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Digital signal processing algorithms for nuclear particle spectroscopy are described along
with a digital pile-up elimination method applicable to equidistantly sampled detector sig-
nals pre-processed by a charge-sensitive preampliˇer. The signal processing algorithms are
provided as recursive one- or multi-step procedures which can be easily programmed using
modern computer programming languages. The in�uence of the number of bits of the sampling
analogue-to-digital converter on the ˇnal signal-to-noise ratio of the spectrometer is consid-
ered. Algorithms for a digital shaping-ˇlter ampliˇer, for a digital pile-up elimination scheme
and for ballistic deˇcit correction were investigated using a high purity germanium detector.
The pile-up elimination method was originally developed for ˇssion fragment spectroscopy
using a Frisch-grid back-to-back double ionization chamber and was mainly intended for pile-
up elimination in case of high alpha-radioactivity of the ˇssile target. The developed pile-up
elimination method affects only the electronic noise generated by the preampliˇer. Therefore,
the in�uence of the pile-up elimination scheme on the ˇnal resolution of the spectrometer is
investigated in terms of the distance between piled-up pulses. The efˇciency of the developed
algorithms is compared with other signal processing schemes published in literature.

The investigation has been performed at the Laboratory of Information Technologies,
JINR.
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INTRODUCTION

The basic element of a nuclear spectrometer is a detector combined with a
charge-sensitive preampliˇer. The measurement of the kinetic energy of a radia-
tion particle relies on the processing of the electric current pulse created by the
motion of the free electrons/holes released during the ionization of the detector
material. The time dependence of the detector current also conveys information
on the ionization density along the ionizing particles' deceleration path. The total
number of free electrons/holes is proportional to the particle kinetic energy, which
can be evaluated as the integral of the current �own through the detector. The
step-like pulse at the output of a charge-sensitive preampliˇer (CSPA) is the result
of an integration of the detector current. The height of the pulse is proportional
to the total charge produced during the deceleration of the charged particle. This
pulse height can be measured as the difference between the baseline (before the
particle hits the detector) and the peaking value (after total charge collection was
done) of the pulse after ˇltering out the useless high frequency components with
the help of a shaping-ˇlter ampliˇer (SFA). This principle is implemented in
commercially available nuclear electronic modules performing signal processing
which can be represented as a sequence of mathematical procedures applied to
the waveform of a continuous signal. Sometimes, when pulse shape information
is needed, the analysis of the detector current signal can be more convenient.
The current pulse can be converted into a step pulse by digital integration and
vice versa. The output pulse of the SFA can have either a Gaussian or �at top
pulse shape that can be used as the input to a peak-sensing analogue-to-digital
converter (ADC) for a pulse height analysis. From a mathematical point of view,
one can consider the signal evolution from the detector to the ADC as a sequence
of transformations that can be described by precisely deˇned mathematical ex-
pressions. For example, the CSPA integrates the input current pulse; the SFA
convolutes the output signal of the preampliˇer with a kernel function deˇned
by the shaping parameters of the SFA; and the ADC converts the peak value
of the shaped pulse to a digital output value. Recently, using waveform dig-
itizer (WFD), the above mentioned mathematical transformations implemented
in analogue electronic modules can be implemented software-wise using digital
signal processing (DSP) algorithms. Some examples of the implementation of
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DSP techniques to nuclear particle spectroscopy are reported in Refs. 1Ä5, where
the analogue pulse processing modules with continuous time signals were re-
placed by direct calculations with sampled signals Å discrete values taken from
a continuous signal at equidistantly separated points. According to Shannon's
theorem, if the signal sampling was done properly, both the sampled and contin-
uous forms of the signal representation are equivalent to each other. In practice
the difference between the two representations depends on the precision of the
analogue-to-digital conversion.

HARDWARE AND SOFTWARE USED IN MEASUREMENTS

Detector pulses were digitized using a TDS3054B digital storage oscillo-
scope from Tektronix Inc. as shown in Fig. 1. The TDS3054B allowed signal
digitization with an accuracy of 8 bit and with a frequency of up to 5 · 109 sam-
ples/sec. Four waveforms of 10000 samples each can be simultaneously recorded
in the local memory of the oscilloscope, controlled by a remote PC via Ethernet
connection. Data exchange between the oscilloscope and the PC was facilitated
by the TekVISA [6] software library easily accessible from the Tektronix Inc.
company web site. Both the data acquisition and the data analysis software were
developed using Microsoft Visual C++ for Windows XP. Let us consider, for
example, a high-purity germanium (HPGe) detector irradiated by a 60Co cali-
bration source. Detector pulses after being processed by a CSPA (with -3dB
bandwidth of ∼ 15 MHz) were digitized by the oscilloscope with 250 MHz and
8 bit (256 levels) accuracy. According to Shannon's theorem the digitization is
a lossless procedure if the signal sampling frequency is more than 2*F, where
F is the signal bandwidth. Let us consider Fig. 1 where the block diagram of
the CSPA is presented to demonstrate the transformation of the detector signal.
Let t being the time interval passed from the start of the measurement when
the particle hits the detector and I(t) is the instant value of the electric current
�owing through the detector at time t. Assuming a particle entering the detector
at t = 0, the following relation between the detector current and the preampliˇer
output voltage V (t) is valid:

V (t) =

∞∫
0

I(τ)h(t − τ)dτ . (1)

The measured output V (t) can be used directly for the determination of the
total charge created by the particle assuming that the current pulse duration is
short enough and h(τ) ∼ const. In real systems the ˇnite pulse duration leads
to a systematic error, the so-called ballistic deˇcit, depending on the shape of
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Fig. 1. Generalized block diagram of a charge-sensitive preampliˇer along with the data
acquisition system

I(τ). Thanks to digitization the solution of Eq. (1) with respect to I(τ) becomes
possible allowing a direct evaluation of the detector current and the total charge.
Inversion of Eq. (1) yields:

I(t) =

∞∫
0

V (τ)H(t − τ)dτ . (2)

As follows from Eq. (2), the electric current �owing through the detector can be
found if H(t) is a known function and V (t) has been measured. The function
H(t) usually can be determined using a precision pulse generator in a sepa-
rate measurement, and it is supposed to be a stable characteristic of a given
preampliˇer.

MAIN PROPERTIES OF SAMPLED AND CONTINUOUS
SIGNAL REPRESENTATIONS

We suppose that all functions in Eq. (2) and further on in this work are
continuous functions of the argument and they belong to the functional space L2

(continuous functions, having continuous derivatives of ˇrst and second orders).
However, the sampling procedure converts continuous functions into sequences of
discrete numbers taken at equidistantly spaced points in time. Let us now consider
the sampling procedure of the V (t) function in some detail, presuming that the
sampling frequency is chosen to comply with the requirements of Shannon's
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theorem. In addition we assume a measurement is made with an ideal WFD taking
an instant value of the signal with inˇnite resolution. Such kind of digitization
cannot be realized in practice, but as it was shown in Ref. 7, the effects related
to a noninstant conversion can be taken into account by the convolution of the
instantly sampled signal with a kernel function well deˇned by the width of the
time window needed for the analogue-to-digital conversion at the sampling point.
A mathematical model of the ideal sampling can be represented with the following
equation:

VS(t) = V (t)p(t) = V (t)
∞∑

m=−∞
δ(t − m

FS
), m = ...,−2,−1, 0, 1, 2, ..., (3)

where, δ(t) is Dirac's delta function. Application of the Fourier transform to
Eq. (3) gives:

V̂S(f) = V̂ (f) ∗ P̂ (f) =
∞∑

k=−∞
V̂ (f + kFS), (4)

where the symbol * was used for the convolution operation and V̂S(f) is the
Fourier transform of the functionVS(t). Equation (4) represents the Fourier trans-
form of the VS(t) signal, which is a periodical repetition of V̂S(f) with a period
of 1/FS . If the sampling frequency is high enough to prevent spectrum overlap
between adjacent periods, then each interval contains the exact copy of V̂S(f).
By multiplying Eq. (4) with the rectangular function Π(f) equal to 1 inside the
interval [0, FS] and zero otherwise, one can obtain a function with the same
Fourier transform as for V (t). Finally, the following equation known as Shan-
non's equation, provides the rule for reconstructing the continuous signal from
its samples:

VS(t) =
∞∑

m=−∞
V (

m

FS
)sinc(FS(t − m

FS
)), sinc(x) =

sin(πx)
πx

. (5)

It should be noted that sinc(x) is the Fourier transform of the rectangular function
Π(f) which is usually called the window function. The sinc(x) function in turn is
usually called the time resolution function. For practical applications, a Gaussian
type window function, for example, is sometimes more preferable because of
its nonoscillating behaviour. It should be noted that in practical applications
always sampled functions are used in calculations. The continuous presentation
of a sampled signal using Eq. (5) provides the means to increase the sampling
frequency when it can be necessary for calculations with the waveforms.

The ˇnite resolution of the WFD can be treated as an additional source of
noise, called quantization noise. For example, the absolute accuracy of samples
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V (
m

FS
) taken by an eight-bit WFD in Eq. (5) is 1/N , where N = 2M is the

number of quantization levels. Hence, each sample has a statistical error ho-
mogenoeusly distributed in the [0, 1/256] interval. If the investigated signal is
a sine wave with amplitude slightly below the clipping range of the WFD, then
the theoretical root mean square (RMS) signal to quantization noise ratio (SNR)
measured within the Nyquist bandwidth according to Ref. 8 is given by:

SNRdB = 20 log10(
RMSSignal

RMSNoise
) = 6.02M + 1.76dB, (6)

where dB stands for decibel, and, when used with signals, is a dimensionless
quantity that indicates the ratio of the signal RMS to the RMS of the noise. In
practice, the �uctuation of the quantization level widths of a real WFD produces
additional noise which can be taken into account as a reduction of the physical
number of bits in accordance with the solution of the following equation taken
from Ref. 8:

ENOB =
SNRActual − 1.76dB

6.02
. (7)

The effective number of bits (ENOB) can be measured by stimulating the input
of the WFD by a sine wave with the frequency compliant to the Nyquist criterion.
Such a sine wave was applied to the preampliˇer input as shown in Fig. 1. After
a number of samples were collected, a least-squares ˇtting procedure was used
to evaluate the actual SNR. Then ENOB was found using Eq. (7) and the WFD
was considered as an ideal device with an ENOB not necessarily being an integer
number. It should be noted, if Eq. (7) is used for a unipolar signal, then the ENOB
value turns out to be one bit greater than calculated with a bipolar sine wave.

DESCRIPTION OF THE DIFFERENTIATION AND SHAPING
ALGORITHMS

Equation (1), providing the relation between the preampliˇer output signal
and the detector current stimulated by the ionizing particle, can be used as a
starting point for the determination of the particle's kinetic energy. In practice,
the function h(t − τ)can be represented analytically as:

h(t − τ) =
1
α

exp (−(t − τ)/α) for t � τ, and h(t − τ) = 0, for t < τ. (8)

The parameter α is the decay time of the preampliˇer and is in the range of 50Ä
100 μs. A δ-function-like current pulse applied to a charge sensitive preampliˇer
input produces according to Eq. (1) a step-like output signal with fast rise time
and exponential decay time α (see left part of Fig. 2). The height of the pulse is
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Fig. 2. Original signal V (t) (left part) and smoothed signal v(t) (right part) using Eq. (9)

proportional to the total charge composing the current pulse, hence to the kinetic
energy of the ionizing particle. In the present measurement, the output signal
of the preampliˇer was digitized and stored for further off-line DSP analysis.
As mentioned above, according to Shannon's theorem, sampled and continuous
representations of the signal are equivalent to each other if the signal sampling
was made correctly [5, 7]. Considering the transformation of Eq. (1) as follows:

v(t) =
1√
πσ2

∞∫
0

V (τ) exp (− (t − τ)2

2σ2
)dτ =

∞∫
0

i(ϑ)h(t − ϑ)dϑ, i(ϑ) =

=
1√
πσ2

∞∫
0

I(ξ) exp (− (ϑ − ξ)2

2σ2
)dξ, (9)

one ˇnds that Eq. (9) is the smoothed version of Eq. (1) with the following

smoothing ˇlter kernel function S(τ) =
1√
πσ2

exp (− τ2

2σ2
). A smoothing on

the right-hand side of Eq. (1) is necessary for noisy signals to prevent large
�uctuations in the solution, but it is not strictly required. The effect of ˇltering
is demonstrated in Fig. 2, where both signals representing v(t) and V (t) are
given for comparison. A smoothed function i(t) for the detector current can
be found from Eq. (9) using the following recursive expression representing a
differentiation

ik = λνk − νk−1, k = 0, 1, 2, .....N, (10)

where ik = i(tk), νk = ν(tk) are values taken at the sampling points tk, i0 = 0,
and λ = exp (1/α) is deˇned by the used preampliˇer. The time dependence of
the detector current found with the help of Eq. (10) is shown in Fig. 3. Integrating
this current signal over time according to expression

Q(t) =

t∫
0

i(ϑ)dϑ, (11)
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Fig. 3. Current pulse i(t) found as the solution of Eq. (9) using the recursive Eq. (10)

Fig. 4. Signal v(t) and the solution of Eq. (11) Q(t). The ballistic deˇcit value can be
seen as the difference at the peaking points of the two signals

leads to the total charge �own through the detector as the peak value of the step
pulse Q(t). Both Q(t) and ν(t) are presented in Fig. 4 for demonstrating the
®ballistic deˇcit¯ that can be seen as the difference between the two signal peaks
(this is difˇcult to see). In the optimal analogue signal processing procedure
[8, 9], the signal Q(t) ˇrst passed the C-R (circuit consisting of a serially linked
capacitance Å C and a resistance Å R as shown in the left-hand side of Fig. 5)
differentiator with the transfer function as follows:

Df(τ) = δ(τ) − 1
A

exp (− τ

A
), (12)
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Fig. 5. Differentiating (a) and integrating circuits (b) made of a resistor and a capacitor

where δ(τ) is Dirac's delta-function and A is a shaping constant. Usually
differentiation is followed by 3Ä4 successive R-C (circuit consisting of a serially
linked resistance Å R and a capacitance Å C as shown in the right side of Fig. 5)
integrations with the following transfer function

Int(τ) =
1
A

exp (− τ

A
). (13)

After differentiation, the step-like function is transformed into an exponential
decay function with the peak value proportional to the total charge value collected
on the detector electrode. Successive integrations are needed to improve the
signal-to-noise ratio resulting in an almost Gaussian shaped pulse. Historically,
signal processing using Eqs. (12) and (13) was derived by optimization of the SNR
using signal ˇltering after differentiation [8]. The following equation provides
the mathematical description of the transformations (12) and (13):

V Out(t) =

t∫
0

dV In(τ)
dτ

W (t − τ)dτ =

= V In(t)W (0) −
t∫

0

V In(τ)
dW (t − τ)

dτ
dτ. (14)

For example, it can be easily veriˇed that the convolution of
dV In(t)

dt
with the

weighting function

W (τ) =
1
A

exp (− τ

A
) (15)

is equivalent to the transformations given by Eqs. (12) and (13). The peak
value of V Out(t), corresponding to the total measured charge of the ionizing
particle, is proportional to the particle's kinetic energy. Changing the weighting
functionW (t) one can obtain different signal shape and signal processing schemes
optimized for a particular experiment, and may be chosen as a compromise
between counting rate and resolution. One can verify the validity of the following
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transformation:

V In(t)W (0) −
∞∫
0

V In(τ)
dW (t − τ)

dτ
dτ = V In(t) −

∞∫
0

V In(τ)
dW (t − τ)

dτ
dτ.

(16)
Using the substitution

V In
k = V In(kΔ), V Out

k = V Out(kΔ) and V Int
k =

∞∫
0

V In(τ)
dW (kΔ − τ)

dτ
dτ

one can get the following relations from Eq. (16):

V Int
k+1 = V Int

k × A + V In
k , V Out

k = V Int
k − V In

k . (17)

Applying N subsequent integrations using relation V Int
k+1 = V Int

k × A + V In
k ,

where at each next step the output signal from the previous step is treated as
the input signal for the next step, is identical to passing of the signal through
a CR-RCn ˇlter. Figure 6 illustrates how a step like pulse is transformed when
passed through the CR-RC4 ˇlter. For a trapezoidal ˇlter as shown in Fig. 7 the
following recursive expression was obtained:

V Out
k+1 = V Out

k − (V In
k−T+1 + V In

k−T−A − V In
k−1 + V In

k−2T+1−A), (18)

where the meaning of constants A, T is indicated in Fig. 7. The output pulses of
the CR-RC4 (A = 4000 ns) and trapezoid ˇlters (T = 4000 ns, A = 800 ns) are

Fig. 6. Passage of a step-like pulse through the CR-RC4 ˇlter
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Fig. 7. Illustration of the trapezoidal ˇlter shape. Inside the interval [-T,-A] the ˇlter has
positive slope, inside the interval [-A, A] the slope has positive parameters and slope has
negative inside the interval [A, T]

Fig. 8. Output pulse of the CR-RC4 ˇlter when a step-like pulse is applied to the input

Fig. 9. Output pulse of the trapezoidal ˇlter when a step-like pulse is applied to the input
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shown in Figs. 8 and 9, respectively. As an example, a pulse height distribution for
a 60Co source using a HPGe as detector and the oscilloscope, presented in Fig. 10,
is acquired using the CR-RC4 shaping algorithm. The resolution was found to be
2.15 keV. It should be noted that the activity of the source was not high enough
to create a considerable pile-up rate in order to investigate the in�uence of the
source intensity on the quality of the implemented signal processing. Therefore,
a special procedure was developed to verify the effectiveness of the pile-up
elimination algorithm on the quality of the obtained pulse height distributions.

Fig. 10. Energy spectrum constructed from waveforms acquired during a measurement
with a 60Co calibration source

INVESTIGATION OF PILE-UP ELIMINATION SCHEME

The measurement procedure considered above works well for isolated pulses,
i.e., pulses separated from each other by a distance longer than the width of the
response of the CR-RCn or trapezoidal ˇlter to the unit step pulse. In practice,
complete pulse isolation cannot be realized and as a result some pulses were
distorted by pile-up. To prevent the measured spectrum degradation, a special
pile-up elimination procedure was developed and implemented in measurements.
First, the output signal of the charge-sensitive preampliˇer was converted to a
current pulse using Eq. (10). According to the used data acquisition scheme,
the pulse triggering the acquisition hardware was located at a ˇxed position of
the waveform called trigger position. If an additional pulse was detected at
the distance less than ±L, then the acquired waveform undergoes the pile-up
elimination procedure illustrated in Fig. 11. The area occupied by the detected
pile-up pulse in the waveform (right-hand part of Fig. 11) was forced to zero
and then the target pulse height was calculated using pulse processing with the
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CR-RC4 or the trapezoidal shaping as was described in the previous paragraph.
Unfortunately, even though forcing the area in the vicinity of the analyzed pulse
to zero does not affect the pulse itself, it in�uences the noise, eventually degrading
the resolution of the spectrometer. Obviously, the scale of such an in�uence can
be investigated by comparing the spectrometer resolution, when pile-up �agged
waveforms are completely excluded from the analysis, with the resolution, when
the pile-up elimination scheme was implemented. As was mentioned above at
the available source intensity, almost 100% of the acquired events were free of
pile-ups. Therefore pile-up pulses were simulated by forcing of the average signal
width time interval to zero and the resolution was compared with the resolution
measured with undisturbed waveforms. The distance between the analyzed pulse
and the simulated pile-up was ˇxed to a certain value and the entire acquired
data set was analyzed to determine the resolution for the 1.173 MeV line of the
60Co source. The procedure was repeated with different distances between the
pulse and the simulated pile-up, and the dependence of the resolution on the
distance was measured and plotted in Figs. 12 and 13 for the CR-RC4 and for the
trapezoidal ˇlters, respectively.

The degradation of the spectrometer resolution as shown in Figs. 12 and 13
is stipulated by the distortion of the electronic noise, when the pile-up elimination

Fig. 11. The sequence of steps in pile-up elimination using a current pulse waveform
starts from pile-up detection as shown in the upper left ˇgure. Elimination of the second
current pulse is demonstrated in the upper right ˇgure. The lower two ˇgures illustrate the
conversions of the Q(t) waveform
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Fig. 12. Resolution as a function of the
distance between the original pulse and
the simulated pile-up pulse for the CR-
RC4 ˇlter

Fig. 13. Resolution as a function of the
distance between the original pulse and
the simulated pile-up pulse for the trape-
zoid ˇlter

scheme is implemented. In real measurements pile-up pulses also cause degra-
dation of resolution and one might raise the question about the relation between
these two effects. It should be noted that the resolution degradation in the case
of using the described pile-up elimination scheme depends on the distance be-
tween pulses and at the minimum distance (when pulses still can be treated as
separate) it is ∼ 3 times (for trapezoidal ˇlter) lower than for isolated pulses.
Such degradation, however, can be controlled by the software, and therefore the
experimentalist can make a choice between the counting rate and the resolution
in his measurement.

For ˇssion fragment mass spectroscopy, the double back-to-back Frisch-
gridded ionization chamber has an intrinsic energy resolution of ∼ 600 keV [10].
The contribution of the electronic noise to this value measured with the help of
a precision pulse generator was found to be ∼ 50 keV. Taking into account the
results of the HPGe detector measurements, one can expect almost no degradation
of the resolution for ˇssion fragment spectroscopy when the pile-up elimination
scheme will be implemented. This conclusion can open new perspectives for
ˇssion fragment mass and kinetic energy measurements of targets with high
intrinsic alpha radioactivity such as 239Pu, 241Am, 245Cm because the pile-up
elimination scheme does not signiˇcantly in�uence the ˇnal energy resolution of
the spectrometer.

DIGITIZATION, SAMPLING NOISE AND NUMBER OF BITS

The measurement was performed using a high purity germanium (HPGe)
detector and the TDS3054B oscilloscope (ENOB = 6.2) as the waveform digitizer.
The energy resolution determined from the spectrum being 2.15 keV FWHM for
the 1.173 MeV line of the 60Co source was achieved with an RC-CR4 shaping.
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The parameter A = 4000 ns was chosen both for differentiator (Eq. 12) and
integrator (Eq. 13). For comparison the procedure described in Ref. 11 was
implemented for the analysis of the same data set, where the pulse height was
calculated as the difference between values averaged in two windows of the
same width selected at the ˇxed position and symmetrically in respect to the step.
From calculation point of view, the last procedure seems similar to the trapezoidal
ˇltering considered above. The difference is that in the analysis with a trapezoidal
ˇlter the maximum value of the difference is selected between sequential values
calculated for moving windows, but the procedure of Ref. 11 gives the difference
at a predeˇned point, which cannot guarantee the maximum for any waveform.
Using widths of both windows of 10000 ns selected symmetrically in respect to
the trigger position, a FWHM of 2.90 keV for the 1.173 MeV line of the 60Co
source was obtained, which is more than 40% worse than in the analysis with
a trapezoidal ˇlter. The ˇrst reason of degradation of the resolution is that the
procedure described in Ref. 11 does not guarantee the best SNR value according
to Ref. 12 (the best SNR can be achieved at the peak of the ˇltered signal). The
second reason is that the present ˇltering procedure, in contrary to the procedure
with ˇxed positions of the windows, utilizes the full dynamic range of the signal
including its rising edge. Apparently, a signal dynamic range limitation reduces
the ENOB of the WFD increasing the sampling noise. Comparison of different
signal processing results are summarized in the Table, where the resolution is
determined both for signals from the gamma source and for ˇxed pulse height
signals from the precision pulse generator.

As can be seen, the energy resolution of a spectrometer based on HPGe de-
tectors depends on electronic noises which can be considered as parallel and serial
white noise generators at the input of the preampliˇer [12]. For the considered
digital spectrometer, additional sampling noises introduced by the WFD should be
taken into account, too. The sampling and electronic noises are obviously uncor-
related and their effect on the detector resolution is additive. As was mentioned
above the deˇnition of ENOB according to Eq. (7) includes both sampling and
apparatus generated (differential nonlinearity, missing codes, temperature drift, of
the analogue-to-digital converter, etc.) �uctuations, which also can be considered
as noises. Let us consider a step pulse applied to the preampliˇer input using a
pulse generator shown in Fig. 1. Assuming unity pulse height at the output of
the preampliˇer and presuming that the noises being homogeneously distributed
random functions with ENOB at the input of the spectrometer, one can determine
the SNR improvement after passing the digital SFA using the following equa-
tion from Ref. 13

Sy(f) = |W (f)|2 Sx(f), sy(t) =

∞∫
0

w(t − χ)sx(χ)dχ, (19)
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Sx(f) and Sy(f) are supposed to be power spectra of the input sx(t) and the
output sy(t) signals, respectively, and W (f) is the frequency response function
of the spectrometer. Equation. (19) can be used both for the noise and the
signal power spectrum transformation after passing the SFA with the weighting
function w(t).

w(t) =
1
2π

∞∫
0

W (f) exp (i2πft)df, W (f) =

∞∫
0

w(t) exp (−i2πft)dt, (20)

sy(t) =
1
2π

∞∫
0

Sy(f) exp (i2πft)df, sx(t) =
1
2π

∞∫
0

Sx(f) exp (i2πft)df. (21)

For example, the step-like pulse vx(t) = 1 − exp (− t

τ
) having an exponentially

rising front edge has the frequency dependent power spectrum:

|Vx(f)|2 =

√
2
π

τ

1 + 4π2f2τ2
. (22)

Due to the uniform noise power spectrum of the noises the SNR for the vx(t) has
a frequency dependence given by Eq. (22). Such a dependence can be reduced
by the appropriate choice of the weighting function W (f), being the optimal
weighting ˇlter. Detector pulses have variable shape, which makes the frequency
power distributions different for different pulses. That is why the realization of
the matched [14] ˇlter is practically impossible in analogue signal processing.
Availability of every signal waveform, in principle, creates the conditions for
a matched ˇlter (matched ˇlter has the target signal as the kernel of the ˇlter)
to be implemented for each individual pulse in the DSP analysis. The matched
ˇlter is optimal in the sense that the top of the peak is farther above the noise
than can be achieved with any other linear ˇlter. The practical realization of
the matched ˇlter stipulates for the FFT algorithm implementation making data
analysis program very complicated and therefore impractical. It should be noted
that for many applications the RC-CRn ˇlter is as close to the matched ˇlter
as larger the difference between signal raise and the exponential fall times gets.
The quality of different ˇlters can be compared by measuring the SNR (or the
energy resolution) of the pulses stimulated by particles with a ˇxed energy. In
practice the SNR determination can be performed using the measured value for the
FWHM of the mono-energetic gammas (or using the precision pulse generator)
for different weighting functions implemented in digital SFA. The output pulse
height at the preampliˇer output, when measuring the signal from a generator,
was chosen to be approximately 150 keV higher than the 1173 keV 60Co source
line. Results of measurements are presented in the Table and show the same result
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for a generator pulse analyzed with the CR-RC4 and the trapezoidal ˇlters which
are smaller than the resolution of the 60Co γ-ray line presented in the last row.

Energy resolution for different SFA measured using the pulse generator
and a 60Co source

Filter Res. measured with high Resolution of (1173.2 keV)
precision pulse generator [keV] line [keV]

CR-RC4 1.40 2.15 (®ballistic deˇcit¯ corrected)

Trapezoidal 1.40 2.20 (®ballistic deˇcit¯ corrected)

Ref. [11] 2.00 2.90 (®ballistic deˇcit¯ not corrected)

Calculating the SNR for signals after passing the SFA one can raise the
question how it became possible to obtain a precision of 1.4 keV using a WFD
having only 6.2 ENOB. The answer is given by considering the right-hand part of
Eq. (19) showing the noise transformation after passing an SFA with a weighting
function w(t). According to this relation, each sample of the output signal
sy(t) was made of the sum of the samples of the input signal sx(t) weighted
by the w(t). Therefore the statistical accuracy of the output signal improved
in proportion to the square root of the number of samples of the output signal
involved in the calculation, which is proportional to the width of the weighting
function w(t). With a sampling frequency of 250 MHz and with a width of the
weighting function of ∼ 10 μsec used in the data analysis with a RC-CRn Ä
SFA ∼ 2500 samples of the input function were used to calculate one sample of
the output function giving an improved SNR by a factor of 50. The authors of
Ref. 3 called this improvement the ®bit gain factor¯ comparing the WFD based
spectrometer with a conventional peak sensing ADC based analogue spectrometer.
Following that approach, the spectrometer used in the present work had the same
SNR as a 11.84 bit conventional peak sensing ADC.

CONCLUSIONS

Signal processing algorithms developed in this work were provided as re-
cursive computational procedures that can be effectively used for computation.
Comparison of developed algorithms with that described in literature showed al-
most 40% improvement of the resolution in high resolution gamma-spectroscopy.
From the sampled waveform of a detector signal ampliˇed by a charge-sensitive
preampliˇer the detector current signal was ˇrst reconstructed and was used for
pile-up elimination and true ballistic deˇcit correction of the detector charge. The
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pile-up elimination method was found to be very effective for ˇssion fragment
spectroscopy, although not demonstrated in the present paper. The basics of the
signal sampling theory were brie�y reviewed to demonstrate the method of cal-
culation using sampled signal representation in the analysis procedure where the
signal values are to be reconstructed between sample points.
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