SiC/C components for nuclear applications from low cost precursor

J. Narciso and N.R. Calderon
SiC for nuclear applications

• Key problem: suitable material facing plasma (first wall and breeder blanket of the reactor)

• SiC greatest potential:
 – Low afterheat
 – Low nuclear activation energy
 – High resistance to radiation damages
 – Excellent dimensional stability at high temperature
Our laboratory

- Manufacture of several types of SiC composites (whiskers, monoliths) with different properties:

 - **SiC Whiskers**: 8 GPa
 - **Biomorphic SiC**: Porosity: 20-60% BS: 50-200MPa
 - **SiC/MeSi₂**: BS: 400MPa
 - **SiC/C**: BS: 150-300MPa
Our laboratory

• Study of the interactions of liquid metal with SiC and carbon materials:
Advantage

• By economically viable route:
 – Reactive infiltration process:
 • Low synthesis T (~ 1450°C)
 • Short processing time
 • Atmospheric pressure
 • Near net shape
How is this possible?

• Manufacturing SiC materials with different microstructures by control of the Si-C chemical reaction
 – Optimization of the carbon substrate microstructure:
 • Appropriate carbon precursor
 • Right thermal treatment

• Increase viability: low cost precursor
 – Rice husk
 – Wood, sawdust
 – Graphite
High temperature treatment affects the microstructure

BioSiCSw-1400

BioSiCSw-2500
Achievement

• Development of self-sintering carbon substrates with tailor-made microstructure from petroleum residues:
 – Low cost material
 – No binder addition
 – Control of self-sintering
 – Control of porosity
 – Control of microstructural development
Feedstocks

- Crude Oil
- Atmospheric Distillation
- Catalytic Reformer
- Vacuum Distillation
- Fluid Catalytic Cracking
- Heavy Vacuum Gas-Oil
- Vacuum Residue (VR)
- Decanted Oil (DO)
- Ethylene Tar (PY)

Naphtas

Reformate

- Naphta
Experiemental Procedure

1. **Feedstock**
2. **PYROLYYSIS**
 - Semicoke preform
 - Conditions: 1400°C, 60min, Ar
3. **CARBONIZATION**
 - Semicoke preform
 - Conditions: 1400°C, 60min, Ar
4. **MILLING**
 - Semicoke particles
 - dp: < 63 μm
5. **SIEVING**
 - Semicoke particles
 - dp: < 63 μm
6. **PRESSING**
 - Semicoke particles
 - Conditions: 1450°C, 60min, Ar
7. **INfiltration Si**
 - Porous carbon preform
 - SiC monoliths from carbonized preforms
Semicokes

VR: Vacuum Residue
- Lower aromaticity
- High ramified hydrocarbons

PY: Polyethylene Tar
- Most aromatic

DO: Decanted Oil
- Intermediate aromaticity
- H donors

Images:
- VR-460-3: Mosaic
- PY-480-5: Flow Anisotropy
- DO-480-6: Flow domains
Reactivity with Si

PREPARATION OF POWDER MIXTURE

Semicoke particles + Silicon particles → MIXING → Particles mixture

REACTION

Reaction Conditions
a) 1350°C, 180 min
b) 1400°C, 60 min
c) 1400°C, 180 min

SiC + Si + C mixture

DETERMINATION OF UNREACTED CARBON

SiC + Si + C Mixture → O₂, 800°C, 12 h → SiC + Si mixture

DETERMINATION OF UNREACTED SILICON

HF/HNO₃ → SiC particles
• Reaction in powder state

<table>
<thead>
<tr>
<th>Treatment</th>
<th>SiC Yield (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a) 1350°C, 180 min</td>
<td>40</td>
</tr>
<tr>
<td>b) 1400°C, 60 min</td>
<td>80</td>
</tr>
<tr>
<td>c) 1400°C, 180 min</td>
<td>90</td>
</tr>
</tbody>
</table>

SiC yield
Porous carbon preforms

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pyrolysis</th>
<th>Pressing</th>
<th>Preforms 1400°C</th>
<th>SiC components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T (°C)</td>
<td>t (h)</td>
<td>P (MPa)</td>
<td>ρ_a (g/cm³)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-3-160</td>
<td>480</td>
<td>3</td>
<td>160</td>
<td>1.64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-3-200</td>
<td>480</td>
<td>3</td>
<td>200</td>
<td>1.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-3-240</td>
<td>480</td>
<td>3</td>
<td>240</td>
<td>1.70</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-4-160</td>
<td>480</td>
<td>4</td>
<td>160</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-4-200</td>
<td>480</td>
<td>4</td>
<td>200</td>
<td>1.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-4-240</td>
<td>480</td>
<td>4</td>
<td>240</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-5-100</td>
<td>480</td>
<td>5</td>
<td>100</td>
<td>1.17</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-5-150</td>
<td>480</td>
<td>5</td>
<td>150</td>
<td>1.22</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-5-160</td>
<td>480</td>
<td>5</td>
<td>160</td>
<td>1.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-5-200</td>
<td>480</td>
<td>5</td>
<td>200</td>
<td>1.31</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-5-240</td>
<td>480</td>
<td>5</td>
<td>240</td>
<td>1.33</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-6-200</td>
<td>480</td>
<td>6</td>
<td>200</td>
<td>1.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PY-480-6-240</td>
<td>480</td>
<td>6</td>
<td>240</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Incomplete infiltration

Minimum porosity for infiltration: 36%
Effect of carbon type

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pyrolysis</th>
<th>Pressing</th>
<th>Preforms 1400°C</th>
<th>SiC components</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T (°C)</td>
<td>t (h)</td>
<td>P (MPa)</td>
<td>ρ_a (g/cm³)</td>
</tr>
<tr>
<td>VR 460-3-20</td>
<td>460</td>
<td>3</td>
<td>20</td>
<td>1.20</td>
</tr>
<tr>
<td>VR 460-3-30</td>
<td>460</td>
<td>3</td>
<td>30</td>
<td>1.24</td>
</tr>
<tr>
<td>VR 460-3-40</td>
<td>460</td>
<td>3</td>
<td>40</td>
<td>1.28</td>
</tr>
<tr>
<td>DO 480-6-20</td>
<td>480</td>
<td>6</td>
<td>20</td>
<td>1.16</td>
</tr>
<tr>
<td>DO 480-6-30</td>
<td>480</td>
<td>6</td>
<td>30</td>
<td>1.21</td>
</tr>
<tr>
<td>DO 480-6-40</td>
<td>480</td>
<td>6</td>
<td>40</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Mechanical properties

![Graph showing the relationship between SiC density (g/cm³) and BS (MPa) for samples VR, PY, and DO.](image)

- BS (MPa) on the y-axis ranges from 0 to 450.
- SiC density (g/cm³) on the x-axis ranges from 2.2 to 3.0.
- The graph includes data points for VR, PY, and DO samples.
- A dashed red line indicates the trend in the data.
No residual Si

Residual coke particles
Pores
SiC

Absence of residual Si
Graphitization

DRX

Reactivity with Si

![Graph showing DRX patterns and reactivity with Si]

- **Intensities (cps)**: DO-480-6, PY-2500, DO-2500, PY-1400, DO-1400, PY-480-5, DO-480-6
- **2θ (degrees)**: 20 to 50

SiC yield (%)

- **VR**: a) 1350ºC, 180 min
- **PY**: b) 1400ºC, 60 min
- **DO**: c) 1400ºC, 180 min
 g) 1400ºC, 180 min
Graphitization

Mechanical properties

![Graphitization Image](image)

DOG-480-6-20

PYG-480-5-160

DOG-480-6-20

PYG

VR

DO

BS (MPa)

![Graphitization Graph](image)

SiC_{comp} Density (g/cm³)

NIMA INSTITUTO UNIVERSITARIO DE MATERIALES DE ALICANTE
• A wide range of carbon preforms were conformed from different semicokes without addition of binder.

• Carbon preforms with porosity above 36% were completely infiltrated.

• Degree of conversion of carbon into SiC depends on the reactivity of the carbon substrate.

• More ordered carbon substrate, more reactive with silicon.

• SiC components with 287MPa of bending strength were produced from PYG. Twice the BS of commercially available RBSC.

• Suitable for applications at T > 1200ºC (no residual silicon)
Acknowledgements

- Project ALICE, *Advanced Lightweight graphite based composite components for low emission combustion engines* (G3RD-CT-2002-00799)
- Ministerio de Ciencia y Tecnología for grant MAT 2004-03139
- Ministerio de Educación y Ciencia for predoctoral grant FPU AP-2004-2907
- Prometeo
Thanks for your attention!!!
narciso@ua.es