Absolute Transition Probabilities from the 453.1 keV Level in 183 W

S. G. Malmskog

AKTIEBOLaget ATOMENERGI
STOCKHOLM, SWEDEN 1966
ABSOLUTE TRANSITION PROBABILITIES FROM THE
453.1 keV LEVEL IN 183W

Sven G Malmskog

ABSTRACT

The half life of the 453.1 keV level in 183W has been measured by the delayed coincidence method to 18.4 ± 0.5 nsec. This determines twelve absolute M1 and E2 transition probabilities, out of which nine are K-forbidden. All transition probabilities are compared with the single particle estimate. The three K-allowed E2, $|\Delta K| = 2$ transition rates to the $\frac{1}{2}^-$ (510) rotational band are furthermore compared with the Nilsson model. An attempt to give a quantitative explanation of the observed transition rates has been made by including the effects from admixtures into the single particle wave functions.

Printed and distributed in October 1966.

This report is intended for publication in a periodical. References may not be published prior to such publication without the consent of the author.
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2. Experimental procedure</td>
<td>4</td>
</tr>
<tr>
<td>2.1 Source preparation</td>
<td>4</td>
</tr>
<tr>
<td>2.2 Half life measurement</td>
<td>4</td>
</tr>
<tr>
<td>3. Discussion</td>
<td>6</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>7</td>
</tr>
<tr>
<td>References</td>
<td>8</td>
</tr>
<tr>
<td>Table</td>
<td></td>
</tr>
<tr>
<td>Figures</td>
<td></td>
</tr>
</tbody>
</table>
1. INTRODUCTION

Already in 1954 Murray et al. [1] made a careful study of the gamma and electron transitions in the deformed nucleus ^{183}W. Two years later Kerman [2] showed that the level energies of the two well established $\frac{1}{2}^-$ - (510) and $\frac{3}{2}^-$ - (512) rotational bands could be accurately predicted by including a rotation-particle coupling correction (=RPC) to the well known adiabatic rotational energy formula. Recently the gamma ray energies and intensities in ^{183}W have been accurately remeasured by the curved crystal technique [3, 4] from the decay of ^{183}Ta (5 days). A corresponding high resolution measurement of the internal conversion electron lines of the transitions in ^{183}W has been given by Alexander and Hager [5]. From the measurement of L-sub shell conversion electron ratios these authors deduced the E2/M1 mixing ratios for the actual transitions. This new information has been used by Brockmeier et al. [6] for a critical test of the usefulness of the RPC scheme for fitting the experimental data from deformed odd A nuclei. Rowe [7] also has made an attempt to find out whether $|\Delta K| = 2$ bandmixing interactions play any role in the mixing of the $\frac{1}{2}^-$ and $\frac{3}{2}^-$ bands in ^{183}W.

From the (d, p) reaction studies by Erskine [8] it now seems established that the 453.1 keV level in ^{183}W can be identified as the lowest level in the $\frac{7}{2}^-$ - (503) rotational band. This level is deexcited by seven transitions, all of them ending up on levels belonging to the $\frac{1}{2}^-$ - (510) and $\frac{3}{2}^-$ - (512) rotational bands. If the $\frac{7}{2}^-$ - (503) assignment is correct this means that all the M1 transitions from the 453.1 keV level are either once or twice K-forbidden, while the E2 transitions are allowed or once K-forbidden. From a survey of single particle transitions in odd A deformed nuclei [9] once K-forbidden E2 transitions are found to have a hindrance factor $F^{E2}_{W} = T_{1/2}^{1/2} \gamma^{\exp} / T_{1/2}^{1/2} \gamma$ (Weisskopf) of the order of 10^3. The corresponding values for once and twice K-forbidden M1 transitions are $F^{M1}_{W} \sim 10^4$ and $F^{M1}_{W} \sim 10^5$ respectively. Using such estimates together with gamma and electron intensities for the transitions deexciting the 453.1 keV level its half life is found to be of the order of several nanoseconds. Such a half life can be measured by the delayed coincidence technique and the result offers a good test on the $\frac{7}{2}^-$ - (503) assignment of the 453.1 keV level. Furthermore...
the obtained absolute transition probabilities for the K-forbidden M1 and E2 transitions are to be compared with the Weisskopf estimate [10]. In the case of the E2, $|\Delta K| = 2$ transitions to the $\frac{3}{2}^-$ - (512) band the E2 transition probabilities are also compared with the Nilsson model [11].

2. EXPERIMENTAL PROCEDURE

2.1 Source preparation

Ten milligrams of spectroscopically pure tantalum metal was mechanically worked into a fine powder and pure alcohol was added. The smallest grains then form a suspension with the alcohol which was separated and dried in a small quartz bottle. This bottle was irradiated for two weeks in a neutron flux of 2×10^{14} n/cm2 sec. in which 183Ta was produced by the 181Ta $(2n,\gamma)$ 183Ta reaction. After activation alcohol was again added and the fine powder in the resulting suspension centrifuged onto a thin mylar backing. In this way several sources with 5 mm diameter and a thickness of 0.1 mg/cm2 were prepared. A source strength of 1 μC was found to be adequate for the present coincidence measurement. From a Ge(Li)-gamma ray spectrum it was settled that the major part of the activity belonged to the decay of 183Ta (5 days) while the activity of 182Ta (115 days) immediately after activation was at least a factor of ten smaller.

2.2 Half life measurement

183Ta is a β^- emitting nucleus with a predominant 615 keV branch (87 %) to the 453.1 keV $7/2^- 7/2^-$ - (503) excited level in 183W (fig. 1) [12]. This level is then deexcited by seven transitions ending up on the well known $1/2^- - (510)$ and $3/2^- - (512)$ rotational bands. Some of these transitions together with the feeding β^- branch were used for the determination of the half life of the 453.1 keV level. The principal instrumentation in this investigation has been an electron-electron coincidence spectrometer very similar to the one described earlier by Gerholm and Lindskog [13]. The time to pulse height converter used in this experiment utilizes the internal sweep of an oscilloscope and is a construction very similar to the one described by Thieberger [14]. To increase the coincidence efficiency we preferred to detect the exciting 615 keV β^-
transition in a bare Naton 136 plastic scintillator placed 3 mm from the source. The other channel consisted of one lens, set to 3% energy resolution, where different conversion lines were focussed onto a specially shaped Naton 136 plastic scintillator [15] optically coupled to the photomultiplier 56 AVP. From a single electron spectrum it was seen that, of the transitions leaving the 453.1 keV level, the 354.0 K electron transition was fully resolved while the 244.3 K and the 246.1 K transitions formed an unresolved group. The other four transitions were either too weak or were strongly mixed with other transitions with approximately the same electron energies.

Throughout the actual delayed coincidence measurement we accepted the β^- continuum between 400 and 600 keV as start pulses which were fed to the external sweep trigger of a Tectronix 545 oscilloscope. The 354.0 K or 246.1 K electrons were used as stop pulses and fed to the special sampling plug in unit [14]. 1000 nsec was chosen as full time sweep time (the fastest sweep time of this oscilloscope). The linear output pulses were analysed by a Nuclear Data 256 multichannel analyser. For the time calibration we used the internal delay unit of the oscilloscope itself, which in turn was compared with a 10 Megacycle crystal oscillator. We also measured the delay of the well known 482 keV level in 181Ta for which we found $T_{1/2} = (10.5 \pm 0.3)$ nsec, in good agreement with previous investigations [16]. A typical decay curve from the β^--246.1 K cascade is given in fig. 1. The picture shows an essentially delayed decay curve with a small prompt contribution mainly from $\gamma-\beta^-$ coincidences in the decay of 182Ta. By putting an Al absorber in front of the bare plastic crystal this $\gamma-\beta^-$ disturbance was measured and corrected for by subtraction. The remaining curve was analysed by a least squares fit to a function consisting of a single exponential decay plus a constant background. The following results were obtained:

$\beta^-(400 - 600 \text{ keV}) - 246.1 \text{ K (4 measurements)} T_{1/2} = 18.3 \pm 0.5 \text{ nsec}$

$\beta^-(400 - 600 \text{ keV}) - 354.0 \text{ K (3 measurements)} T_{1/2} = 18.6 \pm 0.7 \text{ nsec}$

From these measurements we conclude that the half-life of the 453.1 keV level in 183W is $T_{1/2} = 18.4 \pm 0.5 \text{ nsec.}$
3. DISCUSSION

The presently known relevant experimental information on the decay of the 453.1 keV level in ^{183}W is summarized in table 1. Out of the twelve M1 and E2 components in this decay nine are K-forbidden, while the three E2 components to the $\frac{3}{2}^{-} - (512)$ rotational band are K-allowed but asymptotically forbidden (they require a spin flip). In column 9 all these absolute transition probabilities are given in the single particle units (Weisskopf estimate). The tabulated hindrance factor F_w is defined by $T_{1/2}^{(\gamma)}(\text{exp})/T_{1/2}^{(\gamma)}(s.p.)$ where $T_{1/2}^{(\gamma)}$ is the partial gamma ray transition probability. The F_w factors for the three E2, $\Delta K = 2$ transitions show that these are all retarded by more than a factor of ten, which reflects their asymptotically forbidden character. Such a hindrance is furthermore expected as due to pairing effects. These E2 transitions are, however, enhanced as compared with the Nilsson model. In the light of earlier findings from other E2, $|\Delta K| = 2$ transitions [9] such enhanced E2 transitions are quite understandable. Fig. 2 shows the F_N factors for such E2 transitions plotted as a function of the energy difference between the decaying state and the nearest state capable of giving a $|\Delta K| = 2$ mixing component, e.g. the $\frac{5}{2}^{+} - \frac{7}{2}^{-} - (512)$ and the $\frac{5}{2}^{+} - (521)$ states in 169Yb, 173Yb and 175Hf. The figure shows that there is a general trend for the F_N factor to increase as the above mentioned energy difference increases. In ^{183}W the $\frac{7}{2}^{+} - (503)$ and the $\frac{7}{2}^{+} - (512)$ states are only 41 keV apart, which gives an opportunity for a strong mixing and thus enhanced E2, $|\Delta K| = 2$ transitions are expected. This effect is interpreted as due to admixtures caused by a $|\Delta K| = 2$ perturbing interaction.

Another possibility of studying these coupling effects occurs in the case of the K-forbidden transitions, which according to the Nilsson model are strictly forbidden. That such transitions actually take place can be understood in the light of admixtures of intrinsic states. In the case of the $\frac{1}{2}^{-}$ and $\frac{3}{2}^{-}$ bands in ^{183}W they are known to have a mutual mixing of the order of 5 - 20 per cent due to Coriolis coupling [6]. The once K-forbidden E2 transitions to the $\frac{1}{2}^{-}$ band are thus understood as E2 transitions between the $\frac{7}{2}^{+}$ band and the admixed $\frac{3}{2}^{-}$ component into the $\frac{1}{2}^{-}$ band. Taking into account the approximate ten per cent mixing, such once K-forbidden E2 transitions are expected to be slowed down an order of magnitude as compared with the corresponding K-allowed transitions.
In the case of K-forbidden M1 transitions no effect of such a direct mixing by Coriolis interaction occurs since $|\Delta K| = 2$ or 3. Furthermore there is no low-lying $\frac{5}{2}^+$ band which can be appreciably mixed into the $\frac{7}{2}^-$ and $\frac{3}{2}^-$ bands. One may therefore in this case assume that a direct $|\Delta K| = 2$ band-mixing can play a role in explaining the K-forbidden M1 rates from the $\frac{7}{2}^-$ (503) level. In the case of the once K-forbidden M1 transitions to the $\frac{3}{2}^-$ band such a direct $|\Delta K| = 2$ mixing should be expected to give an amplitude contribution of the order of per cent and therefore a corresponding retardation of a factor of one hundred as compared to the corresponding allowed M1 transitions. For the twice K-forbidden M1 transitions to the $\frac{1}{2}^+$ band these M1 transitions are understood to take place via the $K = \frac{3}{2}^-$ component mixed into the $\frac{7}{2}^-$ band by some $|\Delta K| = 2$ interaction. The other contributing terms will be of less importance as they require both a $|\Delta K| = 2$ and a Coriolis mixing, which will slow down these transition rates further by a factor of 5 - 20 depending on the magnitude of the Coriolis mixing between the $\frac{1}{2}^+$ and $\frac{3}{2}^-$ bands.

It thus seems possible by such simple arguments to give a quantitative picture of the different absolute transition probabilities from the $\frac{7}{2}^-$ (503), 453.1 keV level in ^{183}W, which is in rough agreement with the experimental findings. To get a better understanding of the different transition rates, however, a more detailed calculation regarding the $|\Delta K| = 2$ band mixing should be worthwhile.

ACKNOWLEDGEMENT

The author is indebted to Dr. Sven Wahlborn for his kind interest in this work.
REFERENCES

1. MURRAY J J, BOEHM F, MARMIER P and Du MOND J W M,
 Decays of Ta182 and Ta183.

2. KERMAN A K,
 Rotational perturbations in nuclei-application to W183

3. EDWARDS W F, BOEHM F, ROGERS J and SEPP\"I E J,
 Relative intensities of gamma rays following the decay of Ta182
 and Ta183.
 Nuclear Physics 63 (1965) 97.

4. GRUBER U, KOCH R, MAIER B P and SCHULT O W B,
 Energie- und Intensitätsmessung der während des Ta182 und
 Ta183 Zerfalls von W182 und W183 ausgesandter γ-Strahlung.
 Z Naturforsch 20 a (1965) 929.

5. ALEXANDER P and HÄGER R S,
 High-resolution measurements of internal conversion lines in W182.

6. BROCKMEIER R T, WAHLBORN S, SEPP\"I E J and BOEHM F,
 Coriolis coupling between rotational bands in the nucleus W183.
 Nuclear Physics 63 (1965) 102.

7. ROWE D J,
 A calculation of some ΔK = ± 2 band-mixing effects in the odd-
 mass nucleus W183.
 Nuclear Physics 61 (1965) 1.

8. ERSKINE J R,
 Nuclear spectroscopy with direct reactions. 1. 1964.
 (ANL-6848) p. 86.

9. LÖBNER K E G and MALMSKOG S G,
 Systematics of absolute gamma-ray transition probabilities in
 deformed odd-mass nuclei.
 Nuclear Physics 80 (1966) 505.

10. WAPSTRA A H, NIJGH G J and van LIESHOUT R,

11. NILSSON S G,
 Binding states of individual nucleons in strongly deformed nuclei.

12. WAY K,
 Revised A-chains: A = 182 (Hf, Ta, W, Re, Os, Ir, and Pt).
13. GERHOLM T R and LINDSKOG J,
A magnetic coincidence spectrometer for the measurement of
short nuclear lifetimes.
Arkiv Fysik 24 (1963) 171.

14. THIEBERGER P,
Wide range time to pulse height converter.
Arkiv Fysik 22 (1962) 127.

15. SPARRMAN P, LINDSKOG J and MARELIUS A,

<table>
<thead>
<tr>
<th>Transition energy in keV</th>
<th>Initial state</th>
<th>Final state</th>
<th>Multipolarity</th>
<th>Relative N_{γ}</th>
<th>Relative N_e</th>
<th>$T_{1/2}^{\text{exp}}$ in sec.</th>
<th>F_W</th>
<th>F_N</th>
</tr>
</thead>
<tbody>
<tr>
<td>γ (503)</td>
<td>$^{3}\frac{1}{2}^{-}$ (510)</td>
<td>$^{3}\frac{1}{2}^{-}$ (510)</td>
<td>E2</td>
<td>1.9±0.1</td>
<td>0.08</td>
<td>(3.3±0.3)x10^{-6}</td>
<td>(4.2±0.4)x10^{-3}</td>
<td>1 K-forb.</td>
</tr>
<tr>
<td>354.0</td>
<td>$^{5}\frac{1}{2}^{-}$ (510)</td>
<td>$^{5}\frac{1}{2}^{-}$ (510)</td>
<td>M1</td>
<td>39.7±1.3</td>
<td>6.1</td>
<td>(1.6±0.1)x10^{-7}</td>
<td>(3.2±0.3)x10^{-5}</td>
<td>2 K-forb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E2</td>
<td>2.9±2.9</td>
<td>0.1</td>
<td>$\geq1.1x10^{-6}$</td>
<td>$\geq6.8x10^{2}$</td>
<td>1 K-forb.</td>
</tr>
<tr>
<td>246.1</td>
<td>$^{7}\frac{1}{2}^{-}$ (510)</td>
<td>$^{7}\frac{1}{2}^{-}$ (510)</td>
<td>M1</td>
<td>99.7±3.0</td>
<td>40.0</td>
<td>(6.4±0.5)x10^{-8}</td>
<td>(4.2±0.3)x10^{-4}</td>
<td>2 K-forb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E2</td>
<td>0.3±0.3</td>
<td>0.04</td>
<td>$\geq1.1x10^{-5}$</td>
<td>$\geq1.1x10^{3}$</td>
<td>1 K-forb.</td>
</tr>
<tr>
<td>244.3</td>
<td>$^{3}\frac{3}{2}^{-}$ (512)</td>
<td>$^{3}\frac{3}{2}^{-}$ (512)</td>
<td>E2</td>
<td>32.0±1.0</td>
<td>5.8</td>
<td>(2.0±0.2)x10^{-7}</td>
<td>19±2</td>
<td>(6.5±0.7)x10^{-2}</td>
</tr>
<tr>
<td>161.4</td>
<td>$^{5}\frac{3}{2}^{-}$ (512)</td>
<td>$^{5}\frac{3}{2}^{-}$ (512)</td>
<td>M1</td>
<td>32.3±1.5</td>
<td>41.0</td>
<td>(2.0±0.2)x10^{-7}</td>
<td>(3.9±0.4)x10^{-4}</td>
<td>1 K-forb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E2</td>
<td>1.0±0.7</td>
<td>0.9</td>
<td>(6.4±4.8)x10^{-6}</td>
<td>78±54</td>
<td>(6.5±4.7)x10^{-1}</td>
</tr>
<tr>
<td>144.1</td>
<td>$^{9}\frac{1}{2}^{-}$ (510)</td>
<td>$^{9}\frac{1}{2}^{-}$ (510)</td>
<td>M1</td>
<td>9.3±0.5</td>
<td>16.0</td>
<td>(6.8±0.7)x10^{-7}</td>
<td>(9.0±0.9)x10^{-4}</td>
<td>2 K-forb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E2</td>
<td>0.1±0.1</td>
<td>0.01</td>
<td>$\geq3.2x10^{-5}$</td>
<td>$\geq2.0x10^{2}$</td>
<td>1 K-forb.</td>
</tr>
<tr>
<td>41.0</td>
<td>$^{7}\frac{3}{2}^{-}$ (512)</td>
<td>$^{7}\frac{3}{2}^{-}$ (512)</td>
<td>M1</td>
<td>1.7±0.2</td>
<td>19.8</td>
<td>(3.8±0.6)x10^{-6}</td>
<td>(1.2±0.2)x10^{-4}</td>
<td>1 K-forb.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>E2</td>
<td>(30±8)x10^{-4}</td>
<td>0.7</td>
<td>(2.1±0.6)x10^{-3}</td>
<td>28±8</td>
<td>(2.5±0.8)x10^{-2}</td>
</tr>
</tbody>
</table>

a) Gamma ray intensities recommended in Journal of Nuclear Data, Vol. IB, Feb. 1966. The N_{γ} and N_e intensities are normalized to give N_{γ} for the 246.1 keV transition to 100.

b) Electron intensities taken from ref. 1 and 5.

c) Weisskopf estimate taken from Wapstra et al., Nuclear spectroscopy tables, Amsterdam 1959, with statistical factor = 1.

d) Calculated with pure Nilsson wave functions from ref. 11. The deformation was taken as $\eta = 4$.
Fig. 1. Delayed coincidence curve taken between the 615 keV beta continuum and the 246 K conversion line in the decay of $^{183}_{73}$Ta, giving $T_{1/2} = 18.4 \pm 0.5$ nsec for the 453.08 keV level in $^{183}_{74}$W. The inset shows the deexcitation of this 453.08 keV level. The dashed curve illustrates the decay of the well known 10.5 nsec isomeric level in $^{181}_{75}$Ta.
The hindrance factors F_N of $E2, |\Delta K| = 2$ transitions are shown as a function of the energy difference between the two states with the same angular momentum which mix the two rotational band. See further description in the text. The following symbols are used: \blacklozenge proton transitions, \bigcirc neutron transitions. A: transitions from $I_i = K_i$ to $I_f = K_f$, B: $I_i = K_i$ to $I_f = K_f + 1$, C: $I_i = K_i$ to $I_f = K_f + 2$ and E: $I_i = K_i + 1$ to $I_f = K_f + 1$. The two values of F_N for the proton transitions correspond to the hindrance factors obtained with (the upper) and without (the lower) effective charge correction. Most of the information given in this figure is taken from reference 9.
174. Improvements in applied gamma-ray spectrometry with germanium semi-

178. An analytical and experimental study of burnout conditions in vertical chan-

176. Effect of buoyancy on forced convection heat transfer in vertical chann-

1-170. (See the back cover earlier reports.)

181. Studies of the fission integrals of U235 and Pu239 with cadmium and

177. Burnout data for flow of boiling water in vertical round ducts, annuli and

183. Mechanical and instrumental experiences from the erection, commissioning

188. Trace elements in human myocardial infarction determined by neutron

196. Measured and predicted variations in fast neutron spectrum when pene-

190. On the use of importance sampling in particle transport problems. By

214. Characteristics of linear MHD generators with one or a few loads. By

205. Systematics of absolute gamma ray transition probabilities in deformed

203. A scintillometer assembly for geological survey. By E. Dissing and O.

1965. 109 p. Sw. cr. 8:-.

27 p. Sw. cr. 8:-.

52 p. Sw. cr. 8:-.

18 p. Sw. cr. 8:-.

32 p. Sw. cr. 8:-.

25 p. Sw. cr. 8:-.

13 p. Sw. cr. 8:-.

51 p. Sw. cr. 8:-.

205 p. Sw. cr. 8:-.

248. One-group perturbation theory applied to measurements with void. By R.

249. Optimal linear filters. 2. Pulse time measurements in the presence of j

246. Operating experience at the Ågesta nuclear power station. By S. Sand-

243. On shear stress distributions for flow in smooth or partially rough annuli.

233. A Summary Report on Assembly 3 of FRO. By T. L. Andersson, B. Brun-

231. Calibration of the failed-fuel-element detection systems in the Agesta

230. Theoretical time dependent thermal neutron spectra and reaction rates

226. Theoretical time dependent thermal neutron spectra and reaction rates

225. Neutron scattering in hydrogenous moderators, studied by the time de-

223. Neutron scattering in hydrogenous moderators, studied by the time de-

222. Measurement of the electrical conductivity of He

220. A study of the "388" MeV complex gamma emission from plutonium-239.

219. An automated amon-exchange method for the selective sorption of five

218. Measurement of the time dependence of neutron slowing-down and ther-

216. Measurement of the time dependence of neutron slowing-down and therma-

215. An automated amon-exchange method for the selective sorption of five

214. Characteristics of linear MHD generators with one or a few loads. By E. A. Willäss. 1965. 16 p. Sw. cr. 8:-.

211. Radiation Induced removal of stacking faults in quenched aluminum. By U. Bengtsson. 1965. 11 p. Sw. cr. 8:-.

210. An automated amon-exchange method for the selective sorption of five

209. Void measurements in the regions of sub-cooled and low-quality boiling.

207. Half life measurements in 149Sm. By S. G. Malmg. 1965. 10 p. Sw. cr. 8:-.

206. On shear stress distributions for flow in smooth or partially rough annuli.

205. On the use of importance sampling in particle transport problems. By R.

202. An experimental study of natural circulation in a loop with parallel flow

201. An experimental study of natural circulation in a loop with parallel flow

199. An experimental study on the magnetic field. By E. A. Witalis. 1965. 17 p. Sw. cr. 8:-.

198. Calcium and strontium in Swedish waters and fish, and accumulation of

197. Energy dependent removal cross-sections in fast neutron shielding theory.

196. Energy dependent removal cross-sections in fast neutron shielding theory.

195. A new method for predicting the penetration and slowing-down of neutrons

194. Energy dependent removal cross-sections in fast neutron shielding theory.

193. Energy dependent removal cross-sections in fast neutron shielding theory.

192. An electron detector for neutron induced dose in high temperature tensile ductility of Nb stabilized austenitic steels. By R. B. Roy. 1965. 15 p. Sw. cr. 8:-.

191. Trace elements in human myocardial infarction determined by neutron

190. Trace elements in human myocardial infarction determined by neutron

189. Trace elements in human myocardial infarction determined by neutron

188. Trace elements in human myocardial infarction determined by neutron

187. Trace elements in human myocardial infarction determined by neutron

186. Trace elements in human myocardial infarction determined by neutron

185. Trace elements in human myocardial infarction determined by neutron

184. Trace elements in human myocardial infarction determined by neutron

183. Trace elements in human myocardial infarction determined by neutron

182. Trace elements in human myocardial infarction determined by neutron

181. Trace elements in human myocardial infarction determined by neutron

180. Trace elements in human myocardial infarction determined by neutron

179. Trace elements in human myocardial infarction determined by neutron

178. Trace elements in human myocardial infarction determined by neutron

177. Trace elements in human myocardial infarction determined by neutron

176. Trace elements in human myocardial infarction determined by neutron

175. Trace elements in human myocardial infarction determined by neutron

174. Trace elements in human myocardial infarction determined by neutron