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Abstract

ot

The influence of electrical and gas dynamical parameters on the
length of a linear constant-Mach-~number MHD duct bhas been investi-
gated. The gas has been assumed to be ionized by neutron irradiation
in the expansion nozzle preceding the MHD duct. Inside the duct the
electron recombination is assumed to be governed by volume recombi-
nation, It is found that there exists a distinct domain from which the
parameters must be choSen, pressure and Mach number being the
most critical ones, If power densities in the order of magnitude
100 MW /m> are desired, high magnetic fields and Mach numbers
in the supersonic range are needed. The influence of the variation
of critical parameters on the channel length is given as a product of

simple functions, each containing one parameter.
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1. Basic assumptions and derivation of equations

In an earlier paper [ 1] the concept of nuclear ionization was
introduced and some indications of the channel performance were given.
In the };;resent work the influence of the parameters involved in this
special type of ionization will be more completely presented for the '
case of Heé seeded with He3, assuming a linear constant-Mach-num-
ber generator working between an ideal nozzle and an ideal diffuser.
The configuration studied is outlined in Fig. la. The gas heated in the
nuclear reactor is simultaneously expanded and irradiated in a nozzle
0-1. Electricity is extracted in the adjacent MHD-generator 1-2, fol-
lowed by a2 diffuser in which the kinetic energy of the gas is transformed

back into thermal energy.

In ref. [1] it was shown that we can assume the electron loss to

be dominated by a three body recombination process
+ %
He +e+e ——dHe¥ + e

characterized by the coefficient R depending on the electron temper-

ature Te as

o =1.1" 10‘8Te‘9/2 m®s™1 (1)

At the reactor exit the gas temperature is equal to the electron temper-~

ature and

o =1.1- 10787 -9/2
[0} (8]

For an arbitrary temperature T eq, {1} can be transformed into

T 19/2 2
o =a | / s i {1a)}
T T,

Equation {1a) shows that the local rec ombination factor can be express-~

ed as the product of three factors

i a recombination coefficient given at a certain reference temper-
ature
ii the ratio between local gas temperature and reference temper~

ature,
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.the ratio between local gas temperature and local electron temper-

iii o
ature.
The plasma is assumed to consist of one type of single ionized

atoms with the ions closely coupled to the nentral gas. Under steady
state conditions the equations of conservation for this mixture give in

the absence of electron sources

2
v (ng_\f) =0 nmn (2)
{n.v)® ~-a nn 2 (3)
Vo AR e’ie -
N - 2
T . Lne(%: + Xe)_} ® -a M0, (4)
where Ve is the drift velecity of the electirons,
By subtracting eq. {3} from eq. {4} and cbserving the quasi-

-neutrality of the plasma we obtain the Maxwell equation
) 0 )
7 - (ne:f_e) = (5}

and subsequently from eqs. {4) and {la)

(

f \

T 1%/2 [ ..}
(n v}= -0 I o} / {_&}9/2 n 3 {&)
EARGS/A R b of B b of AR )

BEquation {6} gives the electron deusity as a function of the gas velocity
v and the local gas temperature T if the elevation of the electron
temperature T above T is known. The calculation of Te/T is given

. ra" I T . "
in ref. 12 wherf: a Maxwellian electron distribution has been assumed.

As elastic scattering is the dominating mechanism of energy exchange

between electirons and beavy particles, the connection between electron

P4

and gas temperature can he deduced frorn the energy balance
2 &
t ® I3
P B Rk o 1 ( - T} \
- = " Tm TeT 2 RpiTy ~ T {7
n el

Rend

., . . .
where B is the electrical field ength in the moving coordinate

str
system of the electrons. In eg. {7} the electrical power density ab-

.

sorbed by the gas due to chmic heating is put equal to the average
n

energy iost in elastic collisions per unit time.



This introduces the collision frequency Tel- . To account for inelastic
.processes, a correction factor § is introduced which is close to unity
for monoatomic gases but which may be one or more orders of magni-
tude larger for polyatomic molecules, This limits the use of phenomena
associated with elevated electron temperature to noble gases, eventual-
ly containing a minor amount of other ingredients.

The number density of heavy particles is
n = o + ng ’ (8)
Adding eq. (2) and (3) we obtain -

v+ (av) =0 (9}

It is convenient to introduce the degree of ionization
n

e
{322?{—4 (10)

Inserting (10} and {6) and using {9) we get

T\9/2 [3 \9/2 5,
veooB® o g : T—} f'n (11)
e

At this stage the MHD-channel must be speicfied. We choose the
one-dimensional treatment of a split-electrode constant-Mach-number
MHD-generator for reasons discussed in [1] and [3]. Additionally,
a constant-Mach-number generator facilitates a parametric survey
as the crossing of the critical line in the flow phase diagram [4] is
avoided.

In solving the flow equaticns it is convenient to introduce as a
variable the total electrical output Q normalized to the stagnation

enthalpy times the mass flow at the channel entrance [ 3]

Q Q
T % oo - = (13}
CprISlpl‘ lAl CpTSopoVvo

For the case of the two constraints k = const., M =& const the flow

equations are now proved to be [3]

(%;) m (1 - Mt (13a)



% =1 -1 (13b)

RPN £ (13¢)
1 .

Low(-m)f2 (134)

Vi

P . K )

S (1 - M) (13e)

Py

where

2,1 23
K {1 +5{1 - K}y - )M «éﬁ'z:"?}"k (13%)

We now want to calculate the length of duct required to extract the
normalized electrical power M. The connection between the length
x and T can now be deduced from the egquation of conservation of

<

energy

2
Vp-g—}—{-(CPT + 12’_—)3 —oszzk(l - k) (14)

where the decrease in total enthalpy flow pex unit length has been put
equal to the amount of extracted electrical power per unit volume. In
eq. {14) the scalar conductivity ¢ appears, Hall current being suppress-
ed by segmentation of the electrodes. As in ref, [1] the connection bet-
ween ¢ and B is given by an expression derived from classical Langevin
theory

ezﬁ 73 {}_ 5)
q(ZmekBTe) /

g = const

where the constant is of the order of unity., In the case of helium, the
elastic momentum transfer cross section q is approximately constant

and
L j}‘———a
M
o=H. L. X (16)

Ty VT

' 7
H=9.0+ 107 mho K/ %m

introduced in eq. {7) are interlinked by

-1

Hand 7
el



2
! e e . (162)
—— ny T
Tol meH e

Eg. {15} or (16) give the correct conductivity dependence on B

and T for

<1 0”23Vm2

sl ©

and a slight varxiation of the constant factor H can take care of the E
dependence for

- N - 17
1077 < Lcs 107 v [5] (17

This covers the range of variables important for the present purpose.

Using egs. {16) and {13}, eq. {14) can be transformed into

A e :

where x,. & characteristic interaction length, is defined by

8 [T /T \1/2
E ﬂ)K"lk ! /dﬂxk(l—ak}gf : (18)

c T vy

G]Vl B

Xy =

Using the same equations and taking %Xflfrom eq. {18), eq. (11) is
: |
transformed into '

g,

1 ' 4
ap 17 %Py T -1/2 5 36-8{ T
=T v ORI\ T BE(1 - M) T (20)

1 Te

=

In arder to obtain an expression for Te/T we use the expression for

the ohmic heating of the gas in the segmented channel

j+ E'= oveBe(k - 1)% (21}
transforming (7} into a quadratic in Te/T
2.2
v, B T IT
1 1-2K 2 e e
G pz(i—";l) (k- 1)% ==t (22)
1

where



{kx H\2 /m_
G.= ( = KT (222)

Inserting numexical values one finds

G=0.9-10° ' (22b)

The simultaneous solution of egs, (18), (20), {22) solves our prob-
lem, We rewrite this set by collecting the terms containing the input
conditions (reduced to the reactor exit values), In this connection it is
convenient to normalize the ionization B to its input value by introduc-

ing a new variable

T \1/2 )
B | el
b= i 22 )
By &Tl) ~ (ae

An asterisk will indigate that elevated electron temperature has been
assumed at 1 = +0, i.e. that the heating of electrons reaches its equi-
librium value immediately after electrons have entered the magnetic
field at x = .+O N = +0. As this assumption enlarges the characteristic
length {eq. {26))the estimate of the channel length will be conservative.

One obtains

x¥ CfT V1 /2
Srmre b -0 (T"') <

L L M {;“e} N (24)
mo= S {1+ | 1+4GF(1 - 1) ’ (25)
T { [ 1- ZK:l }

with the complementary relations

T 1/2
el\r / (26)

e |
X’l\:sxl‘\.’f_._



in the sequel.
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F=Cp- T(l-k
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02)1/3T

25 -1 s)-1/3

POB

-3/25

o)

F_{M)

A (M)

The functions of M used above are the following

2 {141/ 200 - M |12
n*M ; W
1+ 1/2(y - 1M,
1 ri/2ty - 1M 2\3/2
et | 3
- 1M

Yo+ 1/ 2y

t

1)M

) :
. M {_1 + 1 /2{y
\1 o+ 1A2(y

As Mo << M in practice,

1

*x
a

The constants CX,

1)M

2 4
4
o

Mo will be neglected compared to M

27)

(28)

{29)

(30)

(31)

(32)

(33)

(34)

C.. are determined by the prop-

¥

erties of the gas and are given by the following relationships:

C 1/2
p ) 23

(35)



m

c, = B x5.97- 10% (36)
{v - l}Hka
chch(y ~1)=3.46- 10° (37)

As the pressure always appears in the combination P./B we have for

the sake of simplicity introduced a reduced pressure

p/B = py

In deriving the expressions {29), (30} the initial ionization at x = -0
is needed. This has been discussed in [1], where for the special case
of ionization during an expansion in a nozzle in the presence of a con-

stant neutron flux the approximate expression
1 {s\1/3
61 = e {-—--\ / (38)

has been found,
Any solution of the system (23} - {25) is characterized by a set

of parametexs

X* .
1 %
m, h]. 2 K:, GF (393.)
related to

Pop T.oao, k M 5 G {(39b)
by eguations {26) - {37} and {131},

The constant G has been taken as 2 parameter as it contains §
whose variation can simulate the influence on the electron temper-
ature of processes other than the balance between electric field heat-

ing and losses due to elastic momentum transfer.



2, Variation of parameters

We want now to study how the variation of the "technical" param-
eters {39b) influences the solution of the channel equations and consider
the channel length, being perhaps the most important quantity, as a
function of 7. This problem can be considerably simplified by limiting
the range of parameters, In that aspect a concept of central importance
is that the overall thermal effeciency of the whole MHD plant must be
kept high, This resultsin a requirement for high isentropic efficiency
of the MHD channel itself [6]. The isentropic effeciency nis is defined
as the decrement in stagnation enthalpy of an actual channel due to the
extraction of electrical power, divided by the corresponding decrement
in enthalpy of an isentrnpic generator, both expansions starting from
the same temperature and working between the same stagnation pres-

sures {Fig. 1b), For constant ¢, we obtain

Tis-Tas 1 - Tps/Tis (40)
v - 1)/v
15 25 1 - (pzs/pls)

and for the constant-M channel

il
. = (41)
s X T LTI

which for T <<1 can be approximated by

1 v
—~ |~ QU L 4
Mie ™~ Mo =% 5T (42)

or

k
= (43)
o 1+ 1/2(0 - &)y - 1)M*

independent of T.
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On the other hand for T~1, implying large temperature and pres-
sure ratios, nis approaches T independently of k and M. For all
values of N we find 'ﬂi 2 'ﬂp - As T]p can be identified as the polytrope
or small stage efficiency this expresses the fact that the polytrope
efficiency is below the overall, isentropic efficiency. The relation-
ships between load factor k, Mach number, small stage and overall
efficiency, T]p and ﬂis, and expansion number K as expressed in
(41) - (43) are shown in Fig., 2 where Yy = 5/3 has been used. The Mach
number has been limited to 0 <M<2,.5 by practical aerodynamic de-
sign considerations, Previously, the requirement for high T}.ls was
emphasised and our range of primary interest is nis > 0, 6. Further-
more, T, the measure of extracted electrical power is limited by se-
veral reasons, If the MHD channel is intended to be a topper device,
Tog should be high enough for a modern conventional steam cycle, .
Additionally (13c) and (13e) show that the channel area and the pres-
sure ratio grow excessively with increasing M. Consequently, a fair
estimation is 0 < TN < 0, 4. This leaves the hatched areas in Fig, 2 as

the regions of main interest, and shows that applicable values of k and

K are confined fo

K < 6
k> 0.5

Using T _ = 1500 °K, Y= 5/3 and k = 0.8 we find starting from (31)

2
TR
aor ~ 22 (14 mP/3)? > (44)
P .- ~

the inequality being valid for all cases of practical value, as will be

shown below. This implies that (25) can approximately be replaced by

(45)



- 11 -

Inserting in (24) and integrating one finds that

-2
£~ (GF)~1/4 {1+ hl,(,(:?)g [1-a-m™" B (46)

The first term in eq. (46) describes the initial ionization and the brack-
et shows the change along the channel,

Now the last power term goes quickly to zero for all types of
expansions. This means that in order to avoid a decrease in ioniza-
tion along the channel in excess of an arbitrary chosen factor 2 it

is required that

h (GF)™ .
g <! (47)
We can rewrite this as
2,1/3 1.5 4
CH (Sao ) . 1 POB ‘I - l
- TK - 9 K1 - k) 7/8. 1.5 Z 7115781
(GCF)Z (1 - KT M1 + M“/3) !

(48)

The left side expression is completely dominated by the term in
the square bracket due to its high exponent. This justifies the arbit-
rary choice of the above mentioned factor 2. Furthermore, in order to
evaluate the expression outside the bracket we can use any reasonable
numerical values, e.g. for S and o, the reference values, and
K25 k= 0,7. A further simplification is obtained if T0 is eliminated
by inserting its reference value 1500 °K. As PoB is proportional to
T07/12, all other parameters dept fixed, a variation of the temperature
between 1300 °K and 1800 °K changes P.B only by about 1o per

cent. By these considerations (48) is changed into

PoB

M(1 + M2/3)°/%a - k)2/3

<1.5 | (49)
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For values of parameters outside the range defined by this in-
equality b vanishes very quickly. The relation (49) is shown in Fig, 3.
The curves k = const. or nis = const. divide the Pop ~ M plane into
two domains of which the lower one contains the range for acceptable
performance of the channel. As {49) imposes a more severe constraint
than (44) the latter approximation has been justified. This completes
the proof that within certain constraints, given in the expression (48),
the normalized initial ionization b is nearly constant and given ap-
proximately by the first term of eq. (46).

With this assumption we can integrate (23} and obtain

X

""’I{(T:LE)"(GF)IMW%T [1-q e/ (50)

For small T the bracket can be expanded in a binomial series.
Taking two terms and transforming Xy and F into technical parameters

we obtain

1/4. 1/a_ 3/2. -3/4, S,-1,
x~ C /CXG/p /TO /(.a_) /3,

F oB o
1 2,072 ‘
(- k)‘f/z [M(l + M /3)_J - M £, K) (51)
where
(M, =1 -2z, (52)

With the accuracy required in a parametrical survey one can accept
(M, K)~1 (53)

and consequently eq. (51) shows that the dependence of the channel length
on the technical parameters can be reduced to a very convenient form,

i. e, the product of simple functions each containing one parameter,

For (51) to be valid the parameters must of course be restricted to

ranges given by (48) or (49).
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Given the exact solution for one channel, the length of others can

be estimated using (51),

We finally consider the power density at the channel entrance.

For our set of a_s S, To we get from eq. (19) in ref. [1]

2

2
M k(1 - k) B e g3
P. = 24 + = MW/m (54)
! (1 +Mey3)H e P
and from (49)
1/3
p =1 ME(l -k "B MWy’ (55)

1 (L + My3) 7%

The equality sign is valid at the highest pressure admissible for a

certain Mach number,.

3. Conclusions and summary

The influence of electrical and gas dynamical parameters on the
length of a linear constant-Mach-number MHD duct has been investi-
gated. The gas has been assumed to be ionized by neutron irradiation
in the expansion nozzle preceding the MHD duct. Inside the duct the
electron recombination is assumed to be governed by volume recom-
bination depending on electron temperature by the law expressed by eq.
(1). The electron temperature has been calculated under the assump-
tion that the dominating process, by which electrons can lose energy,
is elastic momentum transfer with neutrals {eq. {7) ). It is found that
there exists a distinct domain (Fig, 3 or eq. (49) ) from which the
parameters must be chosen, pressure and Mach number being the
most critical ones, For a certain ratio of pressure and magnetic
field the lowest admissible Mach number is given. The resulting power
density given in eq. {54) can be increased by using higher Mach num-
ber and higher magnetic fields, If power densities in the order of mag-
nitude 100 MW/m3 are desired, high magnetic fields and Mach num-
bers in the supersonic range are needed, The influence of the variation
of critical parameters on the channel length is given as a product of

simple functions {(eq, (51) ), each containing one parameter,
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For the purpose of comparison with the approximate solutions
discussed above, the system (23) - (25) has been solved with a digi-
tal computer and the results have been compared to those obtained by
the simple expressions (51) and (52), For all parameters inside the
domain where the inequality {48) is valid the channel length is predict-
ed with an accuracy of a few per cent.

The computer solution for some illustrative cases is shown in
Fig. 4. M = 1.5 has been assumed and the channel length is given as
a function of the normalized extracted electrical power 1. Three sets
of curves representing different pressures are shown and each set
contains the curves for three different isentropic efficiencies.

In order to illustrate the use of the prescriptions as obtained
from Fig. 3, the channel length as.a function of PoB for some value
of M (e.g. 0.2, see the dotted line in Fig. 4) has been investigated.

The points AY, A’, A and BY, B,, B for nis # 0,7 and 0,8, re-

3/2

dicted by eq. (51) with the exception of B where the channel length

spectively, are obtained, These points follow the PoR law as pre-
has increased very much. An inspection of the corresponding points in
Fig. 3 shows that A lies above the point P (poB =1, M=1,5) and B
lies below. This means that P in the case A belongs to the accepted

region while in the case B the point P must be rejected,
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Nomenclature

MKSA-units are used with the exception of the pressure which

is given in atm.

General subscripts

— ompr et L I L ]

e electron P polytrope

el elastic S stagnation value

i ion 0 exit of reactor = inlet of nozzle

is isentropic 1 exit of nozzle = inlet of MHD channel

n neutral 2 exit of MHD channel = inlet of diffuser

Superscript

* indicates correction for.elevated electron temperature

Symbols

a recombination factor

B degree of ionization

Y ratio between specific heat at constant pressure and speci-~
fic heat at constant volume

8 correction factor accounting for inelastic collisions

il normalized electrical output or efficiency when appearing

with subscript

K expansion parameter

p gas density

g electrical conductivity

T collision time

A area

B magnetic field

b normalized degree of ionization

cp specific heat at constant pressure

Cx’ Ch’ CF constal"xts related to parameters given in subscript
E? electric field in a system moving with gas velocity v
e electron charge

F

Fx’ FF functions of Mach number
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constant introduced in connection with elevated electron
temperature

constant in conductivity formulae
dimensionless parameter

current density

load factor of channel

Mach number

mass of particle

particle density

electrical power density

pressure

reduced pressure

total electrical output

cross section for elastic momentum transfer
source strength of electrons

temperature

macroscopic velocity (drift velocity in the case of electrons)
length of channel

characteristical interaction length

approximately

5/3

1

5194 Ws/fkg, °K :
electron charge 1.6 10—19
9.0+ 107 mho °k'/% "}

Boltzmann’s constant 1,37 » 10728 agm m3/OK
Boltzmann’s constant 1,38 + 10723 Ws/°K
6. 64« 10727 kg for He?

5.6 - 10"35 Inét-:."1

5.0. 10°% ;™35

1500 °K



Fig, la.

Fig, 1b.

Fig, 2.

Fig. 3.

Fig. 4.
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Sketch of MHD-generator with nozzle and diffuser.
Definition of isentropic efficiency.

Connection between isentropic generator efficiency nis’ P
polytrope efficiency T‘lp, expansion factor K, load factor

k {(local effeciency), normalized extracted power 1.
Useful range of P,p’ M for = 0.2, ’I'O = 1500 °K,

Channel length as function of 1 with p and Tlis as param-

eters, M = 1.5,
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Fig. 1b. Definition of isentropic efficiency.
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For the curves Tjg= const
11 = 0.2 has been assumed.
A, B, P are check points
explained in the text.

Fig. 3. Useful range of p o, M for 1= 0.2, T = 1500 °K.
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