ω(E − κ2 −E/K)
.

Now the sum over occupied states in (3.34) is obtained by summing over the upper band of
negative energies as it was done for the HF energy in section 3.2.2

occ.∑
α

ψ̄αψα = 2A
∫ E>

E<

dE
2π

∣∣∣∣
dk
dE

∣∣∣∣ ψ̄ψ = − A

2π
[
I2σ̃ + κ2I1(σ̃1sn2ξ + σ̃2sn2ξ+)

]
, (3.36)

with the integrals

I1 =
2
χ
F (p, q), I2 =

2κ2

χ
(Π(p, n, q)− F (p, q)) . (3.37)

The arguments of the elliptic integrals are the same as above, see Eqs. (3.29). Using once
again the identity (3.30) to isolate the logarithmic singularity of Π(p, n, q) and taking the
asymptotics with respect to Λ allows us to replace

F (p, q) → F (p̃, q),

Π(p, n, q) → F (p̃, q)−Π
(
p̃, (κ′)2, q

)
+
χ

κ2
ln

Λ
A
√

2 + η
.

(3.38)

Upon inserting the results (3.36–3.38) into the self-consistency condition (3.34), the lnΛ term
drops out once again and we arrive at the finite equation

mγ = C1

[
σ̃ +

C2

C1

(
σ̃1sn2ξ + σ̃2sn2ξ+

)]
, (3.39)

with coefficients

C1

A
= ln

A
√

2 + η

m
+ γ +

κ2

χ
Π

(
p̃, (κ′)2, q

)
,

C2

A
= −κ

2

χ
F (p̃, q).
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3. Model with discrete chiral symmetry

At first glance, it seems unlikely that Eq. (3.39) can be solved, since a constant term and two
different functions of x appear. However, these functions are not linearly independent. Using
properties of elliptic functions (see Appendix D), one can verify the following identity,

σ̃ − κ2sn2b
(
σ̃1sn2ξ + σ̃2sn2ξ+

)
=

cn bdn b
sn b

. (3.40)

Comparing Eqs. (3.39) and (3.40), the self-consistency condition may be turned into the
following two x-independent conditions,

mγ

C1
=

cn bdn b
sn b

,
C2

C1
= −κ2sn2b.

For γ 6= 0, these equations can be cast into the somewhat simpler form

0 = A cn b F (p̃, q)−mγ sn2b,

mγ = A cn b
[
κ2 Π

(
p̃, (κ′)2, q

)
+ χ

(
γ + ln

A
√

2 + η

m

)]
.

(3.41)

They determine κ and b for given pf and γ.

After carefully identifying all the variables, the self-consistency equations (3.41) agree ex-
actly with Eqs. (5,6) in [45], confirming the 1:1 mapping from the theory of non-degenerate
conducting polymers to the massive GN model. If we can solve the pair of transcendental
equations (3.41), we have found a solution of the HF equations and hence a candidate for the
ground state of baryonic matter. Another solution of the HF equations is the translationally
invariant one discussed in detail in Ref. [46] and summarized in Appendix B. Which solution is
favored is then simply a question of the energy which can be computed from Eqs. (3.31,3.32).
The numerical results will be presented in Sec. 3.2.5.

3.2.4. Analytical results for special cases

This section is devoted to testing the general formalism in simple special cases where the
answer is known from other sources, i.e., the massless case and the low and high density
limits.

Chiral limit

As a first and most trivial test, let us check the above formalism in the chiral limit (γ = 0)
against previous results from Ref. [8]. Consider the self-consistency equations, Eqs. (3.41).
The first equation can be solved by b = K. Consequently,

p̃ = χ = κ′, q = 1, η = −κ2,

and the elliptic integrals are reduced to elementary functions,

F (κ′, 1) = artanhκ′,

Π(κ′, κ′2, 1) =
1

2κ2

(
κ′ ln

κ2

1 + κ′2
+ ln

1 + κ′

1− κ′

)
.
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3. Model with discrete chiral symmetry

The second equation of Eqs. (3.41) then yields simply

Aκ = m,

relating κ and pf . Likewise, the ground state energy Eqs. (3.31,3.32) simplifies tremendously
in the limit γ → 0,

E =
A2

4π

(
4
E
K
− 2 + κ2

)
− A2

2π

(
2
E
K
− 2 + κ2

)
ln
Aκ

m
.

Finally, in the limit b→ K the self-consistent potential simplifies to

σ̃(ξ) = κ2 sn ξ cn ξ
dn ξ

. (3.42)

All of these formulae agree with the known results for γ = 0 [8]. Comparing these equations
with the full calculation shows a significant increase in complexity due to the finite bare
fermion mass.

Low density limit and single baryon

A second obvious way of testing the formalism is the low density limit, where we expect to
recover the properties of single baryons in the massive GN model. We have to expand around
κ′ = 0. To leading order, we may neglect all power corrections in κ′ but must keep the
logarithmic singularity ∼ lnκ′ whenever it is present. In this way, we find

p̃ ≈ sech b, q ≈ 0,

and hence all incomplete elliptic integrals reduce to the same elementary function,
{
F (p̃, q), E(p̃, q),Π(p̃, (κ′)2, q)

} → arcsin p̃.

The self-consistency conditions (3.41) become

0 = 2pf p̃ arcsin p̃ ln
4
κ′
− πγ tanh2 b

πmγ = 2pf p̃ ln
4
κ′

{
arcsin p̃+

1
sinh b

[
γ + ln

(
2pf ln(4/κ′)
πm tanh b

)]}
.

These equations can be solved parametrically for b and κ′ as follows,

b = artanh y, κ′ = 4 exp
(
−πmy

2pf

)
.

The parameter y is related to γ through the self-consistency condition for the single baryon
(3.10) with completely filled valence level (ν = 1).

Using our full expression for the energies E1 and E2, Eqs. (3.31,3.32), the limit κ′ → 0 yields
the finite parts

E1 = −m
2

4π
+
mpf

π

(
2yγ
π

+
2y
π

)
,

E2 = −m
2γ

2π
+
mpf

π

(
2y
π

+
2γ
π

artanh y
)
.

(3.43)
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3. Model with discrete chiral symmetry

The logarithmically divergent pieces have been omitted, since they anyway cancel in the sum.
The total energy density can then be represented as

Egs = E1 +E2 = Evac + ρMB (3.44)

The vacuum energy density (pf = 0) agrees with Eq. (2.18), ρ = pf/π is the mean baryon
density and MB is the baryon mass Eq. (3.11). This is indeed the expected low density
behavior for widely spaced baryons and an important additional test of the formalism.

Finally, we check the shape of the scalar potential in the low density limit. Taking κ→ 1 in
Eq. (3.20), we find

lim
κ→1

σ̃(ξ) = coth b+ tanh ξ − tanh(ξ + b).

This can be matched with the single baryon profile (2.27) if we shift ξ by b/2 and identify

A = my, ξ = ymx, b = arctanh y.

In the two limits for the confinement parameter the baryon mass becomes

MB

m
≈ 2
π
− γ

π

(
1 + ln

γ

4

)
for γ → 0,

MB

m
≈ 1− π2

24γ2
+

π2

12γ3
for γ →∞.

(3.45)

This result should be compared to the critical chemical potential in the translationally in-
variant HF solution (Appendix B). In the limits γ → 0,∞, the baryon mass in Eq. (3.45) is
below the massive Fermi gas result in Eqs. (B.9,B.10). One can easily check numerically that
this is in fact true for arbitrary values of γ. This proves that the translationally invariant
solution is always unstable against formation of a kink-antikink crystal.

High density limit and perturbation theory

In the high density limit pf →∞, one would expect that all interaction effects can be treated
perturbatively. As is well known, band formation in a periodic potential requires almost
degenerate perturbation theory (ADPT). Here we closely follow a similar calculation carried
out by us in the context of the massless GN model [47]. There are two differences: In the
double-counting correction, we have to take into account the bare quark mass, and we allow
for σ0 6= 0 in addition to σ±1 6= 0 [σ` are the Fourier components of the periodic potential
σ(x)]. Thus our present ansatz for σ(x) is

σ(x) = σ0 + σ1ei2pf x + σ−1e−i2pf x (3.46)

The potential has a spatial period a equal to the inter-baryon distance, i.e., the inverse
density

a =
π

pf
.

This is the reason why the lowest non-vanishing momentum which appears in the Fourier
expansion (3.46) is 2π/a = 2pf . Without loss of generality, we may assume that σ0 and
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3. Model with discrete chiral symmetry

σ1 = σ−1 are real (a phase in σ1 corresponds to a translation). The sum over single particle
energies (for the antimatter case) in 2nd order perturbation theory (PT) is given by

E1 = 2
∫ Λ/2

pf

dk
2π

[
−k − σ2

0

2k
− σ2

1

2(k + pf )
−

√
(k − pf )2 + σ2

1 + (k − pf )
]

= −Λ2

8π
+
p2

f

2π
− σ2

1

4π
− σ2

0 + 2σ2
1

2π
ln

Λ
2pf

+
σ2

1

2π
ln
σ1

pf
.

(3.47)

We had to invoke ADPT only for the term which would blow up in naive 2nd order PT,

− σ2
1

2(k − pf )
→ −

√
(k − pf )2 + σ2

1 + (k − pf )

This “recipe” has been derived in Eq. (2.11) of Ref. [47] by simply comparing 2nd order
degenerate and non-degenerate perturbation theory. In Ref. [47], the states which are almost
degenerate in a periodic potential are explained in more detail, following the standard weak
binding approximation from solid state physics (see e.g. [48]). The double-counting correction
for the potential (3.46) becomes

E2 =
1
2π

(σ2
0 + 2σ2

1)(γ + ln
Λ
m

)− mγ

π
σ0. (3.48)

Adding Eqs. (3.47) and (3.48) then yields the approximate energy density

2π Egs = −Λ2

4
+ p2

f + σ2
0 ln

2pf

m
+ σ2

1

(
ln

4pfσ1

m2
− 1

2

)
+ γ

(
σ2

0 + 2σ2
1 − 2mσ0

)
.

Minimizing with respect to S0 and S1, we find

σ0

[
ln

2pf

m
+ γ

]
−mγ = 0, σ1

[
2γ + ln

4pfσ1

m

]
= 0.

The first equation has the unique solution

σ0 =
mγ

γ + ln(2pf/m)

in agreement with the leading term in Eq. (B.3) of the appendix. The 2nd equation has
two solutions: σ1 = 0, corresponding to unbroken translational invariance as discussed in
Appendix B, and

σ1 =
m2

4pf
e−2γ (3.49)

for the soliton crystal. Comparing the energy densities of these two solutions,

Egs(σ1 6= 0)− Egs(σ1 = 0) = − m4

64πp2
f

e−4γ (3.50)

we learn that the crystal is favored, but the energy difference decreases with increasing γ.
Eqs. (3.49) and (3.50) agree with our previous results if, in addition to the high density limit,
we take the chiral limit γ → 0. Notice that if we write the parameter γ in terms of the physical
fermion mass with and without a bare mass m0 like in Eq. (2.16), the energy difference

Egs(σ1 6= 0)− Egs(σ1 = 0) =
m[0]4

64πp2
f

becomes independent of the bare mass.
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Figure 3.2.: Difference in energy density between crystal and translationally invariant Fermi
gas. From top to bottom: γ = 2.3, 0.75, 0.3, 0.1, 0.01. Dashed curves: asymptotic
behavior according to Eqs. (3.44) and (3.50), for γ = 0.01.

3.2.5. Numerical results

Before computing any observable, we have to solve the self-consistency equations (3.41).
Choosing the mean density and the bare fermion mass or, equivalently pf and γ, these two
transcendental equations yield the two unknown parameters κ (elliptic modulus) and b (shift
parameter) of the trial potential defined in Eqs. (3.13). Eqs. (3.41) always have two different
solutions, a translationally invariant one (κ = 1) and a spatially modulated one (0 < κ < 1).
In the case of the translationally invariant solution, there is an additional complication already
familiar from the massless limit: At low densities, a mixed phase appears, characteristic of a
first order phase transition. Therefore, one cannot simply take the HF energy at face value,
but has to introduce a second variational parameter describing the amount of space filled
with “droplets” of baryonic matter. Alternatively, one can work with a chemical potential
and use the grand canonical potential at T = 0 as in Ref. [46], leading to the same results.
More details are given in Appendix B.

The energy density of the crystal phase can be computed by inserting the self-consistent
values for κ and b into Eqs. (3.31,3.32). We then find that the crystal is energetically favored
at all densities and all bare quark masses. In the low and high density limits, this can be
shown analytically, see Eqs. (3.45,B.10) for the limit pf → 0 and Eq. (3.50) for pf → ∞. In
between, we have to compute the energy difference numerically (where “numerically” in this
context simply means using floating point commands in Maple, thus getting any desired
accuracy). Some illustrative results are shown in Fig. 3.2 for five different values of γ. Here
and in the rest of this chapter we chose units in which the vacuum fermion mass m = 1.
Together with the lowest curve (corresponding to γ = 0.01), we have also plotted two dashed
curves corresponding to the (analytical) asymptotic behavior at small and large densities.
We observe that the agreement of the full calculation with the asymptotic curves is excellent,
with a narrow crossover region where the curve changes rather abruptly from ∼ pf to ∼ p−2

f

behavior. On the basis of such calculations, we conclude that the lattice solution is stable at
all densities and quark masses.
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Figure 3.3.: Self-consistent scalar potential σ(x) versus x for pf = 0.3 (left) and pf = 2.5
(right). From bottom to top: γ = 0, 0.01, 0.1, 0.3, 0.75, 2.3. Note the different
scale on the x-axis.

Having established the stability of the crystal solution, let us now illustrate how a finite
bare quark mass modifies the self-consistent scalar potential. This is exhibited in Fig. 3.3 at
low and high density. The deepest curves always correspond to γ = 0, where the potential
oscillates symmetrically around zero. This is actually a remnant of the original discrete chiral
symmetry of the model. Translational invariance and the γ5 transformation both break
down, leaving an unbroken discrete symmetry (translation by half a period, combined with
a γ5 transformation). Since the massive GN model does not have discrete chiral symmetry
in the first place, one would not expect the same behavior here. Indeed, the potentials now
oscillate around a finite value, with a less symmetric shape. In the massive case, continuous
translational invariance is broken down to a residual discrete translational invariance. As
we turn on the symmetry violation parameter γ, the potential oscillates with decreasing
amplitude around a value close to the mass M which the fermions would acquire in the
translationally invariant solution, eventually leaving only a very weak modulation of a large
scalar potential in the heavy fermion limit. It is surprising that such a variety of potential
shapes in the Dirac equation can all be reduced to the standard single gap Lamé equation.

The last result which we should like to show is how the density varies with the chemical
potential. The chemical potential at T = 0 can be obtained by differentiating the energy
density with respect to the mean fermion density,

µ =
∂Egs

∂ρ
, ρ =

pf

π
.

If we assume unbroken translational invariance (Fig. 3.4 left), we find discontinuities in these
curves, confirming the result of Ref. [46] about a first order phase transition. Repeating the
same calculation for the crystal solution (which is the stable one), all the curves become
continuous, signaling a 2nd order phase transition (Fig. 3.4 right). The critical chemical
potential in this latter case coincides with the baryon mass, as expected on general grounds.
By contrast, the first order transition in the translationally invariant solution happens at a
chemical potential which has at best the meaning of an approximate baryon mass in a kind
of droplet model, cf. Appendix B.

This completes the analytic description of the ground state of cold, dense matter in the massive
GN2 model. As compared to previous work on the massless case, the calculations became
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Figure 3.4.: Baryon density versus chemical potential for translationally invariant solution
(left) and for the crystal solution (right), shown for (lines from left to right)
γ = 0.01, 0.1, 0.3, 0.75, 2.3. The translationally invariant solution undergoes a
first order phase transition with a sudden drop in µ indicated by dotted lines,
whereas for the crystal solution a second order phase transition at µc = MB is
seen for all values of γ.

significantly more involved once the parameter γ was turned on. However, the problem of
finding the single-particle spectrum of the HF Hamiltonian could still be reduced to the
single gap Lamé equation, which made an analytical treatment possible. The main result of
this chapter is the existence of a crystal with a periodic scalar condensate, favored over the
translationally invariant solution for all baryon densities. The system undergoes a second
order phase transition when the chemical potential is equal to the baryon mass, a theoretical
constraint which is violated by the translationally invariant solution.
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The 1+1 dimensional four-fermion interaction model with continuous chiral symmetry is the
NJL2 model, defined by the Lagrangian (2.2). In the chiral limit, the symmetry is broken
spontaneously as the mean fields σ and π acquire a constant value somewhere on the circle of
degenerate ground states σ2 + π2 = m2. The bound states are obtained as topologically non-
trivial excitations of the corresponding Goldstone boson [49]. This massless field is described
by the chiral angle χ defined in Eq. (2.21). The baryon number induced by χ turns out to
be equal to the winding number Btop in Eq. (2.20), which measures the number of times the
mean field wraps around the circle of ground states [12]. This can be seen by choosing a mean
field configuration restricted to σ2 + π2 = m2 and with a chiral angle χ(x) = cx. The HF
Hamiltonian (2.5) can be written as

H = −iγ5∂x +meiγ5χ(x)γ0e−iγ5χ(x).

By applying a chiral rotation it can be reduced to the Hamiltonian of free massive fermions

e−iγ5χ(x)Heiγ5χ(x) = −iγ5∂x +mγ0 + µ,

with a chemical potential c = µ. The baryon number in a box of finite length L is then equal
to the winding number

Btop =
1
π

[χ(+L/2)− χ(−L/2)] =
µ

π
L = ρL.

Since the mean field configuration is obtained by a chiral rotation of the ground state, it is
a self-consistent solution of the HF equations. Due to its helical shape it has been called the
“chiral spiral” in Ref. [12]. This is illustrated by Fig. 4.1. For the single baryon µ = π/L so
that the spiral is stretched over whole space. Thus, the mass of the baryon vanishes in the
chiral limit.

In the massive NJL2 model, like in massive GN2, the new parameter γ appears after renor-
malization (see Section 2.3). In Ref. [24] it is shown, how it enters the mass of the “pion”
in NJL2. Since this latter quantity has a direct physical interpretation, we will express the
dependence on the amount of chiral symmetry breaking in terms of the pion mass mπ. It is
related to γ by

γ =
πm0

Ng2m
=

1√
η − 1

arctan
1√
η − 1

, η =
4m2

m2
π

. (4.1)

In the massive model, self-consistent solutions with finite baryon number can no longer be
obtained by chiral rotation of the vacuum, since the mean field is not restricted to the chiral
circle. Moreover, one cannot apply the methods of supersymmetric quantum mechanics [34]
like in GN2, because the HF equations for the components of the Dirac spinor cannot be
decoupled. Consequently, one has to consider other methods for a description of baryons
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Figure 4.1.: Illustration of the “chiral spiral” for µ = 1 (in units of the vacuum fermion
mass m). The circle of degenerate ground states is indicated by the thin line.

and dense baryonic matter in NJL2. In the vicinity of the chiral limit we identified the
derivative expansion, introduced in Section 2.5 as one possibility to approximate the ground
state energy density and the baryon number. In this chapter, we will apply this technique to
describe baryons (Section 4.1) and dense matter (Section 4.2).

4.1. Baryons using the derivative expansion

In the search for baryons in both the ’t Hooft model (large N QCD2) and the NJL2 model,
Salcedo et al. [49] compared a lattice HF calculation with a variational ansatz in which the
chiral phase of the fermions serves as effective low energy field. In the limit of small but finite
bare quark masses, the authors find a sine-Gordon theory, the two-dimensional analog of the
Skyrme model. In this approximation, the relevant length scale over which the minimum
potential varies is given by 1/mπ, the inverse pion mass. This suggests that the theoretical
instrument of choice should be the derivative expansion, at least in the vicinity of the chiral
limit. We will see that the sine-Gordon equation is nothing but the leading order term of such
a derivative expansion. Moreover, the calculation of higher order corrections can be done in
closed analytical form, so that we will get a quantitative understanding of the baryons in
a reasonable range of bare mass parameters, although not for arbitrary mass. This is an
example where one can study in all detail how a Skyrme-type description of baryons emerges
from an underlying fermionic theory.

We now specialize the general setup of the derivative expansion (see Section 2.5) to the NJL2

model. The HF Hamiltonian (2.5) is cast into the form

H = −iγ5∂x +M(x)eiγ5χ(x)γ0e−iγ5χ(x) (σ = M cos 2χ, π = −M sin 2χ). (4.2)

In the chiral limit, we have M(x) = m. In this section, the γ-matrices will be taken in the
representation

γ0 = σ1, γ1 = −iσ2, γ5 = σ3.
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4. Model with continuous chiral symmetry

Next we identify the operators K and I from Eq. (2.26)

H = K + I =
( −i∂x 0

0 i∂x

)
+

(
0 φ
φ∗ 0

)
with φ = Me2iχ. (4.3)

Note that compared to the Hamiltonian of GN2, the real field σ is replaced by the complex
field φ. We want to expand around the vacuum case where χ = 0 and M = m. A natural
way of decomposing H2 into H2

0 and V is

H2
0 = −∂2

x +m2 V =
(

M2 −m2 (2Mχ′ − iM ′)e2iχ

(2Mχ′ + iM ′)e−2iχ M2 −m2

)
. (4.4)

For the calculation of the energy (2.25), only the odd part of the resolvent contributes. In
the expansion of the resolvent in powers of V (2.27), the terms of order V 0 and V 1 contain
divergences, whereas all higher order terms are finite. We regularize by evaluating the trace in
momentum space, summing over states with |p| < Λ/2 only. In our renormalization scheme,
the non-trivial divergent part will be cancelled by the double counting correction term (2.10)
which now reads

Edcc =
∫

dx
M2 − 2m0M cos 2χ+m2

0

2Ng2
. (4.5)

The term of order V 0 just leads to the vacuum energy. The resolvent in this order is given
by

Tr′ zG =
∫

dx
∫ Λ/2

−Λ/2

dp
2π

2z
p2 +m2 − z2

,

denoting the trace with cutoff by Tr′. The integral over the spectral density (2.22) and the
vacuum part of the double counting correction (4.5) give

E(0) +Edcc(M = m,χ = 0) = −
∫

dx

[∫ Λ/2

−Λ/2

dp
2π

√
p2 +m2 +

(m−m0)2

2Ng2

]
.

With the gap equation (2.14) and dropping the trivial divergence −Λ2/8π, this yields the
renormalized vacuum energy from Eq. (2.18). This can be expressed in terms of the pion
mass defined in Eq. (4.1). Using the function

F (y) =
4

y
√

4− y2
arctan

y√
4− y2

= 1 +
1
6
y2 +

1
30
y4 +

1
140

y6 + . . . ,

Eq. (2.18) becomes

Eren
(0) = −m

2

4π
− m2

π

8π
F (mπ/m).

This already shows that an expansion for small quark masses should be thought of as an
expansion in the ratio of pion mass to (dynamical) quark mass in the NJL2 model. The bare
quark mass m0 goes to 0 in the limit Λ →∞ and cannot appear in any physical quantity.

For the term of order V 1 in the energy, we have to compute the integral over the spectral
density plus the remaining part of the double counting correction (4.5). Since we expand
around M = m, we set M = m+ λ(x), and get

E(1) = − 1
π

∫ 0

−∞
dE E Im Tr′ zGV G+

∫
dx

M2 − 2m0M cos 2χ+m2
0 − (m−m0)2

2Ng2
.
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4. Model with continuous chiral symmetry

The integrations over E and p can easily be carried out. Owing to the gap equation, all
divergences cancel and the unphysical quantities (Ng2,m0,Λ) can again be eliminated in
favor of mπ and m with the result

E(1) =
m2

π

4π
F (mπ/m)

∫
dx

[(
1 +

λ

m

)
(1− cos 2χ) +

λ2

2m2

]
.

All higher order terms in the expansion (2.27) are free of UV divergences. The traces and
integrals are calculated with computer algebra (we used Maple). The result for the energy
density coming from these higher order terms is a polynomial in λ, χ and their derivatives.
Before we give the result for the energy, we check whether the topological form of the baryon
number prevails in the derivative expansion.

The leading order contribution in the derivative expansion of the baryon number (2.24) comes
from the TrIGV G term in Eq. (2.27) and can easily be shown to be equal to the winding
number Btop in Eq. (2.22). We have computed the next three orders in the derivative expan-
sion, using Maple. We found that the result does not get any correction whatsoever and
therefore presumably holds to all orders. Although many terms are produced in the integrand
(the baryon density) by our algorithm, they can be nicely combined into total derivatives of
functions which vanish at infinity and therefore do not affect the lowest order topological
result.

On the basis of the effective sine-Gordon theory [49] for the NJL2 model, the mass of the
baryon with fermion number N is expected to approach 2mπ/π for mπ → 0. Our goal is
to compute corrections to this result up to order m12

π /m
12. These can be used to analyze

the convergence behavior of the series. The higher order terms require a substantial number
of terms in the derivative expansion and correspondingly involved algebraic expressions. To
simplify the notation, let us set m = 1 from now on. The result for the derivative expansion
of the energy density keeping terms relevant up to order m6

π can be written in the compact
form

2πE = −m
2
π

2
F (mπ)

[
(1 + λ) (cos 2χ− 1)− 1

2
λ2

]
+ (χ′)2 − 1

6
(χ′′)2 +

1
30

(χ′′′)2

− 1
140

(χIV )2 − 1
45

(χ′′)4 + λ2 +
1
12

(λ′)2 − 1
120

(λ′′)2 +
1
3
λ3 − 1

6
λ(λ′)2

− 1
12
λ4 +

1
3
λ(χ′′)2 +

1
15
λ(χ′′′)2 +

1
5
λχ′′χIV − 1

2
λ2(χ′′)2.

(4.6)

We have subtracted the vacuum contribution and simplified the result as much as possible with
the help of partial integrations (only the energy

∫
dx E is uniquely defined in this approach).

The terms relevant up to order m12
π are also calculated by computer algebra and are not

shown here. To appreciate the complexity of expression (4.6), one should compare it with the
leading order terms only,

2πE = (χ′)2 − m2
π

2
(cos 2χ− 1),

which reproduce exactly the sine-Gordon theory and represent the state of the art prior to
this work.

Before we minimize the energy, let us illustrate the result in Eq. (4.6) to give a more intuitive
picture. We choose a constant mean field and calculate the energy density. The result is
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Figure 4.2.: Plot of the energy density in Eq. (4.6) for χ′ = λ′ = 0 in the chiral limit (left)
and with bare fermion mass (right). The “Mexican hat” shaped potential is tilted
as the chiral symmetry is broken explicitly.

shown in Fig. 4.2. In the chiral limit, the mean field can wind around the circle of minima.
The single baryon is stretched over whole space, so that the spatial gradient vanishes and the
baryon becomes massless. This is different for explicitly broken chiral symmetry. In the right
plot one can see how the potential is tilted as the pion mass mπ is turned on. The mean
field of the single baryon will now minimize the size of the region where the potential is large,
while keeping the spatial gradient small due to the derivative terms in (4.6). The interplay
between these effects will lead to the shape of the mean field in the following calculation.

We vary the energy with respect to χ and λ. In order to solve the resulting differential
equations, we expand F (mπ) and assume the following Taylor series for χ and λ,

χ ≈
6∑

n=0

m2n
π χn, λ ≈

6∑

n=1

m2n
π λn (4.7)

The coefficients χn and λn in turn are taken to depend only on ξ = mπx, so that each
derivative with respect to x increases the power of mπ by one. All of these assumptions
can be justified a posteriori by showing that they are the simplest ones which lead to a
consistent approximate solution of the differential equations. This procedure yields a set of
inhomogeneous differential equations for χn and algebraic equations for λn. Up to next to
leading order, we get (where now ′ = d/dξ)

χ′′0 =
1
2

sin 2χ0 (4.8a)

λ1 =
1
4

(cos 2χ0 − 1) (4.8b)

χ′′1 − χ1 cos 2χ0 =
1
2

(
λ1 +

1
6

)
sin 2χ0 − 1

6
χIV

0 . (4.8c)

The higher order equations are of the same type: The λn are given algebraically in terms
of coefficients of lower order, whereas the χn are determined by a second order differential
equation with the homogeneous part χ′′n−χn cos 2χ0. Up to order m6

π, the equations are given
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Figure 4.3.: Result for χ and λ in the derivative expansion up to order m12
π with scaled x-

dependence ξ = mπx and mπ = 0.5 in units where m = 1. The dotted line in the
topmost plot shows the sine-Gordon kink χ0, which is the leading order result.

in Appendix E. They can be solved successively in orders of mπ. Our analytical results for
baryon number 1 are (sech ξ = 1/ cosh ξ) in next to leading order

χ0 = 2arctan eξ (4.9a)

λ1 = −1
2
sech2ξ (4.9b)

χ1 =
1
8

sinh ξ sech2ξ. (4.9c)

The higher order coefficients are calculated with Maple. The result can be found in Ap-
pendix E. In the course of this calculation, we had to decide what to do with the homogeneous
solution of the differential equations for χn. Physically, they reflect the fact that there is a
flat direction in function space due to the breaking of translational invariance by the baryon.
We have made the choice that χ is odd under ξ → −ξ, a requirement which fixes the position
of the baryon in space and leads to a unique solution of the differential equations.

We see that the leading order result (keeping only χ0) agrees with the sine-Gordon theory,
whereas the higher order corrections yield systematic corrections to it. Inserting Eqs. (4.9)
into Eqs. (4.7), the scalar and pseudoscalar potentials can be written as a power series in m2

π,
i.e., the ratio of pion mass to physical quark mass (remember that we have chosen units such
that m = 1), with smooth coefficient functions depending only on mπx. The result is plotted
in Fig. 4.3 for mπ = 0.5m. As expected from the intuitive picture in Fig. 4.2, the spatial
region, where χ 6= 0, π and λ 6= 0 becomes smaller for increasing pion mass.

Inserting the results (4.9) into the expression for the energy density (4.6) and integrating over
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space, we finally get the following chiral expansion for the baryon mass in the NJL2 model,

MB

N
=

2mπ

π

[
1− m2

π

36
− m4

π

300
− m6

π

588
+

12437 m8
π

9525600

−8146151 m10
π

2561328000
+

287583896861 m12
π

28049615193600
+ O(m14

π )
]
.

(4.10)

The leading order result 2mπ/π agrees with the sine-Gordon theory. The result up to order
m6

π was published in [25].

The higher order corrections in Eq. (4.10) have been calculated in order to analyze the con-
vergence behavior of the series. The accuracy of the derivative expansion is indicated by the
highest order. For mπ ' 0.56 the 13th order term is larger than the term ∼ m11

π , i.e., the
expansion is only reliable up to 11th order. For mπ ' 0.64 the m9

π term is an indicator of the
accuracy of the approximation. In Fig. 4.4 the correction to the sine-Gordon result is plotted
versus mπ. The lower plot shows the absolute value of the term which sets the accuracy. At
small values for the pion mass, the precision of the result can be increased by including higher
order terms. At larger values, higher orders do not improve the result. This shows that the
chiral expansion (4.10) has the convergence properties of an asymptotic series.

4.2. Dense matter

In leading order of the expansion in mπ/m, the chiral angle χ is described by the sine-Gordon
equation (4.8a). For the single baryon we chose the kink solution (4.9a), which has winding
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4. Model with continuous chiral symmetry

number 1. In order to describe dense matter, we now consider periodic solutions of the sine-
Gordon equation. A solution which leads to a finite baryon number density is the kink crystal
found in Ref. [12]

χ0 =
π

2
+ am(z, κ)

(
z =

mπ

κ
x
)
, (4.11)

where am is the Jacobi amplitude. One can check that χ0 fulfills the sine-Gordon equation
using identities for Jacobi elliptic functions in Appendix D. This solution leads to a baryon
density equal to the winding number density. Due to the periodicity am(z+n2K) = am(z)+
nπ for n ∈ Z, the topological baryon density is

ρ =
mπ

2κK
. (4.12)

Using the results of the derivative expansion, we can now calculate the next to leading order
correction to the energy density calculated in [12] by solving the minimum equations (4.8).
Note that the parameter κ (elliptic modulus) which determines the baryon density introduces
an additional scale. Hence, the derivative expansion cannot be interpreted as an expansion
in the pion mass only and is merely reliable at low densities. The result for λ1 in Eq. (4.8b)
is

λ1 = −1
2
cn2z, (4.13)

from which the equation for χ1 can be deduced (where now ′ = d/dz)

χ′′1 + κ2χ1(1− 2sn2z) =
sn z cn z

6
(κ2 + 3κ2sn z2 − 4). (4.14)

The solution is

χ1 =
1
8
dn z cn z − κ′2

12κ2

K
E

(
dn z Z(z)− κ2 sn z cn z

)
+ Cdn z (4.15)

where dn z is a solution to the homogeneous equation. Like in the single baryon case, the
non-periodic part of the general solution was dropped, leaving a single integration constant C.
Higher order corrections to this result have not yet been evaluated. In Fig. 4.5 χ and λ are
plotted in next to leading order. The right plot illustrates how the “chiral spiral” in Fig. 4.1
is distorted when chiral symmetry is broken explicitely.

The total energy density with respect to the vacuum in next to leading order becomes

E = ρ

[
mπ

πκ
(2E−Kκ′2)− m3

π

36πk3

(
(3κ4 − 5κ2 + 2)K + (4k2 − 2)E

)
+ O(m5

π)
]
. (4.16)

In the limit κ → 1, the coefficients χ0, χ1 and λ1 reduce to the single baryon solution in
Eq. (4.9) and the total energy density reduces to E = ρMB, with the baryon mass MB from
Eq. (4.10) up to orderm3

π. The term of linear order inmπ coincides with the result in Ref. [12],
the derivative expansion gives the next to leading order. In Fig. 4.6 the energy density (4.16)
is compared to the translationally invariant solution of the HF problem (see Appendix B),
which shows that for small densities and pion masses, the crystal is energetically favorable.

Finally we can say that the derivative expansion leads to a consistent picture of baryons and
dense matter in massive NJL2, where the validity of the calculation is restricted to small
values of the pion mass and small densities. Without explicitly solving the Dirac equation
we have obtained the first few terms beyond the sine-Gordon theory results in Refs. [49],[12].
In effect, the derivative expansion can be regarded as a kind of bosonization where a chiral
angle field χ and a radial field λ carry all the dynamical information. The emergence of the
Skyrme picture is put on very solid grounds in this case.
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Figure 4.5.: Left : Result for χ and λ in the derivative expansion up to order m2
π for density

ρ = 0.075 (κ = 0.99 and mπ = 0.5). Right : The distorted “chiral spiral” for the
same baryon density.
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Figure 4.6.: Energy density (4.16) for dense baryonic matter in the NJL2 in the derivative
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Part II.

2+1 dimensional models
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5. Gross-Neveu model in 2+1 dimensions

In Chapter 3 the GN model in 1+1 dimensions was used as a toy model for relativistic quark
matter. As the restriction to one spatial dimensions is unphysical, the question arises, how
this analysis can be extended to higher dimensions. However, one cannot choose the physical
3+1 dimensional space without giving up renormalizability. As a compromise between phys-
ical significance and the restriction to renormalizable theories, in this chapter, we consider
dynamical symmetry breaking in the 2+1 dimensional GN model.

A further motivation to study GN3 is its application in condensed matter physics. Like its
little brother, the model is used to describe electrons near the Fermi surface of a half-filled
band in quasi-two-dimensional systems. In particular, the superconducting electrons in some
high-temperature superconductors are confined to planes determined by the lattice structure
of the material (CuO2 planes) [50, 18, 51]. Another recent example for an application are
carbon nanotubes [52].

As described in Sections 2.2 and 2.3 we can use the same tools of relativistic HF theory as in
the 1+1 dimensional case. The HF Hamiltonian of GN3 is given in (2.6) with φ1 = φ2 = 0
and φ3 ≡ φ

H = −iγ0(γ1∂1 + γ2∂2) + γ0τ3φ(x1, x2).

Since the Hamiltonian is diagonal in isospin space, it is sufficient to find a self-consistent
solution for the upper isospin component by solving the eigenvalue problem for the two-
component Hamiltonian

H = −iγ0(γ1∂1 + γ2∂2) + γ0φ(x1, x2). (5.1)

The self-consistency condition (2.8) becomes

〈ψ̄ψ〉 = − φ

Ng2
. (5.2)

Total energy and baryon density, i.e., fermion density divided by N , have to be doubled to
get the quantities for the full theory. The gap equation (2.15) has to be modified to

2
Ng2

=
1
π

(Λ−m) (5.3)

as the isospin degeneracy of the vacuum states is removed.

If translational invariance of the ground state is assumed, the HF equations can be solved
self-consistently, where φ = const. plays the role of a dynamical fermion mass. In this case,
the behavior of the total energy and the baryon density is well known [13, 15]. In Appendix C
the results of this calculation are summarized.

In the following, we consider spatially inhomogeneous mean field configurations and discuss
their stability by comparing the total energy with the translationally invariant case. On
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5. Gross-Neveu model in 2+1 dimensions

the basis of the mean field of the baryon and dense matter in GN2 (Sections 3.1 and 3.2)
it is possible to find self-consistent solutions of the 2+1 dimensional model. These extend
the 1+1 dimensional solutions, maintaining translational symmetry in one spatial direction.
Surprisingly, these solutions are degenerate to the massive Fermi gas.

5.1. The self-consistent baryon stripe solution

For GN3, the question of existence of localized multi-fermion bound states is still open. The
inverse scattering analysis which was used to find the baryon in GN2 (see Section 3.1 and
Ref. [23]) cannot be applied easily in 2+1 dimensions. If a bound state exists, we expect
the chiral condensate to be rotationally symmetric φ(r). Even in such a symmetric case, a
self-consistent solution to the HF equations (5.1) is not known. In this chapter we consider
mean field configurations depending on one spatial coordinate only (φ = φ(x2)). This leads
to fermion states which are localized in the x2 direction and form “stripe” structures in the
two-dimensional plane.

A HF solution involving a one-dimensional structure was found by Bietenholz et. al. [53].
They extend the single baryon solution in Section 3.1 to 2+1 dimensions, prove its self-
consistency and show that the total energy is the same as in the translationally invariant
solution. The motivation of this analysis is to study the dimensional reduction of the dynamics
of fermions moving along this “baryon stripe”, which in this context should be considered as a
“brane world”. In the following, we state some results of Ref. [53] and put it into the context
of translational symmetry breakdown. In Section 5.2 we generalize the result to the “stripe
phase” solution, which is inspired by the baryon crystal in GN2, cf. Section 3.2.

In Ref. [53], the profile in the x2 direction is chosen to be equal to the single baryon so-
lution of GN2 in Eq. (3.3) with φ(x2) = σ(x2), which contains the variational parame-
ter y. For this configuration the single particle spectrum consists of bulk states with energies
±

√
p2
1 + p2

2 +m2 and states of fermions propagating along the kink-anti-kink walls with en-
ergies ±

√
p2
1 +m2(1− y2), originating from the two discrete states of the 1+1 dimensional

baryon solution [22]. The spectrum for y = 0.8 is shown in Fig. 5.1.

Bietenholz et. al. proved the self-consistency (5.2) of the baryon stripe. For the calculation,
the system is enclosed in a finite volume [0, L1]×[0, L2], where the limit L1, L2 →∞ is taken in
the end. A given (full) occupation of valence state energy levels up to the Fermi momentum pf

is then equivalent to choosing the baryon density ρ = pf/(L2π). Self-consistency now leads
to the restriction of the variational parameter to y = pf/m.

The renormalized total energy per length L1 of the baryon stripe is found in section 5.4 of
Ref. [53], where it plays the role of the brane tension. Using the self-consistency condition
and subtracting the vacuum energy, one gets the simple expression

E − E(0)

L1
=
ym2

π
=
pfm

π
, (5.4)

which can be written in terms of the baryon density as

E − E(0)

L1L2
= ρm.
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Figure 5.1.: Energy spectrum of fermions in the self-consistent baryon stripe potential (y =
0.8, pf = 0.8m). The lower line shows energies of states localized at the stripe
with E =

√
p2
1 +m2(1− y2), the upper lines indicate the bulk spectrum E =√

p2
1 + p2

2 +m2 with p2/m = 0.0 . . . 1.7.

This is the same result as in the translationally invariant HF solution described in Appendix C,
cf. Eq. (C.1). As we only consider large L2, the baryon density is well below the critical density
m2/(4π) at which chiral symmetry is restored when assuming translational symmetry. Hence,
the massive Fermi gas with the same occupation of positive energy states, i.e., the same baryon
density, is energetically degenerate to the baryon stripe. The finite binding energy for the
baryon profile in the x2-direction is cancelled by the extra energy needed to fill the momentum
states in the x1-direction.

Unless there would be another self-consistent solution with lower energy, we may conclude
that the GN3 model at finite density 0 ≤ ρ ≤ m/(L2π) has a degenerate ground state.
The system has neither an advantage nor a disadvantage in breaking translational symmetry
by forming a one-dimensional structure. The following section will generalize this result to
densities up to the critical density m2/(4π). In this regime the massive Fermi gas solution is
degenerate to x2-periodic structures.

Finally, we would like to mention an alternative derivation of the total energy result in
Eq. (5.4). It is based on the dimensional argument that the energy per length L1 will be
proportional to m2 because the vacuum fermion mass m is the only physically meaningful
mass scale. In Appendix F, we use this argument due to Feinberg [35] to confirm the result
in Eq. (5.4).

5.2. The stripe phase configuration

The self-consistent baryon stripe can only hold fermions up to the density m/(L2π). Above
this density, the massive Fermi gas described in Appendix C is the only solution to the HF
equations known so far. The existence of the baryon crystal in GN2 (see Section 3.2) now
leads to the question of the stability of its extension to 2+1 dimensions. The main result of
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Figure 5.2.: Stripe phase ansatz for the scalar potential in GN3 in Eq. (5.5) with the parameter
κ = 0.96 (corresponds to density ρ = 0.06m2).

this section will be to show that this “stripe phase” configuration is a self-consistent solution
which is again degenerate to the massive Fermi gas up to the critical density m2/4π.

The scalar potential of the “stripe phase” is defined by the 2+1 dimensional extension of
Eq. (3.42). This ansatz involves Jacobi elliptic functions (see Appendix D) and depends on
two variational parameters A and κ. We set

φ(x2) = Aσ̃(Ax2) = Aκ2 sn(Ax2) cn(Ax2)
dn(Ax2)

. (5.5)

The shape of this ansatz is illustrated in Fig. 5.2. The baryon stripe is obtained as a special
case in the limit κ→ 1, where we have to set A = m and y → 1.

5.2.1. Self-consistency of the stripe phase

Using the results from 1+1 dimensions, one can check self-consistency at given baryon density
(determined by the filling of positive energy states), and derive a constraint for the parameters
A and κ from the self-consistency condition (5.2). This requires the solution of the eigenvalue
problem for the Hamiltonian (5.1). We first choose the gamma matrices analogous to the 1+1
dimensional case (3.1)

γ0 = −σ1, γ1 = iσ2, γ2 = iσ3,

which makes it easier to take over results from Section 3.2 and the treatment of baryons in
massless GN2 at finite temperature in Ref. [54]. Using the ansatz ψ(x1, x2) = eip1x1ψ(x2) the
Hamiltonian reads

H =
(

p1 ∂2 − φ(x2)
−∂2 − φ(x2) −p1

)
.

By squaring the Hamiltonian one gets equations for the upper and lower components ψ±(x2)
of the spinor eigenfunctions. These are the Lamé equations (3.22)

[−∂2
ξ + 2κ2sn2(ξ + (K∓K)/2)

]
ψ± = Eψ±,
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Figure 5.3.: Energy spectrum of fermions in the “stripe phase” potential with κ = 0.8 (baryon
density ρ ≈ 0.073). The lines in the lower band correspond to Bloch momenta p =
0 . . . π/2K ≈ 0.787 (in steps of 0.1), the upper band is shown for p = π/2K . . . 1.9.
The Fermi energy Ef is taken from the self-consistency condition Eq. (5.11)

with ξ = Ax2. The difference to the 1+1 dimensional case lies in the relation between the
Lamé eigenvalues and the Dirac energies E = Aω (k1 = p1/A)

E = ω2 + κ2 − k2
1.

The Lamé eigenfunctions can be found in Eq. (3.24), the spectrum of the Lamé equation is
given by Eq. (3.25). In order to ease the notation in the following, we write the energies ω in
terms of the Dirac energies in the 1+1 dimensional case ω̃

ω2 = ω̃2 + k2
1. (5.6)

ω̃ now lies in the two energy bands 0 . . . κ′ =
√

1− κ2 and 1 . . .∞. Compared to the 1+1
dimensional case, each state now becomes a hyperbola of states with different momenta k1.
The spectrum is plotted in Fig. 5.3. The lines show states with different values of the di-
mensionless Bloch momentum p of the x2-direction. In the limit κ→ 1 the lower Lamé band
shrinks to a single valence state ω̃ = 0 and the spectrum is reduced to the baryon stripe
spectrum shown in Fig. 5.1 with y = 1.

In order to show self-consistency, first ψ̄ψ is calculated for each energy mode. By integrating
over all occupied states up to the Fermi energy Ef we prove that Eq. (5.2) holds. The final
result of this section will be Eq. (5.11) which restricts Ef and the parameter A. The second
parameter κ is determined by the baryon density in Eq. (5.14).

The divergence in the energy integral is handled in the renormalization scheme developed in
Section 2.3. However, due to the specific shape of the spectrum of the stripe phase, it turns
out to be more convenient to choose a slightly different regularization method. Instead of the
symmetric cut-off procedure |p| < Λ, we cut off momenta with |pk| > λ. The self-consistency
condition in the vacuum, leads to the gap equation

1
Ng2

= 2λ ln
(
1 +

√
2
)
− π

2
m. (5.7)
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5. Gross-Neveu model in 2+1 dimensions

The result for physically meaningful quantities will not depend on the regularization method.

For the normalization of the eigenspinors one requires that the mean fermion density is

〈ψ†ψ〉 = 1 =
1

2K

∫ 2K

0
dξ

(|ψ+|2 + |ψ−|2
)
. (5.8)

One first finds a relation between the supersymmetric partner eigenfunctions ψ±. Since ψ−
fulfills the same Lamé equation with a potential shifted by a half period (sn2ξ 7→ sn2(ξ+K)), it
is necessary that ψ−(ξ+K) = cψ+(ξ) with a complex factor c. This factor can be determined
using the coupled equations for the upper and lower component given by the eigenvalue
equation of the single particle Hamiltonian in (5.1) and the symmetry σ̃(ξ + K) = −σ̃(ξ).
The result is

c2 =
ω − k1

ω + k1
e2Z(α)K,

where the parameter α is related to the Bloch momentum by Eq. (3.25). The condition (5.8)
becomes

1 =
1

2K

∫ 2K

0
dξ |ψ+|2

(
1 +

ω − k1

ω + k1

)
.

|ψ+|2 can be obtained by squaring the solution of the Lamé equation (3.24). The result is
taken from the 1+1 dimensional case [54]

|ψ+|2 = |N |2 πΘ2(α)
2Kκ

√
1− κ2

∣∣dn2(α, κ)− dn2(ξ, κ)
∣∣ .

The spatial average of this expression is calculated to get the normalization factor

|N |2 =
ω + k1

ω

Kκκ′

πΘ2(α)|ω̃2 −E/K| ,

and

|ψ+|2 =
ω + k1

2ω
ω̃2 − dn2(ξ)
ω̃2 −E/K

.

With this result, ψ̄ψ can be calculated, where we again take over results from Ref. [54]

ψ̄ψ = −(ψ∗+ψ− + ψ∗−ψ+)

=
1

ω + k1

(
ψ∗+(∂ξ + σ̃)ψ+ + [(∂ξ + σ̃)ψ+]∗ ψ+

)

=
ω̃

ω

ω̃

ω̃2 −E/K
σ̃(ξ).

(5.9)

This is the contribution to chiral condensate of a single energy mode. For the calculation of
the ground state expectation value 〈ψ̄ψ〉, we integrate this expression over all negative energy
states and the positive energy states up to the Fermi energy Ef = ωfA

〈ψ̄ψ〉 = Pneg + Ppos.

The negative energy part is regularized and becomes (p2 = pA, λ̃ = λ/A)

Pneg =
1

(2π)2

∫ λ

−λ
dp2

∫ λ

−λ
dp1 ψ̄ψ = −Aφ(x2)

π2

∫ λ̃

0
dp

∫ λ̃

0
dk1

ω̃2

(ω̃2 −E/K)
√
ω̃2 + k2

1

.
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5. Gross-Neveu model in 2+1 dimensions

With the density of states (3.26), we derive

dp
dω̃

=
|ω̃2 −E/K|

W
, with W =

√
|(ω̃2 − κ′2)(ω̃2 − 1)|, (5.10)

so that the integral over p can be transformed into an integral over ω̃. Now

Pneg = −Aφ(x2)
π2

[
−

∫ κ′

0

dω
W

+
∫ λ̃

1

dω
W

]∫ λ̃

0
dk1

ω2

√
ω2 + k2

1

= −Aφ(x2)
π2

[
−

∫ κ′

0

dω
W

+
∫ λ̃

1

dω
W

]
ω2 arcsinh(λ̃/ω)

≡ −Aφ(x2)
π2

[
Plb + Pub

]
,

where in the second step the integral over k1 was solved, leaving a one-dimensional integral
over the two energy bands which can be evaluated for large λ. In the first integral one can
assume ω ¿ λ̃ and separate the logarithmically divergent part (arsinh(1/ε) = ln 2/ε+ ε2/4 +
O(ε3)). We get the lower band contribution

Plb =
∫ κ′

0

dω
W

ω2 lnω − ln(2λ̃)
∫ κ′

0

dω
W

ω2.

We expect Pneg to have only a linear divergence in λ so that the logarithmic term should be
cancelled by a contribution in the upper band.

The calculation of the asymptotics of Pub is more difficult, because the integrand cannot be
expanded in orders of λ̃. We solve this by splitting the integral over the upper band into an
integral from 1 to

√
λ̃ (ω ¿ λ̃) and one from

√
λ̃ to λ̃ (ω ¿ 1). Now, both integrals can be

expanded in orders of λ̃, leading to

∫ √
λ̃

1

dω
W

ω2 arsinh(λ̃/ω) =
∫ √

λ̃

1

dω
W

ω2(ln(2λ̃)− lnω) +O
(
λ−1/2

)

∫ λ̃

√
λ̃

dω
W

ω2 arsinh(λ̃/ω) =
∫ λ̃

√
λ̃

dω arsinh(λ̃/ω) +O
(
λ−1/2

)
.

With this expansion, the divergent terms can be split from the integral over the upper band.
It can be shown analytically that the logarithmic divergent term is cancelled by the divergence
in the integral over the lower band by writing the sum of both integrals as the real part of an
integral in the complex plane. The result for the negative energy part is

Plb + Pub = −π
2
E + 2λ̃ ln(1 +

√
2).

The integral over the positive energy states is given by

Ppos = −Aφ(x2)
π2

∫ κ′

0

dω
W

∫ kmax(ω)

0
dk1

ω2

√
ω2 + k2

1

=

= −Aφ(x2)
π2

∫ κ′

0

dω
W

ω2 arsinh
(√

ω2
f − ω2/ω

)
,
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5. Gross-Neveu model in 2+1 dimensions

with the maximum value kmax(ω)2 + ω2 = ω2
f for the momentum k1 in direction parallel to

the stripes. We restricted the Fermi energy to values within the Lamé band gap: κ′ ≤ ωf ≤ 1.
One now merges the contributions to 〈ψ̄ψ〉 and renormalizes the linearly divergent part by
substituting it with the coupling constant and the dynamical fermion mass using the gap
equation (5.7). The result is

〈ψ̄ψ〉 = −φ(x2)
Ng2

− Aφ(x2)
π2

[∫ κ′

0

dω
W

ω2 arsinh
(√

ω2
f − ω2/ω

)
− π

2
E +

π

2
m

A

]

The first integral can be given in closed form if we assume that the Fermi level is at the upper
edge of the energy gap of the Lamé spectrum, i.e., ωf = 1, cf. Fig. 5.1. We get

∫ κ′

0

dω
W

ω2 arsinh
(√

1− ω2/ω
)

=
π

2
(E− 1).

The result for the self-consistency condition is now independent of κ

〈ψ̄ψ〉 = −φ(x2)
Ng2

− Aφ(x2)
2π

(
1− m

A

)
.

This is fulfilled for the choice of the parameter

A = m. (5.11)

Due to ωf = 1 the Fermi energy becomes

Ef = Aωf = m.

Eq. (5.11) is the same condition derived for the “baryon stripe” in Ref. [53]. The second
parameter κ of our ansatz will be fixed by the choice of baryon density (see Eq. (5.14)).

5.2.2. Energy density

We now calculate the total energy density E of the stripe phase. We divide E into three
contributions

E = Edcc + Eneg + Epos,

the double counting correction and the integral over negative and positive energies. Edcc is
calculated using the result for the spatial average of φ2 along the x2 direction in Eq. (3.33)

Edcc =
1

2Ng2L1L2

∫
dx1

∫
dx2 φ

2(x2) =
A2(2u− κ2)

2Ng2
, (5.12)

with the κ-dependent parameter u = 1−E/K. The coupling constant in the above expression
is eliminated using the gap equation (5.7), which leads to a linear divergence.

The other contributions to the energy are

Eneg = −A
3

π2

∫ λ̃

0
dp

∫ λ̃

0
dk1

√
ω2 + k2

1

Epos =
A3

π2

∫

occ.
dp

∫

occ.
dk1

√
ω2 + k2

1.
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5. Gross-Neveu model in 2+1 dimensions

Using the same techniques as in the preceding section, we isolate the divergent parts of the
integrals. Our calculation shows that the linear divergence in the double counting correction
term (5.12) is cancelled by the integral over the upper band, leaving the same λ3 divergence
as in the vacuum energy density (2.12). The renormalized expression for E is

Eren

A3
= −(2u− κ2)m

4πA
+

1
12π

[
2

(
2− κ2 − 3

2
E
K

)
E− (1− κ2)K

]

− 1
2π2

∫ κ′

0
dω

ω2 −E/K
W


ωf

√
ω2

f − ω2 + ω2 ln

√
ω2

f − ω2 + ωf

ω


 , (5.13)

where we did not make use of the self-consistency condition (5.11) yet. In the limit κ → 1
the above expression becomes −1/12π, the vacuum energy density.

Next, we will compare the energy density (5.13) to that of the translationally invariant solution
in Eq. (C.1). We have to choose the same baryon density ρ in both solutions to decide if it is
energetically favorable to break translational symmetry. Since 〈ψ†ψ〉 = 1 is fixed due to the
normalization, the baryon density of the stripe phase is

ρ =
A2

4π2

∫
dp

∫
dk 〈ψ†ψ〉 = −A

2

π2

∫ κ′

0

dω
W

(
ω2 − E

K

)√
ω2

f − ω2.

We now use the self-consistency condition (5.11), filling energy states up to the lower edge of
the upper Lamé band (ωf = 1). We get

ρ(ωf = 1) = −A
2

4π

(
1− κ2 − 2

E
K

)
. (5.14)

When the parameter κ is changed from 1 to 0, one obtains densities ranging from 0 tom2/(4π),
the critical density at which chiral symmetry is restored (φ(κ = 0) = 0).

With this self-consistent choice of parameters the integrals in the energy density in Eq. (5.13)
can be given in closed form. The result is

Eren = −m3

12π
+ ρm, (5.15)

which equals the translationally invariant result in Eq. (C.1). Thus we conclude that the
stripe crystal is energetically degenerate to the massive Fermi gas configuration.

In Fig. 5.4 the self-consistent “stripe phase” configuration is plotted for different baryon den-
sities.

In order to get a further check of the self-consistency condition m = A, we derive it by
minimizing a thermodynamic potential, requiring that positive energy states are filled up to
Fermi energy Ef = A. With a chemical potential as a Lagrange multiplier fixing the baryon
density, Eq. (5.13) gives

Eren − µρ = −A
2

4π

[
(2u− κ2)(m− µ)− 2

3
A+ µ

]
.
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Figure 5.4.: Self-consistent stripe crystal configuration in the x2 = ξ/m direction for vari-
ous baryon densities ρ/m2. In the low density limit, the self-consistent baryon
stripe solution is obtained, at the critical density ρ/m2 = 1/4π ≈ 0.0796, chiral
symmetry is restored
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Figure 5.5.: Energy difference between the stripe crystal and the Fermi gas configuration for
fixed κ = 0.3 and A = m varying the band filling ωf from κ′ to 1.

The minimum conditions are

0 =
∂(Eren − µρ)
∂(2u− κ2)

= −A
2

4π
(m− µ)

0 =
∂(Eren − µρ)

∂A
= − A

2π
[
(2u− κ2)(m− µ)−A+ µ

]
,

which is fulfilled if the self-consistency condition (5.11) holds. Moreover, one can show that
the stripe crystal is energetically less favorable compared to the Fermi gas if we fill the valence
states up to a Fermi energy ωf < 1. This fact is illustrated in Fig. 5.5.

Finally, we emphasize that there is no physics argument to restrict the mean field to the
one-dimensional structures investigated in this section. If translational symmetry is broken,
we expect fermions to be localized in rotationally symmetric bound states (“baryons”). At
finite fermion density they might form a two-dimensional lattice. Due to the complexity of
the HF problem in 2+1 dimensions, we could not yet give a definite answer to the question
of the existence of baryons in GN3.
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5. Gross-Neveu model in 2+1 dimensions

In 1+1 dimensions, the mechanism which drives the breakdown of translational symmetry
was identified as Overhauser effect [55] with gap formation at the Fermi surface. In 2+1
dimensions the stripe phase does not lead to a gap in the spectrum, whereas two-dimensional
structures might minimize the energy in this way. The marginally bound state found in this
section in our view is an argument in favor of such a translational symmetry breakdown.

In the next chapter, we will search for localized baryons in the NJL3 model. Because the
continuous chiral symmetry of this model simplifies the calculation of the total energy, we
will be able to identify the rotationally symmetric baryon as a marginally bound state of
fermions.
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dimensions

In the preceding section we looked for bound states in the GN3 model. Our analysis was
restricted to one-dimensional structures, because it would be extremely difficult to calculate
the total energy for an arbitrary mean field. The derivative expansion as a technique to
circumvent the diagonalization of the single-particle Hamiltonian cannot be expected to be
valid in this model. This expectation can be motivated with the following argument. Like
in the GN2 model the baryon (if existent) has to carve out a finite region in space, where
the chiral condensate is suppressed. Because of the resulting increase in total energy, the
size of the baryon is minimized, bounded from below by the cost of gradient energy. As a
consequence, we have no reason to expect that the mean field of the baryon is slowly varying
in space. This argument is confirmed by the self-consistent solution for the baryon in GN2, so
that we have to conclude that the derivative expansion cannot be applied for the models with
discrete chiral symmetry. This is different in the NJL models, where the mean field of the
baryon can wind itself around a continuum of ground states so that translational symmetry is
broken without suppressing the condensate. Hence, the derivative expansion can be applied
to calculate the total energy of the baryon. The analysis of baryons in the NJL2 model can
be found in Chapter 4, the calculation for the 2+1 dimensional model will be presented in
the following. In analogy to the 1+1 dimensional case, we will first show that the topological
charge of the mean field induces a finite baryon number through a spectral flow. The mass of
an infinitely large chiral soliton will turn out to be equal to the vacuum fermion mass, leading
to the conclusion that the single baryon has zero binding energy. This is very different from
the NJL2 model where the baryon is massless. In Section 6.2, we use numerical diagonalization
of the HF Hamiltonian to show that solitons with large spatial variations do not lead to a
true bound state.

6.1. Baryons in the derivative expansion

If a stable baryon exists in NJL3, we expect its mean field to be rotationally symmetric and
wrapping around the sphere of degenerate ground states (φ2 = m2) with topological charge 1.
Such a configuration is the so called “hedgehog field”, given in polar coordinates (x1 = r cosα,
x2 = r sinα) by

φ = m




cosα sin f(r)
sinα sin f(r)

cos f(r)


 . (6.1)

The radial profile function f(r) has to be an integer multiple of π at r = 0 and r → ∞, so
that the field configuration is localized and has finite classical energy. The topological charge
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Figure 6.1.: Left : Radial soliton profile from Eq. (6.2) with size parameter λ = 6. Right :
Plot of the resulting hedgehog field in Eq. (6.1) on the x1 axis. The nonzero
components φ1 and φ3 can be shown in a planar plot.

is calculated with Eq. (2.23),

Btop = −1
2
[cos f(∞)− cos f(0)] =

{
+1 f(∞) = π f(0) = 0
−1 f(∞) = 0 f(0) = π

.

One might expect configurations with wrapping number 2 to be characterized by f(∞) =
2π. However, such a field can be deformed continuously into the vacuum. Instead, higher
topological charges are obtained by replacing α 7→ αBtop in Eq. (6.1).

As a test case we want to choose a radial profile function with Btop = −1 depending on a size
parameter λ. In units where the vacuum fermion mass m = 1, we write

f(r) = −πe−r2/λ. (6.2)

This profile and the resulting hedgehog field are illustrated in Fig. 6.1. When the size pa-
rameter λ is large compared to the vacuum fermion mass, we can approximate the baryon
number and the total energy using the derivative expansion introduced in Section 2.5.

In order to apply the derivative expansion, we first have to split the squared Hamiltonian into
a free and an interacting part. We expand around the constant field φ2 = m2 and set

H = K + I, K = −iγ0γk∂k, I = γ0φ · τ
H2 = H2

0 + V, H2
0 = p2 +m2, V (x) = i(γk∂kφ) · τ .

(6.3)

Here, we already assumed that φ is confined to the sphere of ground states φ2 = m2.

Total energy and baryon number are calculated by means of the resolvent in Eq. (2.27),
written in the form

R(z) =
∫

d2x tr
[
γ0γk(rK)k + IrI + zrz

]
, (6.4)

with contributions from the building blocks Tr (K + I + z)(GV )nG. The trace tr refers to
spin and isospin indices. Up to order V 4 we get the results

(rK)k = − i
3
G3(∂kV )V +

i
4
G4

[
2(∂kV )V 2 + V (∂kV )V

]

rI = G1 − G2V + G3V
2 +

1
2
G4 [(∆V )V + V (∆V ) + (∂lV )(∂lV )]− G4V

3 + G5V
4

rz = G1 − G2V + G3V
2 +

1
2
G4(∆V )V − G4V

3 + G5V
4,

(6.5)
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with the integrals of propagators

Gn =
∫

d2p

(2π)2
Gn. (6.6)

Each V and each extra derivative is counted as an additional order in the expansion. The
traces in spin and isospin space in Eq. (6.4) are given in Appendix G.

The baryon number is calculated using Eq. (2.24). In second order of the derivative expansion,
the baryon number is equal to the topological charge (2.23). The fourth order terms can be
written as a total derivative and therefore do not contribute to the baryon number. This
result was also obtained in Ref. [31] for a 2+1 dimensional nonlinear σ model. Note that
in NJL3 the restriction φ2 = m2 is a variational ansatz for the mean field motivated by the
chiral spiral solution in 1+1 dimensions, whereas in the model in [31], this constraint is fixed
for the σ model background.

The total energy is calculated from Eq. (2.25), where the zeroth and first order terms in rz
lead superficially to divergences. For the hedgehog potential, the first order term vanishes
due to the trace in spin and isospin space, leaving as only divergence the zeroth order term,
i.e., the vacuum. Therefore the mass of the hedgehog configuration is a finite quantity. Note
that the double counting correction term of the hedgehog configuration (2.10) is equal to the
vacuum double counting correction due to φ2 = m2.

The mass of the hedgehog configuration becomes

MB =
∫

d2x

[
(∇φ)2

8πm
− (∆φ)2

96πm3
+

[
(∇φ)4 + 4(∂1φ× ∂2φ)2

]

128πm5
+O(∂6φ)

]
. (6.7)

The above result is the 2+1 dimensional analog of the total energy in NJL2 calculated in
Section 4.1. Just like in 1+1 dimensions it leads to a description of baryons reminiscent of
the Skyrme model. The chiral soliton in Eq. (6.1) is akin to the “baby Skyrmion” introduced
in Ref. [56]. Moreover, taking the chiral limit (mπ = 0) in the NJL2 model, we see that the
leading order term in Eq. (6.7) (∇φ)2 corresponds to the term (χ′)2 in Eq. (4.6). In this order,
the energy is minimized by the “chiral spiral” characterized by the chiral field χ = µx. The
single baryon configuration µ = π/L becomes massless, as the mean field winds slowly around
the circle of degenerate ground states. The situation is different in 2+1 dimensions, where the
chiral soliton (6.1) acquires a finite mass. This can be explained by the scale invariance of the
leading order term (∇φ)2, which gives a finite contribution to the total energy, independent
of the size of the soliton. The optimal shape of the soliton is found by minimization of the
scale invariant term. We insert Eq. (6.1), leading to

∫
d2x

(∇φ)2

8πm
=
m

4

∫
dr

[
sin2 f

r
+ (f ′)2r

]
.

The minimum condition
r f ′′ + f ′ =

cos f sin f
r

is solved by the radial profile function

f = ±2 arctan
r

λ
+ nπ, n ∈ Z, (6.8)
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Figure 6.2.: Baryon mass in Eq. (6.9) vs. size parameter λ of the radial profile (6.8) in different
orders of the derivative expansion.

with the scale parameter λ. The solution leads to the topological baryon number (−1)n and
to the total energy

MB = m+
1

9mλ2
− 2

75m3λ4
− 26

735m5λ6
+O(λ−8). (6.9)

The terms ∼ λ−4 and ∼ λ−6 have been calculated by extending the result in Eq. (6.7) to
higher orders using computer algebra. Note that these extra terms can only be evaluated for
radial profiles where surface terms in the basic procedure for the derivative expansion (2.29)
vanish.

For an infinitely wide soliton (λ→∞) the contributions of higher derivative terms in Eq. (6.9)
vanish. In this limit, the leading order of the derivative expansion yields the exact result
MB = m. This equals the mass of the translationally invariant HF solution φ2 = m2, where
a single valence state (zero momentum) in the positive energy spectrum is filled completely.
It is easy to show that this result can be taken over to configurations with winding numbers
Btop > 1, characterized by the radial profile

f = ±2 arctan
( r
λ

)Btop

+ nπ, n ∈ Z,

and lead to the baryon mass MB = mBtop.

From the above calculation we conclude that in NJL3 there exist baryons in the form of chiral
solitons with zero binding energy. Clearly, we cannot rule out the existence of a bound state
outside the range of validity of the derivative expansion. In Fig. 6.2 we plot the baryon mass
versus the scale parameter in different orders of the derivative expansion. The derivative
expansion seems to be valid for λ ' 1.5, where higher orders do not change the result signifi-
cantly. For small solitons the total energy in Eq. (6.9) gets dominated by these contributions
and eventually becomes negative. If the derivative expansion was to be trusted in this regime,
we would have to interpret this result as a vacuum instability. This problem also arises in the
derivative expansion of the effective action of a non-linear sigma model in 3+1 dimensions,
see Ref. [57]. The authors suggest a numerical calculation to determine if the skyrmion is
stable. In the following section, we will present such a calculation for the NJL3 model. It
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shows no sign of the instability observed in the derivative expansion result, i.e., the energy of
small sized solitons is above the vacuum fermion mass.

6.2. Numerical search for stable baryons

The derivative expansion of the total energy cannot answer the question of stability of small-
sized topological solitons. In this section the single particle Hamiltonian

H = −iγ0γk∂k +mγ0φ · τ

is diagonalized numerically to calculate the mass of such configurations. The result has to
be compared with the mass of a translationally invariant HF solution with the same baryon
number. Since the spectrum with constant mean field is that of free massive fermions, this
mass is equal to m. For the numerical calculation we will work in units where m = 1.

In principle, our procedure can be applied to the GN3 model as well. However, in this model
it is not possible to renormalize the total energy by subtracting the vacuum energy like it
can be done in NJL3 for configurations with φ2 = 1. There will always remain a divergence
∼ (φ2

3 −m2) Λ in the difference, so that it is numerically difficult to extract the finite part.
We therefore restrict our calculation to the model with continuous chiral symmetry.

The soliton mass is calculated with an accuracy limited by the number of basis states. These
are obtained by confining the theory to a disc of finite radius, analogous to the numerical
procedure in 1+1 dimensions [7, 47]. Within this limited precision we found no bound state
for small sized soliton configurations. We used various shapes of the radial profile function.
In the following subsections we will present the details of our numerical methods and its
results.

6.2.1. Basis and matrix elements

First we derive a set of suitable basis states for the diagonalization. In the discussion of chiral
solitons in the 3+1 dimensional NJL model [58, 59], the basis states are defined as eigenstates
of parity and total angular momentum. We would like to proceed in a similar manner.

The parity transformation P defined in Eq. (A.11) of the discussion of fermions in 2+1
dimensions in Appendix A commutes with the Hamiltonian H for the hedgehog potential in
Eq. (6.1). Therefore for each eigenspinor of H the parity transformed spinor is an eigenvector
of H as well, since

Hψ(x1, x2) = Eψ(x1, x2) ⇒ Hτ1γ
1ψ(−x1, x2) = Eτ1γ

1ψ(−x1, x2).

This will lead to a twofold degeneracy in the single particle spectrum.

Apart from parity symmetry, the Hamiltonian is symmetric under rotations. This leads to the
invariance of the total angular momentum or grand spin operator [28], consisting of angular
momentum, Dirac spin and isospin,

M3 = −i∂α +
γ0

2
+
τ3
2
.
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Since H commutes with M3 we will diagonalize the Hamiltonian in subspaces with grand
spin n.

With the choice for the γ matrices

γ0 = σ3, γk = iσk,

the eigenfunctions of M3 are (n = 0,±1,±2, . . .)

ψn = eiαn




g1(r)e−iα

g2(r)
g3(r)
g4(r)e+iα




τ = 1 γ = 1
τ = 1 γ = 2
τ = 2 γ = 1
τ = 2 γ = 2 .

The Dirac and isospin indices of the four-dimensional representation are indicated on the
right. Unlike in 3+1 dimensions, these single particle states have no definite parity since with
the definition of parity (A.11), P does not commute with M3.

The eigenstates of H are now labeled by their grand spin n. The radial Hartree-Dirac equa-
tions are obtained by applying H to ψn, leading to

Eg1 =
n

r
g2 + ∂rg2 + φ3g1 + Fg3

Eg2 =
n− 1
r

g1 − ∂rg1 − φ3g2 − Fg4

Eg3 =
n+ 1
r

g4 + ∂rg4 − φ3g3 + Fg1

Eg4 =
n

r
g3 − ∂rg3 + φ3g4 − Fg2,

(6.10)

where F (r) is the related to the radial profile of the hedgehog field, cp. (6.1)

F (r) ≡ sin f(r), φ3(r) = cos f(r).

The upper two equations in Eq. (6.10) with F = 0 yield the equations for the GN3 model
with the HF Hamiltonian in Eq. (5.1).

As basis states for the numerical diagonalization, we take the solution of the vacuum equations
with φ3 = 1 (in units of the vacuum fermion mass m) and F (r) = 0. This is just the Dirac
equation with mass φ3. After that we will impose a boundary condition on a circle r = R
to obtain a discrete spectrum. Including states up to a momentum cutoff k̄ leads to a finite
number of basis states. In the following, the procedure leading to the basis states is outlined,
details are given in Appendix H.

The vacuum equations lead to Bessel differential equations. Hence, the vacuum eigenstates
involve Bessel functions Jn(kr) with momentum k, related to the energy by E2 = k2 +m2.
These states are discretized by the boundary condition Jn(kn,jR) = 0 on a circle with ra-
dius R. The index j = 1, 2, . . . is related to the jth zero of the nth Bessel function by
kn,j = αn,j/R. The zeros of the Bessel functions show the symmetry α−n,j = αn,j because
J−n(αn,j) = (−1)nJn(αn,j) = 0. Therefore the states with the corresponding discrete mo-
menta are degenerate E−n,j = En,j . The dependence of the discretized momenta on the
quantum numbers n and j is illustrated in Fig. 6.3, where kn,j is plotted depending on j for
several values of the total angular momentum n. Note that in order to consider all states
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Figure 6.3.: Discrete momenta kn,j of the eigenstates of the Dirac Hamiltonian with boundary
conditions on a disc with radius R = 10 for values of the total angular momentum
n = 1, 10, 20, 30, 40.

below a relatively low momentum cutoff (∼ 5 in units of m), states with large grand spin n
(∼ 40) have to be taken into account.

The set of commuting operators H[φ = (0, 0, 1)], M3 is completed by the isospin τ3/2. States
with isospin ±1/2 are labeled by s = ±1. The normalized basis states are then characterized
by the grand spin n = 0,±1,±2, . . ., the momentum quantum number j = 1, 2, . . ., the sign
of the energy eigenvalue η = ±1 and the isospin s = ±1, writing

ψn,j,η,1 = einα




C1
kn,j

ηE−1Jn−1(kn,jr)e−iα

C1Jn(kn,jr)
0
0


 ψn,j,η,−1 = einα




0
0

C−1
kn,j

ηE+1Jn(kn,jr)
C−1Jn+1(kn,jr)e+iα


 , (6.11)

with E =
√
k2

n,j + 1 and energy ηE. The normalization constants Cs are fixed by the con-

straint ‖ψn,j,k,s‖2 = 1, which leads to

Cs(n, j, η) =
1

RJn+1(αn,j)

√
E − ηs

2πE
. (6.12)

For the numerical calculation we choose states with momentum kn,j < k̄.

We now calculate the matrix elements. The interaction term reads

γ0φ · τ =




φ3 0 F e−iα 0
0 −φ3 0 −F e−iα

F eiα 0 −φ3 0
0 −F eiα 0 φ3


 .

With the abbreviations

C = Cs(n, j, η) C ′ = Cs′(n, j′, η′) k = αn,j/R k′ = αn,j′/R

Jn = Jn(αn,jr/R) J ′n = Jn(αn,j′r/R) E =
√
k2 + 1 E′ =

√
k′2 + 1,
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the matrix elements for fixed n are

〈j′, η′, s′|γ0φ · τ |j, η, s〉 = 2πCC ′
∫ R

0
dr r

[
k′

η′E′ − s′
k

ηE − s
J ′n−δs′,1Jn−δs,1

− J ′n+δs′,−1
Jn+δs,−1

]
[
(sφ3 − F )δs,s′ + F

]
.

(6.13)

Since the interaction preserves the grand spin M3, it does not mix states with different n.
The matrix element of the full Hamiltonian with fixed n now is given by

〈j′, η′, s′|H(n)|j, η, s〉 = δj,j′δη,η′δs,s′ηE + 〈j′, η′, s′|γ0φ̃ · τ |j, η, s〉, (6.14)

with φ̃3 = φ3 − 1, because the vacuum term is absorbed into the free massive Hamiltonian.
For the numerical diagonalization of H these matrix elements are calculated using numerical
integration in Eq. (6.13). Since the integrand involves Bessel functions, this will be the most
time-consuming step of the calculation.

The Hamiltonian is symmetric under parity transformations H = PHP , leading to a twofold
degeneracy in the spectrum. This can be seen by applying a parity transformation on the
basis states (6.11). We get

Pψn,j,k,s = i(−1)nηψ−n,j,k,−s.

Hence submatrices with opposite grand spin M3 = ±n are related by

〈j′, η′, s′|H(−n)|j, η, s〉 = ηη′〈j′, η′,−s′|H(n)|j, η,−s〉.

Since P is a one-to-one mapping of basis states with grand spin n to states with −n, the
submatrices H(n) and H(−n) have the same eigenvalues.

6.2.2. Calculation of baryon number and mass

As described in Section 2.4, the baryon number of the topological soliton is determined by the
asymmetry in the spectrum (2.20). In the numerical approach, this asymmetry can be read
off by counting the number of positive and negative eigenvalues. According to Section 6.1,
for slowly varying soliton configurations the resulting spectral asymmetry B should be equal
to the topological charge Btop in Eq. (2.23).

The spectral asymmetry is illustrated in Fig. 6.4. The states with opposite isospin which are
degenerate in the vacuum split up. The energy of one state with grand spin n = 0 can change
sign due to the hedgehog mean field.

Each field configuration φ has a counterpart with opposite spectral asymmetry. Since the
expression for the topological charge (2.23) changes the sign when −φ is inserted, this inverted
field should lead to the inverted spectral asymmetry. In fact, this can be shown directly, since
the transformation inverts the spectrum by

H(φ)ψ = Eψ ⇒ H(−φ)γ0ψ = −Eγ0ψ.

This is related to the charge conjugation symmetry described in Appendix A. We can use the
transformation behavior of the bilinears in Table A.1 to show that for every self-consistent
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Figure 6.4.: Illustration of the spectrum of the vacuum and the hedgehog Hamiltonian. For
mean field configurations with finite topological charge, one eigenstate with grand
spin n = 0 can change sign. This is the spectral asymmetry which induces a
finite fermion number. The numbers at the negative energy levels indicate the
eigenvalue numbering in Eq. (6.16).

solution, there exists a self-consistent solution with scalar condensates −φ, charge conjugated
spinors, and inverted single particle spectrum, i.e.,

H(φ)ψ = Eψ φa = −g2〈ψ̄τaψ〉
⇒ H(−φ)ψC = −EψC φa = −g2〈ψ̄CτaψC〉.

Hence a configuration φ with B = 1 will be referred to as a baryon, the mean field −φ with
B = −1 as the corresponding antibaryon.

The sum over energy eigenvalues with a hedgehog configuration φ2 = 1 has the same divergent
part as the vacuum. Hence the mass of such fields can be calculated by subtracting the
sum over vacuum energies, leading to a finite result without the need to go through the
renormalization procedure in Section 2.3. In our numerical procedure, the difference of the
two spectra is approximated by the sum over differences of the discrete energy eigenvalues.
The matrix in Eq. (6.14) is diagonalized using basis states up to the cutoff momentum k̄. The
mass becomes

MB = E(φ)− E(m) ≈
∑

l,El<0
kl<k̄

(El −E0
l ). (6.15)

For large cutoff momenta k̄ and large sizes of the disc R, this should approach the continuum
result for the mass.

Due to the spectral asymmetry, one has to be careful to include the right eigenvalues in the
sum in Eq. (6.15). We used the numbering scheme shown in Fig. 6.4. After sorting the
negative eigenvalues of both the hedgehog and the vacuum spectrum with increasing absolute
value, the baryon mass is calculated by

MB =





∑lmax
l=1 (El −E0

l+1)− E0
1 for B = −1∑lmax

l=1 (El −E0
l ) for B = 0∑lmax

l=1 (El+1 − E0
l ) + E1 for B = 1,

(6.16)

61



6. Nambu-Jona-Lasinio model in 2+1 dimensions

which replaces Eq. (6.15).

Due to the trace in isospin and Dirac space, the trace of the Hamiltonian vanishes in the
continuum. When k̄ and R are large enough, this should be also true for the discretized
spectrum, i.e., the sum over positive and negative energies of the hedgehog spectrum should
vanish. One important consequence of this fact is that the baryon has the same mass as the
antibaryon with inverted mean field φ → −φ. The difference of the two masses is the differ-
ence of the two spectra. Since charge conjugation inverts the spectrum of the Hamiltonian,
this difference vanishes.

As the Hamiltonian commutes with the grand spin operator, it is possible to calculate the
contribution to the baryon mass for each submatrix with grand spin n. This also ensures
that energies with the same grand spin are compared to the vacuum, when truncating the
spectrum with a momentum cutoff.

6.2.3. Perturbation theory

In order to save computing power, we want to approximate high energy eigenvalues using per-
turbation theory. The interaction term γ0φ̃·τ in Eq. (6.14) is taken as the small perturbation.
Unfortunately, in first order this method is not applicable when summing over the difference
to the vacuum spectrum in Eq. (6.16) because the perturbation of the eigenvalues falls off
too slowly in the range of momenta we used in our calculation. Second order perturbation
theory involves the calculation of all matrix elements. Since the most time-consuming step of
the calculation are the numerical integrals in matrix elements, there is no significant benefit
compared to exact diagonalization.

We apply first order degenerate perturbation theory and diagonalize the interaction term in
the four-dimensional eigenspaces. Since the perturbation is diagonal in the angular momen-
tum basis, we only need to find the eigenvalues of a 2 × 2 matrix. The energy level n, j, η
then splits up with the first order perturbation

E(1) =
1
2

(
V++ + V−− ±

√
(V++ − V−−)2 + 4V 2

+−

)
, Vs′s = 〈j, η, s|γ0φ̃ · τ |j, η, s′〉.

An analysis of the asymptotics of the matrix elements Vs′s using Eq. (6.13) shows that the
absolute value of E(1) vanishes with |E(1)| ∼ 1/k ∼ 1/

√
l where k is the momentum and l the

eigenvalue counter when sorting the eigenvalues in ascending order. This means that when
we use the perturbations E(1) to calculate the baryon mass, the sum in Eq. (6.15) will not
be absolutely convergent. In order to show that the sum diverges we have to evaluate the
perturbations explicitly. We do this by analyzing the UV behavior of E(1) for the radial profile
in Eq. (6.2). For high momenta the eigenvalue differences ∆El = E

(1)
l in the submatrix with

grand spin n = 0 form an alternating series due to the splitting of isospin states illustrated in
Fig. 6.4. We can add up consecutive pairs of values to yield a series with definite sign. The
absolute value of the result is plotted in Fig. 6.5 with logarithmic scales. In the momentum
range we can reach in our calculation, this vanishes like ∼ 1/l for perturbation theory and
∼ 1/l2 for the numerical result. Hence, the sum over the perturbation diverges and we have
to conclude that in our numerical scheme first order perturbation theory is not applicable to
the calculation of the baryon mass.
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Figure 6.5.: The sum over 2 consecutive eigenvalue differences: ∆E∗l = ∆E2l+∆E2l+1. Upper
points: perturbation theory ∼ 1/l. Lower points: Numerical diagonalization
∼ 1/l2. The profile Eq. (6.2) was used with λ = 2, R = 10 and k̄ = 60. The first
50 eigenvalues are omitted to show the UV behavior of the calculation.
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Figure 6.6.: Left: Energy of the valence state for different values of the size parameter λ
(R = 5). At λ < 1.69 the valence state becomes negative and the spectral
asymmetry vanishes. Right: Radial profile with λ = 0.5, 1.0, 1.5, 2.0, 2.5. (k̄ = 14)

6.2.4. Size-dependence of spectral asymmetry

From the derivative expansion calculation in Section 6.1, we know that for large sized solitons
the spectral asymmetry is determined by the topological charge B = Btop. This can now be
checked in the numerical calculation. We determine the spectral asymmetry for the radial
profile in Eq. (6.2) and vary the size parameter λ. The result for the valence state is shown
in Fig. 6.6. It turns out that the spectral asymmetry vanishes when the size of the soliton
is decreased below λ = 1.69. This confirms that the derivative expansion is not valid for
small sized solitons. A similar behavior of the valence state was found in the discussion of a
non-linear σ model [28].

The spectral flow has an important consequence for the calculation of the hedgehog mass. For
small-sized solitons the baryon number will no longer be fixed by its topological charge. In
order to check if such a configuration describes a bound state of fermions, one has to include
the positive valence state in the sum over single particle energies.
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Figure 6.7.: Sum over eigenvalue differences for submatrices with grand spin n = 0, 1, 2, 3, 4, 19
from top to bottom (radial profile (6.2), λ = 2, R = 20, k̄ = 20). The vertical line
shows the cutoff in energy Emax = −0.7

√
k̄2 +m2, used to calculate the mass

contribution of each spin (indicated by the horizontal lines).

6.2.5. Effects of finite size and momentum cutoff

In this section, we discuss the effects of the choice of the finite basis we used for numerical
diagonalization. Since we want to compare the numerical result for the baryon mass with
continuum values, the value of MB should not change when disc size R and momentum cutoff
k̄ are increased.

We first observe that the finite cutoff k̄ in momentum space leads to an error in the high-
momentum eigenvalues, because the mixing with the nearby states above the cutoff is ignored
by the calculation. This should not affect the baryon mass, when we cut off the sum in
Eq. (6.16) at energies El > Emax > −k̄. In Fig. 6.7 the result for the contributions to the
baryon mass from different grand spin n submatrices MB|n is plotted versus the maximum
energy Emax considered in the sum. Again, we used the test case profile (6.2). MB|n ap-
proaches a stable value as the maximum energy is increased. The momentum cutoff error can
be observed as a slight increase of MB|n at high momenta. This error can be avoided safely
by cutting off the sum over energy differences with Emax = −0.7

√
k̄2 +m2.

The mass contribution of each grand spin resulting from this calculation is plotted in Fig. 6.8.
The values are compared with the result for the corresponding antibaryon configuration φ →
−φ (f → f + π). We observe that higher spin eigenvalues contribute small amounts to the
total mass, but add up and change the contribution from lower spins n = 0, . . . , 5 significantly
(±0.3). Therefore spins up to n ≈ 40 have to be taken into account to get the value for the
total mass MB(B = −1) = 1.458 and MB(B = +1) = 1.448. Since the mass of baryon and
antibaryon would be equal in an exact continuum calculation (see Section 6.2.2) the difference
between these values in our numerical calculation serves as a good measure for the accuracy
of the result for MB. However, this difference should not be confused with an error bar. The
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Figure 6.8.: Mass contribution of each grand spin for a hedgehog with radial profile (6.2) and
its corresponding antibaryon. (λ = 2, R = 20, k̄ = 20).
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Figure 6.9.: Contribution to the baryon and to the antibaryon mass from the n = 0 submatrix,
depending on the momentum cutoff k̄. (λ = 2, R = 20, Emax = −0.7
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main drawback of the diagonalization method is that the error made by the restriction to a
finite number of basis states can only be observed by a change of the baryon mass result as
R and k̄ are increased.

Next, we analyze how the mass contribution of a single grand spin n changes as the momentum
cutoff is increased. The behavior of the n = 0 mass contribution for cutoffs k̄ = 10 . . . 60 is
shown in Fig. 6.9, including the calculation for the B = +1 soliton. For given radius R = 20
the result approaches a stable value as k̄ is increased. In Fig. 6.10, MB|n=0 is plotted versus
Emax, which illustrates how the accuracy is improved by increasing the momentum cutoff k̄.
The sudden increase of MB|n=0 which occurs at Emax ≈ k̄ stems from the momentum cutoff
error.

The second requirement for the validity of the numerical result for the hedgehog mass is the
stability against an increase of the disc size R. In Fig. 6.11 we plot MB for our test case
profile (6.2) using different values of R. The lower points show the mass of the corresponding
antibaryon configuration. For large R, the two values approach the common value MB =
1.45. Above R ' 20 the result does not change significantly so that MB can be expected to
approximate the continuum value.

The number of basis states grows quadratically with R and k̄. The number of matrix elements
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√
k̄2 +m2)

66



6. Nambu-Jona-Lasinio model in 2+1 dimensions

to be calculated by numerical integration thus grows ∝ R4k̄4. This limits the accuracy which
can be achieved by this numerical technique.

The convergence of the MB for large numbers of basis states clearly depends on size and shape
of the hedgehog field. If the radial profile f rapidly approaches an integer multiple of π, the
limitation to a finite area r < R will be a good approximation. Hence, for profiles with an
exponential behavior like the test case in Eq. (6.2), we get the most accurate results for the
baryon mass. However, for a soliton with very large spatial variations, we need to take into
account higher momentum states by increasing k̄. This sets a lower bound to the soliton size
for which the baryon mass can be calculated.

6.2.6. Results for the baryon mass

We now turn to the results for the baryon mass, using different radial profile functions and
sizes. First, we compare the numerical method to the derivative expansion in Section 6.1.
We choose three different radial profiles with exponential behavior, depending on a size pa-
rameter λ. The derivative expansion in Eq. (6.7) can be applied if λ is chosen in a regime,
where the second and fourth order term do not differ significantly. In Fig. 6.12, the derivative
expansion and the numerical results are plotted versus λ. We included the mass of the cor-
responding antibaryon, which gives an impression of the accuracy of the numerics. The data
points for two different choices of the parameter R show how the precision is increased by
including a higher number of basis states. With an acceptable error, the numerics matches
the derivative expansion result.

For small sized solitons, the derivative expansion leads to small hedgehog masses (see Fig. 6.2
in Section 6.1). Since the expansion does not converge in this regime, we cannot trust the
result. With the numerical diagonalization procedure, we can now search for bound states
with such rapidly varying mean fields. In Fig. 6.13, we show the baryon mass for small
solitons with the radial profile (6.2). In order to obtain reliable results, we had to increase
the momentum cutoff k̄ whereas we could choose a smaller disc size R. The decrease of the
baryon mass for small parameters λ predicted by the derivative expansion is not observed in
our calculation. The figure shows the opposite behavior, i.e., small hedgehogs are not favored
energetically.

In Section 6.1, it was shown that the radial profile in Eq. (6.8) minimizes the second order
derivative expansion result for the total energy. The baryon mass was calculated in orders
of the inverse of the size parameter λ (see Eq. (6.9)). Since this minimum profile leads to a
potential which does not decrease exponentially for large r, we cannot numerically calculate
the associated mass for values of λ where we could compare the result to Eq. (6.9). Instead
we choose a very small size for the minimal soliton, so that it fits into the disc of a radius R
for which the numerical procedure can be applied. In Fig. 6.14 we plot the results of our
calculation. Like for the exponentially decaying potential, we observe an increase in energy
with decreasing soliton size. In contrast, the derivative expansion calculation predicts values
well below MB = m (see Fig. 6.2).

The numerical calculation presented in this section confirms that the derivative expansion
breaks down for small sized solitons. We used several ansätze for the radial profile function and
found an increase of the mass for smaller solitons. For slowly varying potentials, the derivative
expansion agrees with the numerical calculation, whereas the decrease of the total energy
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Figure 6.12.: Numerical result for the baryon mass compared to the derivative expansion in
Eq. (6.7). Due to the discretization of the basis, the mass for the soliton with
B = −1 is larger than for B = +1.
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Figure 6.13.: Numerical result for the baryon mass for small sized soliton configurations. Note
the change of parameters R and k̄ as compared to Fig. 6.12.
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Figure 6.15.: Radial profile (6.2) for different values of λ. Solid lines: Mass calculation accessi-
ble to the numerical calculation. Dashed lines: Derivative expansion applicable.

below the vacuum fermion mass observed in the derivative expansion result is apparently
due to the limits of this approximation. In addition, we tested several other trial functions
for the radial profile and found no configuration that was favored against the translationally
invariant HF solution. We also observed an increase of the total energy for configurations
involving large gradients.

Within the limitations given by the numerical procedure, we can rule out the existence of a
soliton bound state of small sizes not accessible to the derivative expansion. The range of
sizes where we can calculate the soliton mass is illustrated in Fig. 6.15 for the specific radial
profile in Eq. (6.2). For size parameters λ ' 2 we can use the derivative expansion result, for
solitons down to size λ = 0.2 we apply numerical diagonalization to get the total energy with
acceptable error. Since the total energy is increasing as we tune down λ (cf. Fig. 6.13), we
do not expect a bound state for even smaller fields.

Summarizing, we have presented a numerical HF calculation of the baryon in the NJL3 model.
Due to computational limitations, our results should be taken as exploratory. In order to
significantly improve the accuracy, one would either have to invest a factor of 100 more of
computing power, or perhaps use other techniques. An alternative to diagonalization could be
the numerical technique used in [60] to calculate the effective action of QCD in a rotationally
symmetric instanton background. This method is based on the calculation of determinants
of one-dimensional differential operators rather than numerical diagonalization and thus does
not suffer from problems due to discretization of the one-particle basis.
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In this thesis we discussed baryons and baryonic matter in simple four-fermion interaction
theories, the GN model and the NJL model in 1+1 and 2+1 space-time dimensions. The
models are designed as toy models for dynamical symmetry breaking in strong interaction
physics. For each model, we investigated the existence of baryons as localized bound states
of fermions and, if possible, calculated their mass. In the 2+1 dimensional models we could
not find stable baryonic solutions, whereas for the 1+1 dimensional models baryons exist and
lead to breakdown of translational symmetry at finite density. The latter result was obtained
including a bare mass of the fermions.

In order to find the ground state for given baryon number or baryon density, we used a mean
field method which was formulated in the language of many particle physics and is equivalent
to the Hartree-Fock approximation. The models in this work are defined in the ’t Hooft
limit N → ∞, Ng2 = const., where the Hartree-Fock method becomes exact. In addition,
the ’t Hooft limit circumvents no-go theorems which rule out some cases of spontaneous
symmetry breakdown in low dimensions. The basic task of the Hartree-Fock method was
then to minimize the total energy as a functional of the mean field for a given baryon number
or baryon density. The mean field served as an order parameter for chiral symmetry and, if
spatially varying, for translational symmetry. In some special cases, the total energy could
be calculated analytically by summing over energies of single particles in the presence of the
mean field. When such a self-consistent solution could not be found, we applied the derivative
expansion technique. This lead to a closed expression for the energy in terms of the mean
field, valid for slowly varying fields.

For the GN model in 1+1 dimensions, we generalized earlier work on the massless model to
the case where chiral symmetry is broken explicitly by a bare mass term in the Lagrangian.
In the process of renormalization the bare mass m0 was replaced by a physical constant γ,
whereas the relation between the coupling constant and the cutoff merely set the scale of the
theory. As a result the massive GN model can be considered as a one parameter family of
physical theories, the point γ = 0 corresponding to the massless case. For γ > 0, we first
had to find a self-consistent solution for the single baryon, which was found with the mean
field of the partially filled baryon in the chiral limit. In order to describe baryonic matter,
we used an ansatz from a related problem in condensed matter physics. The Hartree-Fock
energies were found analytically because the eigenvalue problem could be reduced to a Lamé
type equation. This lead to a self-consistent solution for dense baryonic matter, namely a
crystal of equally spaced baryons.

Next, we discussed the 1+1 dimensional version of the NJL model with bare mass fermions.
The parameter γ could be directly related to a quantity with a direct physical interpretation,
the mass of the pion mπ. For small mπ earlier studies predicted a sine-Gordon theory, the
two-dimensional analog of the Skyrme model where baryon number is generated through a
topologically non-trivial pion field configuration. In this limit, the relevant length scale over
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which the potential varies is given by 1/mπ. Hence, we could use the derivative expansion
to calculate the total energy in powers of derivatives of the mean field, leading to a system-
atic improvement of the sine-Gordon result. Minimizing the total energy, the mass of the
single baryon was obtained as a power series in mπ. The expansion exhibits the convergence
properties of an asymptotic series. In leading order of mπ, dense matter can be described by
a periodic solution of the sine-Gordon equation. Our work improved this result in next to
leading order using the derivative expansion.

In the 2+1 dimensional GN model, we could not find an exact solution for the single baryon,
expected to be rotationally symmetric. Instead we performed an exploratory calculation,
testing whether the finite density ground state breaks translational symmetry in one spatial
direction. This approach was inspired by an earlier calculation which extended the single
baryon solution of the 1+1 dimensional model by choosing the mean field to be translation-
ally invariant in one direction. The result was shown to be self-consistent and energetically
degenerate to the massive Fermi gas solution. We could derive the same result for a 2+1
dimensional extension of the one-dimensional baryon crystal. In this “stripe phase” fermions
are restricted in one spatial dimension by the periodic crystal mean field, but are free to move
in the other direction parallel to the stripes. The finite binding energy gained in one direction
is cancelled by the extra energy needed to fill the momentum states in the other direction.
With the “stripe phase” we have found a state which is degenerate with the translationally
invariant solution up to the baryon density m2/4π where chiral symmetry is restored. We
see this degeneracy as an argument in favor of the possibility of a spontaneous breakdown of
translational symmetry at finite density.

With the usual trick to generalize chiral symmetry to odd space-time dimensions, one can
define the 2+1 dimensional version of the NJL model. We applied the derivative expansion
technique to calculate the total energy as a functional of the three component mean field
and its derivatives. In analogy to the 1+1 dimensional case, this led to a description of
baryons as chiral solitons reminiscent of the Skyrme model. The crucial difference to the 1+1
dimensional model is that the leading term of the expansion is independent of the scale of the
soliton, resulting in a finite contribution to the baryon mass even for arbitrarily slowly varying
mean fields. We identified the radial profile minimizing the energy and calculated a vanishing
binding energy in the limit of an infinitely wide soliton. For small sized solitons, the derivative
expansion predicted energies well below the vacuum fermion mass. As the approximation
could not be trusted below a certain spatial scale, we applied a numerical technique to explore
the possibility of a stable baryon in this regime. For given radial profile, we diagonalized the
Hartree-Fock Hamiltonian in a discrete basis and summed over the spectrum to calculate
the total mass. The results confirmed the breakdown of the derivative expansion for large
gradients and showed an increase in total energy for smaller solitons. From this finding we
concluded that the NJL model does not possess a stable soliton solution, at least in the range
of spatial scale we could reach by numerical calculation and the derivative expansion.

Clearly, the four-fermion models discussed in this thesis cannot describe baryonic matter
in the real world. The reasons are the unrealistic restrictions to low dimensions and the
large N limit, which are needed to allow for an analytical treatment. Despite these drastic
simplifications, the models lead to phenomena akin to findings in more realistic, higher-
dimensional theories. The emergence of an inhomogeneous ground state at high densities
observed in the 1+1 dimensional GN model is also discussed in QCD in form of a crystalline
superconductor [9] or via the Overhauser effect [61]. Moreover, the description of baryons as
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chiral solitons found in the low-dimensional NJL models is reminiscent of the Skyrme model of
nuclear physics. The analytic derivation of these important phenomena in simple interacting
quantum field theories gives insights into the mechanisms behind them.

Some of the methods which proved to be useful for the solution of four-fermion toy models
at finite density can now be applied to more general problems. For instance, the mean field
method can also be used at finite temperature. Like in QCD, one could ask questions about
the phase diagram at temperature T and chemical potential µ. In the Hartree-Fock approach
this means that we have to minimize the grand canonical potential for each value of T , µ as a
functional of the mean field. In the case of the massive GN model in 1+1 dimensions this has
been studied recently [62, 63]. It turns out that the mean field ansatz from zero temperature
(Section 3.2) is sufficient to compute the whole phase diagram. The result is a self-consistent
solution of the finite temperature Hartree-Fock problem, featuring a baryon crystal phase at
low temperatures and finite density.

The derivative expansion method used in Sections 4.1, 6.1 is also a valuable tool at finite tem-
perature. It can be applied to calculate the grand canonical potential in powers of derivatives
of the mean field. The result is a Ginzburg-Landau effective theory containing all information
on the thermodynamic ground state in regions of the phase diagram where the mean field is
slowly varying. In the GN model in 1+1 dimensions this calculation reproduces the results
known from the exact Hartree-Fock solution. In the 1+1 dimensional NJL model, the method
has been applied recently. The minimization of the effective action and the derivation of a
phase diagram are subject of current research [64]. Moreover, this analysis is not restricted
to low dimensions and could possibly be generalized to more realistic models.
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A. Fermions in low dimensions

This appendix reviews important definitions for the description of Dirac fermions in 1+1 and
2+1 space-time dimensions. More information on the 1+1 dimensional case can be found in
Ref. [65], for further reading on 2+1 dimensions, the reader is referred to Refs. [16, 15, 17].

1+1 dimensions

Dirac spinors are defined by a spinor representation of the Lorentz group, which in 1+1
dimensions consists only of boosts. Since there are no rotations and hence no spin, Dirac
spinors have only two components (particle/ antiparticle degrees of freedom). The free Dirac
equation reads

(iγµ∂µ −m)ψ = 0 (A.1)

where the 2× 2 dimensional γ matrices satisfy the Dirac algebra

{γµ, γν} = 2gµν . (A.2)

They can be chosen proportional to the Pauli spin matrices σa (cp. Eq. (3.1)). The her-
mitian matrix γ5 = γ0γ1 generates chiral transformations ψ 7→ eiαγ5

ψ. Together with the
transformations ψ 7→ eiαψ, this defines the chiral symmetry group, which is preserved by the
Lagrangian of the NJL model in its 1+1 dimensional formulation in Eq. (2.2). A mass term
∼ ψ̄ψ breaks chiral symmetry explicitly.

For completeness, we give the discrete symmetries of the Dirac equation in 1+1 dimension.
The following representation for the γ matrices is used

γ0 = σ1 γ1 = −iσ2 γ5 = γ0γ1 = σ3. (A.3)

The parity transformation is defined by

(xP ) = (t,−x1), ψP (xP ) = γ0ψ(x),

from which we conclude that the bilinear ψ̄ψ is a scalar and ψ̄γ5ψ a pseudoscalar.

Charge conjugation can be defined by ψC = γ5ψ∗. In the representation (A.3), ψ̄ψ is odd
under charge conjugation, whereas ψ̄iγ5ψ is even.

2+1 dimensions

The Poincaré group in 2+1 dimensions consists of 3 translations, 2 boosts and 1 rotation. Its
generators form the Poincaré algebra:

[Pµ, Pν ] = 0 (A.4)
[Jµ, Jν ] = iεµνρJρ (A.5)
[Jµ, P ν ] = iεµνρPρ, (A.6)
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where Pµ generates translations in space and time, J0 generates spatial rotations, and J1 and
J2 Lorentz boosts in the 2 and 1 direction, respectively. Single particle states are defined by
irreducible representations of this group. These are characterized by the value of its Casimir
operators

(P 2 −m2)ψ = 0, (P · J + sm)ψ = 0. (A.7)

The value of the spin s can be chosen arbitrarily, leading to a description for particles with
arbitrary spin and statistics (”anyons”) [16].

For s = −1/2, the Lorentz group can be represented by two-component Dirac spinor with
2× 2 γ-matrices which satisfy (A.5) with Jµ = γµ/2. In 2+1 dimensions this is equivalent to
the Dirac algebra (A.2), which has two inequivalent representations

γ0 = +σ3, γ1 = +iσ1, γ2 = +iσ2

γ0 = −σ3, γ1 = −iσ1, γ2 = −iσ2.
(A.8)

This is due to the fact that there exists no analog of γ5 in 2+1 dimensions, i.e., no matrix
which anticommutes with all γ matrices. Hence, there also exists no generator of chiral
transformations in 2+1 dimensions.

As in 3+1 dimensional space, the Dirac equation (A.1) should be invariant under parity
transformations. However, in the two-dimensional plane, inverting both spatial coordinates
is equal to a rotation by 180o. A parity transformation which is inequivalent to a rotation
can defined by inverting one axis. In the first of the two representations (A.8) this is

(xP ) = (t,−x1, x2), ψP (xP ) = −iγ1ψ(x) = σ1ψ(x). (A.9)

When this transformation is applied to the Dirac equation the mass term acquires an extra
minus sign. A common workaround [16, 17, 15] to this problem is to join the two inequivalent
representations of the Dirac algebra above to form a four-dimensional reducible representation.
The two representations are labeled by an additional “isospin” index. The Dirac equation
becomes

(iγµ∂µ −mτ3)ψ(x) = 0. (A.10)

In this notation, the τ matrices act on the isospin degrees of freedom, with τa = σa. Parity
invariance of the Dirac equation is recovered by defining the transformation (A.9) to act both
in spin and isospin space

ψP (xP ) = −iτ1γ1ψ(x). (A.11)

Lorentz transformations do not act on isospin

ψ(x) 7→ ψ′(x′) = eiωµJµ
ψ(x′) = eiωµγµ/2ψ(x).

The isospin matrix in the Eq. (A.10) does not change the covariance of this equation.

The isospin matrices are the analog of the matrix γ5 in 1+1 dimensions. They generate
continuous “chiral” transformations

ψ 7→ eiθaτaψ =
(

cos θ + i
sin θ
θ

θaτa

)
ψ (θ2 = θaθa). (A.12)

The Lagrangian of free massless particles is invariant under chiral transformations as well as
under formations ψ → eiαψ. The resulting “chiral” symmetry group U(1) ⊗ SU(2) = U(2)
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ψ̄ψ ψ̄τ1ψ ψ̄τ2ψ ψ̄τ3ψ ψ̄γµψ

P −1 −1 +1 +1 (+1,−1,+1)
C −1 +1 −1 −1 (+1,+1,+1)

Table A.1.: Transformation of bilinears in 2+1 dimensions under discrete symmetries.

is generated by the τa and the identity matrix. The analog of the chirally symmetric four-
fermion interaction of the NJL model in 1+1 dimensions is the NJL3 interaction term

(ψ̄τ1ψ)2 + (ψ̄τ2ψ)2 + (ψ̄τ3ψ)2. (A.13)

Chiral invariance can be confirmed by applying (A.12).

A mass term ψ̄τ3ψ breaks chiral symmetry U(2) down to U(1) × U(1). The two remaining
symmetries

ψ → eiαψ, ψ → eiτ3αψ,

correspond to the conservation of fermion number and the 3-component of isospin. In addition
to the terms in (A.13) the bilinear ψ̄ψ is invariant under isospin rotations. It is a parity-
violating candidate for a mass term in the Lagrangian

Apart from Lorentz and parity symmetry, the Dirac equation in 2+1 dimensions is invariant
under time inversion (T) and charge conjugation (C). We derive the form of the latter discrete
symmetry in analogy to the 3+1 dimensional case [66]. We define the charge conjugated spinor
by

ψC = Cγ0ψ∗,

with the charge conjugation matrix C. The effect of this transformation is the change of sign
of the charge e in the Dirac equation for a particle in external electromagnetic field, i.e.,

[(i∂µ − eAµ)γµ −m]ψ(x) = 0 (A.14)
[(i∂µ + eAµ)γµ −m]ψC(x) = 0. (A.15)

This leads to the condition

CγµC−1 = −(γµ)T, Cτ3C
−1 = τ3.

A possible choice is C = γ1γ0τ3. In addition, C converts positive energy solutions into
negative ones, because

Hψ = Eψ ⇒ HψC = −EψC .

The transformation properties for the various bilinears are shown in Table A.1. Note that
all above bilinears are real (except ψ̄γkψ which is imaginary), because the matrices defining
them are hermitian (antihermitian).
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B. Translationally invariant solution for 1+1
dimensional models

For the sake of comparison with the states with broken translation symmetry, we also need
results for the translationally invariant HF solution which is the same in both GN2 and NJL2.
These results are found in the work of Barducci et. al. [46] and extended here.

In order to decide whether a periodic or “crystal” solution is energetically favorable, we need
the energy density of the massive Fermi gas. This quantity is calculated in the same way as in
the vacuum Eq. (2.11). Positive (negative) energy levels up (down) to the Fermi momentum
pf are occupied (unoccupied) to study matter (antimatter) at baryon density ρ = pf/π. The
energy density per flavor is

E = −2
∫ Λ/2

pf

dp
2π

√
p2 +M2 +

(M −m0)2

2Ng2
.

Eliminating the bare coupling constant with the help of the vacuum gap equation (2.14), the
logarithmic divergence disappears and we are left with (ε2f = p2

f +M2)

E = −Λ2

8π
− M2

4π
+

(
M2

2π
− Mm

π

)
γ +

pf εf
2π

+
M2

2π
ln
pf + εf
m

,

M can be obtained by minimizing E with respect to M ,

(M −m)γ +M ln
pf + εf
m

= 0. (B.1)

The difference between energy density and vacuum energy density is finite,

E − E0 = −(M2 −m2)
4π

− (Mm−m2)
2π

γ +
pf εf
2π

This last equation is only valid at the minimum, since we have made use of Eq. (B.1) to
simplify the expression.

In general, Eq. (B.1) can only be solved numerically. In some limiting cases, one can solve it
by a series expansion for M and compute the corresponding energy. Consider the following
limits:

• γ →∞ at fixed pf (heavy quark limit), setting εf =
√
m2 + p2

f :

M ≈ m− m

γ
ln
pf + εf
m

+
m

γ2

[
ln2 pf + εf

m
+

m2

εf (pf + εf )
ln
pf + εf
m

]
. (B.2)

Energy density (without vacuum subtraction),

E ≈ −m
2γ

2π
− m2

4π
+
pf εf
2π

+
m2

2π
ln
pf + εf
m

− m2

πγ
ln2 pf + εf

m
.
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• pf →∞ at fixed γ (high density limit):

M ≈ mγ

γ + ln(2pf/m)
− m3

4p2
f

γ3

(γ + ln(2pf/m))4
, (B.3)

E ≈ p2
f

2π
− m2

2π
γ2

γ + ln(2pf/m)
+

m4

16πp2
f

γ4

(γ + ln(2pf/m))4
.

As described by Barducci et al. [46], the translationally invariant solution undergoes a first
order phase transition at a certain critical chemical potential or density. In the HF solution
described above, this manifests itself through the fact that the energy-versus-pf curve starts
out as concave at pf = 0 and becomes convex only above a certain critical Fermi momentum
pc

f . Before drawing conclusions about the stability of the periodic HF solutions in GN2 and
NJL2, we have to take this fact into account.

Just like at γ = 0, we make a mixed phase variational ansatz [65]: A fraction λ of space
contains all the extra fermions (“droplets”), which therefore have an increased Fermi momen-
tum

p′f =
pf

λ
.

The energy density, subtracting the vacuum contribution, is

∆E = λ

{
−M

2

4π
+

(
M2

2π
− Mm

π

)
γ +

p′f ε
′
f

2π
+
M2

2π
ln
p′f + ε′f
m

+
m2

4π
+
γm2

2π

}
(B.4)

with
ε′f =

√
M2 + (p′f )2.

Vary with respect to λ,
∂∆E
∂λ

= 0 ↔ ∆E − p′f
∂∆E
∂p′f

= 0. (B.5)

The right hand side can be interpreted as construction of the convex hull of the curve energy
density versus fermion density (remember the geometrical meaning of the Legendre trans-
form). The solution p′f of this equation at λ = 1 is the critical Fermi momentum. More
explicitly, Eq. (B.5) reads

(m+M + 2γm(m−M))(m−M)− 2p′f ε
′
f + 2M2 ln

p′f + ε′f
m

= 0. (B.6)

Vary with respect to M [cf. Eq. (B.1)],

(M −m)γ +M ln
p′f + ε′f
m

= 0. (B.7)

Eqs. (B.6) and (B.7) determine the mixed phase. To solve them, proceed as follows: Eliminate
the ln-term in Eq. (B.6) with the help of Eq. (B.7) and solve the resulting equation for p′f ,

(p′f )2 =
−M2 +

√
M4 + (m−M)2(m+M + 2mγ)2

2
.
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Figure B.1.: Energy density of the massive Fermi gas in 1+1 dimensional models (minus the
vacuum energy) versus Fermi momentum pf for m = 1, γ = 0.1. Below pc

f this
is a concave function which indicates instability against formation of “droplets”
containing all extra fermions. The true ground state energy density is obtained
as the complex hull which is determined by Eqs. (B.4,B.6,B.7) and plotted with
a dashed line. The dotted curve shows the effective mass M of the fermions
(constant in the “droplet” region).

Insert this result into Eq. (B.7) and arrive at an equation relating M and γ. This equation
always has a non-trivial solution, which has to be determined numerically. The result for the
energy difference ∆E is shown in Fig. B.1 for γ = 0.1. Analytical results can be obtained in
limiting cases of interest,

M

m
≈ 2

ln 2
γ − 8

(ln 2)2
γ2 +

4[10 ln 2 + (ln 2)2 + 2]
(ln 2)4

γ3 for γ → 0,

M

m
≈ m− 3

2γ2
+

3
γ3
− 63

40γ4
for γ →∞.

(B.8)

By inserting these expressions into Eqs. (B.8), (B.4), we can determine the behavior of the
energy in the mixed phase, as well as the critical point. Find for small γ

∆E
m

≈ pf

π

{
1√
2

+
1√
2
γ − 4 + ln 2

2
√

2 ln 2
γ2

}

pc
f

m
≈ (1 + γ)√

2
− (8 + 4 ln 2 + (ln 2)2)

2
√

2(ln 2)2
γ2,

(B.9)

and for large γ

∆E
m

≈ pf

π

{
1− 3

8γ2
+

3
4γ3

}

pc
f

m
≈ 3

2γ
− 3

2γ2
− 69

80γ3
.

(B.10)

The expressions in curly brackets in Eqs. (B.9) and (B.10) are the critical chemical potentials.
This should be compared with the true baryon masses.
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dimensional models

By assuming a constant mean field — setting φ = M for GN2 and φ2 = M2 for GN2 —
we can find a self-consistent solution of the HF equations. The spectrum of Hamiltonian H
in Eq. (2.6) is that of free fermions with dynamical mass M . The total energy density per
flavor E is the sum over single particle energies plus the double-counting correction. Positive
energy states are filled up to the Fermi momentum pf . We get

E =
M2

2Ng2
−

∫
d2p

(2π)2
√

p2 +M2 +
∫

|p|<pf

d2p

(2π)2
√

p2 +M2.

Using the vacuum gap equation (5.3), the energy is renormalized

E = −M
2m

4π
+

1
6π

(
p2

f +M2
)3/2

,

which has to be minimized varying the dynamical mass M , in order to get a self-consistent
solution. The minimum condition is

∂E

∂M
=
M

2π

(
−m+

√
p2

f +M2
)

= 0,

solved by M = 0 or M2 = m2 − p2
f (if pf < m). The second stationary condition always

yields a lower total energy if pf < m. Introducing the baryon density per flavor ρ = p2
f/4π

we get

E =





−m3

12π
+ ρm for ρ ≤ m2

4π

4
√
π

3
ρ3/2 for ρ > m2

4π .

(C.1)

This result is plotted in Fig. C.1. Note that E is continuously differentiable at ρ = m2/4π.

Unlike in 2d there is no need to construct a mixed phase by defining spatial regions with
broken and unbroken chiral symmetry since the energy (2.9) is already a convex function of
the density. However, the chemical potential is µ = m for all densities below ρ = m2/(4π).
This shows that the phase transition at this point is of first order since at µ = m, the density
jumps from 0 to m2/(4π) discontinuously, the order parameter from M = m to M = 0.

80



C. Translationally invariant solution for 2+1 dimensional models
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− 1
12π
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4π 0.1

ρ/m2

E/m3

M > 0
M = 0

Figure C.1.: Energy density per flavor assuming translational invariance for the scalar poten-
tial versus baryon density ρ. The dashed line is the energy of chirally symmetric
phase, the solid line is the energy for M2 = m2 − 4πρ.
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D. Elliptic integrals and Jacobi elliptic
functions

Since different ways of writing down elliptic integrals and Jacobi elliptic functions are in use,
we briefly summarize our conventions. As a rule, we use the Legendre normal form for elliptic
integrals. Our notation of the arguments is the same as in Maple.

• Incomplete elliptic integral of the first kind

F (z, κ) =
∫ z

0
dt

1√
1− t2

√
1− κ2t2

• Incomplete elliptic integral of the second kind

E(z, κ) =
∫ z

0
dt
√

1− κ2t2√
1− t2

• Incomplete elliptic integral of the third kind

Π(z, n, κ) =
∫ z

0
dt

1
(1− nt2)

√
1− t2

√
1− κ2t2

• Complete elliptic integral of the first kind

K = K(κ) = F (1, κ)

• Complete elliptic integral of the second kind

E = E(κ) = E(1, κ)

• Complete elliptic integral of the third kind

Π(n, κ) = Π(1, n, κ)

• Complementary elliptic modulus κ′2 = 1− κ2

K′ = K(κ′), E′ = E(κ′)
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D. Elliptic integrals and Jacobi elliptic functions

• Jacobi elliptic functions sn, cn, dn and the Jacobi amplitude am

F (sn(u, κ), κ) = u, for −K < u < K

cnu =
√

1− sn2 u, dnu =
√

1− κ2sn2 u, sin(amu) = snu

In Jacobi elliptic functions, we suppress the elliptic modulus κ throughout this paper,

snu = sn(u, κ), cnu = cn(u, κ), dnu = dn(u, κ).

Following the convention implemented in Maple, we have denoted the second argument
by κ rather than κ2.

Apart from the period 4K, the Jacobi elliptic functions can be shown to be periodic
in the complex plane with period 4iK′, i.e., they are doubly periodic (=elliptic). This
can be used to show identities between elliptic functions. The boundedness theorem
of complex analysis guarantees that two elliptic functions of equal periods are identical
up to an additive constant once their pole structure is the same. This fact was used to
write the ansatz for the scalar condensate in the form (3.20) and to derive the identity
(3.40).

• Derivatives
am′ u = dnu sn′ u = cnu dnu

• In the limit κ→ 1

K = ln
4
κ′

+O(κ′2)

sn b→ tanh b, cn b→ sechb, dn b→ sechb
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E. Higher orders in the minimization of the
energy density of NJL2

In order to determine corrections to the sine-Gordon kink baryon in NJL2, we minimize the
derivative expansion energy density in Eq. (4.6) with respect to χ and λ. The minimum
equations up to order m6

π are

χ′′0 =
1
2

sin 2χ0

λ1 =
1
4

(cos 2χ0 − 1)

χ′′1 − χ1 cos 2χ0 =
1
2

(
λ1 +

1
6

)
sin 2χ0 − 1

6
χIV

0 .

λ2 =
1
24

(cos 2χ0 − 1)− 1
2
χ1 sin 2χ0 − 1

6
(χ′′0)

2 − 1
4
λ1 − 1

2
λ2

1 +
1
12
λ′′1

χ′′2 − χ2 cos 2χ0 =
(
−χ2

1 +
1
2
λ2 +

1
12
λ1 +

1
60

)
sin 2χ0 +

(
λ1χ1 +

1
6
χ1

)
cos 2χ0

− 1
30
χV I

0 +
1
3
λ1χ

IV
0 +

1
3
λ′′1χ

′′
0 +

2
3
λ′1χ

′′′
0 −

1
6
χIV

1

λ3 = −
(

1
2
χ2

1 −
1

120

)
cos 2χ0 −

(
1
2
χ2 +

1
12
χ1

)
sin 2χ0

− λ1λ2 − 1
120

− 1
10
χ′′0χ

IV
0 − 1

30
(χ′′′0 )2 − 1

4
λ2 +

1
12
λ′′2 +

1
6
λ3

1

− 1
3
χ′′0χ

′′
1 −

1
12

(λ′1)
2 − 1

6
λ1λ

′′
1 +

1
120

λIV
1 − 1

24
λ1 +

1
2
λ1(χ′′0)

2

χ′′3 − χ3 cos 2χ0 =
(

1
6
χ2 + λ1χ2 + λ2χ1 − 2

3
χ3

1 +
1
30
χ1 +

1
6
λ1χ1

)
cos 2χ0

−
(

2χ1χ2 − 1
280

+
1
6
χ2

1 −
1
12
λ2 − 1

2
λ3 + λ1χ

2
1 −

1
60
λ1

)
sin 2χ0

− 1
140

χV III
0 − 4

15
χ′′0(χ

′′′
0 )2 − 2

15
(χ′′0)

2χIV
0 +

1
2
λ′′1χ

IV
0 +

1
3
λ′′′1 χ

′′′
0

+
2
15
λ1χ

V I
0 +

2
5
λ′1χ

V
0 +

1
10
λIV

1 χ′′0 −
1
6
χIV

2 +
1
3
λ′′2χ

′′
0 +

2
3
λ′1χ

′′′
1

+
2
3
λ′1χ

′′′
1 +

1
3
λ1χ

IV
1 +

2
3
λ′2χ

′′′
0 +

1
3
λ1χ

IV
1 +

2
3
λ′2χ

′′′
0 +

1
3
λ2χ

IV
0

+
1
3
λ′′1χ

′′
1 −

1
30
χV I

1 − λ1λ
′′
1χ

′′
0 − 2λ1λ

′
1χ
′′′
0 −

1
2
λ2

1χ
IV
0 − (λ′1)

2χ′′0.

These equations can be solved successively. The leading order result for χ is the sine-Gordon
kink solution in Eq. (4.9). Up to order m12

π the coefficients in Eq. (4.7) are

χ0 = 2arctan eξ
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E. Higher orders in the minimization of the energy density of NJL2

λ1 = −1
2
sech2ξ

χ1 =
1
8

sinh ξ sech2ξ

λ2 = −1
6

(
sech2ξ − sech4ξ

)

χ2 = − 1
1152

sinh ξ
(
23 sech2ξ − 122 sech4ξ

)

λ3 = − 1
1440

(
252 sech2ξ − 1225 sech4ξ + 1061 sech6ξ

)

χ3 = − 1
691200

sinh ξ
(
2621 sech2ξ − 108092 sech4ξ + 90456 sech6ξ

)

λ4 =
1

604800
(−86284 sechξ2 + 1693937 sech4ξ − 4897732 sech6ξ + 3428239 sech8ξ

)

χ4 =
1

3251404800
sinh ξ

(−38251715 sech2ξ + 956627974 sech4ξ

− 4522865208 sech6ξ + 4179637264 sech8ξ
)

λ5 = − 1
50803200

(
6742972 sech2ξi− 453795621 sech4ξ + 3486075693 sech6ξ

− 7079075471 sech8ξ + 4115502795 sech10ξ
)

χ5 = − 1
390168576000

sinh ξ
(−7423504897 sech2ξ − 211364495656 sech4ξ

+ 3218922195888 sech6ξ − 9461541542720 sech8ξ + 6979740749440 sech10ξ
)

λ6 =
1

33530112000
(−3089912332 sech2ξ + 944194230441 sech4ξ − 17791295428170 sech6ξ

+ 80145159039319 sech8ξ − 123840806689072 sech10ξ + 61034281245254 sech12ξ
)

χ6 =
1

33991486341120000
sinh ξ

(−2618519287803409 sech2ξ + 31800984903656270 sech4ξ

− 1490342285985619120 sech6ξ + 10618472289207620320 sech8ξ

− 21993256972453562240 sech10ξ + 13398988715131727104 sech12ξ
)
.

We can now insert this result into the derivative expansion of the energy to get the result for
the baryon mass in Eq. (4.10).
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F. Alternative derivation of the baryon stripe
mass

In Appendix E of Ref. [35], Joshua Feinberg presents a simple dimensional argument to derive
the mass of the single Callen-Coleman-Gross-Zee kink configuration in massless GN2. It does
not require the summation of single-particle energies, used in this work to calculate the total
energy of a mean field configuration. The only information needed is the shape of the self-
consistent field and the gap equation. In this appendix we will use the same argument to
calculate the total energy of the baryon stripe solution of Section 5.1. This will confirm the
result in Eq. (5.4) derived by summing over HF energies.

First, let us repeat Feinberg’s argument in 1+1 dimensions and derive the mass of the partially
filled kink-antikink baryon in the chiral limit. The result can be compared with Ref. [22] and
Section 3.1 with γ = 0. The mean field σ is given by Eq. (3.3), where the parameter y is
fixed by the self-consistency condition Eq. (3.10) in the chiral limit γ = 0. The mass of this
baryon configuration is the total energy (per flavor) minus the vacuum energy

MB = E − E0,

where the energies E and E0 are given by the sum over HF energies plus the double counting
correction (see Eq. (2.9)). Using the spectrum of the HF Hamiltonian, one gets MB = 2y/πm
(cp. Eq. (3.11)). This can also be derived using Feinberg’s argument. We first observe that
MB has to be proportional to the vacuum fermion mass m as the only parameter with the
dimension of a mass. Hence,

MB = cm,

where the factor c can be calculated by the total derivative with respect to m

c =
dMB

dm
.

The baryon mass is now interpreted as a functional of the baryon mean field and a function
of the vacuum fermion mass. The derivative with respect to m can be written as

dMB

dm
=

∫
dx

[
δMB

δσ(x)
∂σ(x)
∂m

]
+
∂MB

∂m
+
∂MB

∂g2

∂g2

∂m
.

Due to their self-consistency, the vacuum and the kink-antikink baryon extremize MB, so that
the first two terms vanish. The remaining term is calculated using the shape of the baryon
and the gap equation (2.14). For the first factor, we get

∂MB

∂g2
= − 1

2Ng4

∫
dx

(
σ2 −m2

)
=

2my
Ng4

,
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F. Alternative derivation of the baryon stripe mass

where we carried out the integration over the baryon mean field using the result in Ref. [22]
(see also Eq. (3.7)). The second factor becomes

∂g2

∂m
=
Ng4

mπ
,

so that
c =

2y
π

in accordance with the result of the summation over HF energies. With the same line of
arguments as above, one can derive the mass of partially filled baryons in the massless NJL2

model leading to the same result as the conventional calculation found in Ref. [26].

In order to calculate the energy of the “baryon stripe”, we observe that the mass per unit
length in the x1-direction parallel to the stripe has the dimension (mass)2. In a slab of width
L1, the energy difference with respect to the vacuum will have the form

∆ ≡ E − E(0) = cL1m
2 = cl1m,

where we wrote the length L1 in terms of a dimensionless parameter l1 = L1m. With the
self-consistency of the baryon stripe, we get

d∆
dm

= cl1 =
∂∆
∂g2

∂g2

∂m
.

With the gap equation (5.3) and the shape of the baryon stripe, we can deduce

∂∆
∂g2

= − 1
2Ng4

∫
d2x

(
σ2 −m2

)
=

2L1my

Ng4

∂g2

∂m
=
Ng4

2π
.

The result for the total energy

∆ =
L1ym

2

π

confirms the result in Eq. (5.4).
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G. Calculation of traces for the derivative
expansion

We use the following useful identities to evaluate the trace over spin and isospin degrees of
freedom

{γµ, γν} = 2gµν γµγν = gµν − iεµνλgλργ
ρ

(a · τ )(b · τ ) = a · b + i(a× b) · τ εmn(am × an) = 2a1 × a2.

The results for the traces in Eq. (6.5) are given up to surface terms. With V defined in
Eq. (6.3) we get for the z-terms

trV 2 = 4(∇φ)2

tr (∆V )V = −4(∆φ)2

tr (∆V )2 = 4(∆φ2)2 + 4(∆∂lφ ·∆∂lφ)

trV 3 = 0

tr (∆V )V 2 = −2 tr (∂lV )(∂lV )V =
= −32(φ · ∂kφ)(∂l∂kφ · ∂lφ)

trV 4 = 4
[
(∇φ)4 + 4(∂1φ× ∂2φ)2

]
,

for the K terms

tr γ0γk(∂kV )V = tr γ0γkV (∂kV )V = tr γ0γk(∂kV )(∆V ) = 0

tr γ0γk(∂kV )V 2 = 8i(∆φ) · (∂1φ× ∂2φ),

and for the terms in rI

tr IV 2 = −8φ · (∂1φ× ∂2φ)
tr I(∆V )V = tr IV (∆V ) = −8(∆φ) · (∂1φ× ∂2φ)

tr I(∂lV )(∂lV ) = 4(∆φ) · (∂1φ× ∂2φ)

tr IV 3 = 0

tr IV 4 = −16(∇φ)2φ · (∂1φ× ∂2φ).
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H. Details of the basis states for numerical
diagonalization

This appendix describes in detail the calculation leading to the basis states for numerical
diagonalization in NJL3 in Section 6.2. The main result will be the basis states in Eq. (6.11).

In the vacuum, the radial HF equations equations (6.10) can be decoupled. With φ = (0, 0, 1)
we get [

n2

r2
− 1
r
∂r − ∂2

r

]
g2 = (E2 − 1)g2

g1 =
1

E − 1

[n
r

+ ∂r

]
g2,

and similarly for g3 and g4:
[
(n+ 1)2

r2
− 1
r
∂r − ∂2

r

]
g4 = (E2 − 1)g4

g3 =
1

E + 1

[
n+ 1
r

+ ∂r

]
g4,

These are Bessel differential equations solved by

g1 = C
(1)
1 Jn−1(kr) + C

(1)
2 Yn−1(kr)

g2 = g3 = C
(2/3)
1 Jn(kr) + C

(2/3)
2 Yn(kr)

g4 = C
(4)
1 Jn+1(kr) + C

(4)
2 Yn+1(kr).

The coefficients can be related using

Jn−1(kr) =
2n
kr
Jn(kr)− Jn+1(kr),

and the same relation for the Yn’s. Thus

C
(1)
1/2 =

k

E − 1
C

(2)
1/2 C

(3)
1/2 =

k

E + 1
C

(4)
1/2.

Since ψn has to be continuous at the origin, the radial functions gi(r) have to vanish at the
origin. We therefore have to set C(i)

2 = 0. Negative energy states are obtained by replacing
E → −E in the above equations. The eigenfunctions then become (C ≡ C

(2)
1 , D ≡ C

(4)
1 )

ψn,k,η = einα




C k
ηE−1Jn−1(kr)e−iα

CJn(kr)
D k

ηE+1Jn(kr)
DJn+1(kr)e+iα


 η ∈ {+,−}, (H.1)
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H. Details of the basis states for numerical diagonalization

with energy eigenvalues ηE = η
√
k2 + 1.

We discretize the basis states (H.1) by the boundary condition Jn(kn,jR) = 0 on a circle with
radius R as described in the text. The discretized basis states can be normalized using the
orthogonality relation for Bessel functions on a finite interval1

∫ R

0
dr rJn

(αn,i

R
r
)
Jn

(αn,j

R
r
)

=
R2

2
J2

n+1(αn,j)δij ,

and similarly2
∫ R

0
dr rJn±1

(αn,i

R
r
)
Jn±1

(αn,j

R
r
)

=
R2

2
J2

n+1(αn,j)δij .

The states (H.1) still involve the parameters C and D. One of them can be fixed by nor-
malization, the other one stems from an additional degeneracy due to the choice of the
four-dimensional reducible representation. States with isospin ±1/2 are degenerate as τ3/2
commutes with H[φ = (0, 0, 1)] and M3. Introducing the isospin s = ±1 as quantum number,
the discretized states are given by Eq. (6.11). The normalization conditions are

‖ψn,j,k,1‖2 = πC2R2J2
n+1(αn,j)

[
k2

n,j

(ηE − 1)2
+ 1

]
!= 1

‖ψn,j,k,−1‖2 = πD2R2J2
n+1(αn,j)

[
k2

n,j

(ηE + 1)2
+ 1

]
!= 1.

which leads to Eq. (6.12).

1see http://mathworld.wolfram.com/BesselFunctionoftheFirstKind.html
2derived using http://functions.wolfram.com/03.01.21.0064.01
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