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Abstract

We study the critical slowing down towards the continuum limit of lattice QCD simula-

tions with Hybrid Monte Carlo type algorithms. In particular for the squared topological

charge we find it to be very severe with an effective dynamical critical exponent of about

5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to de-

couple from the modes which slow down the topological charge. Quenched observables

are studied and a comparison to simulations of full QCD is made. In order to deal with

the slow modes in the simulation, we propose a method to incorporate the information

from slow observables into the error analysis of physical observables and arrive at safer

error estimates.
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1 Introduction

In all Monte-Carlo methods, the control of statistical and systematic errors is the main

requirement for reliable calculations. However, this is frequently made difficult by the

phenomenon of critical slowing down, an increase in computational effort while ap-

proaching critical points of a theory, beyond the naive scaling with the number of

points of the system, due to an increase of auto-correlation times. At first sight, this

might not seem a particularly appealing object of study. The auto-correlation times are

not universal quantities, they depend on the particular discretization of the theory, the

algorithms used and the correlation lengths. However, in order to control the statistical

uncertainties and make certain that the simulation is sufficiently ergodic, it is pivotal

to ensure that all auto-correlations are much shorter than the total run. The danger

one faces in real-world simulations is that there are auto-correlations, which are much

longer than the total statistics and therefore cannot be detected from the simulation

itself.

Our object of study is lattice QCD, for which recent years have witnessed significant

progress in the algorithms. In particular, simulating light quarks on large volumes has

become feasible on current computers and control over the chiral extrapolation has

improved accordingly [1, 2]. Consequently, better control over the cut-off effects is the

next target. Approaching the continuum limit means approaching a continuous phase

transition and therefore critical slowing down is to be expected. The question is how

severe it is and whether fine enough lattices can be reached. How fine a lattice is needed

for sufficient control of the scaling violations depends again on the quantity to study, the

discretization and also on the required accuracy. However, in particular if the physics

of charm quarks is to be studied, at least lattices with a lattice spacing down to 0.04fm

are required for precision physics.

The severity of the critical slowing down depends on the algorithm and on the ob-

servable in question. An observable with notoriously long auto-correlations for virtually

all algorithms used for either pure Yang-Mills theory or QCD is the global topological

charge. It has been studied over the years using link-update algorithms for pure gauge

theory [3] and also in QCD with molecular dynamics based algorithms [4–7]. However,

let us stress that it is not the topological charge itself which is slow. Slowly moving

modes of the transition matrix of the Markov process are just particularly prominent

in this observable and therefore lead to the long auto-correlations. The same modes

also couple to other observables and also their auto-correlation times are affected. The

amount of coupling of the modes to the different observables is not known a-priori.

This article serves two purposes. First we study the critical slowing down of various

quantities, i.e. the topological charge, Wilson loops and hadronic correlation functions

as the lattice spacing is varied over the range used in contemporary simulations. We will

observe that among those only the charge is affected by very severe slowing down. If one

assumes that the picture does not change drastically while going from the quenched the-

ory to fully dynamical simulations, one can use the scaling laws of the auto-correlation
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times from this study, to set minimal requirements for the total simulation time in full

QCD.

The second purpose of this paper is the question of how to deal with the presence

of the slow modes in the data analysis. In particular we will propose a procedure to

give conservative estimates of the statistical errors also in the situation where the slow

mode contribution cannot be detected directly.

In Sec. 2 we will therefore give the basics of the error analysis of Markov Chain

Monte Carlo data. This will lay the ground for the improved error estimates in the

presence of very slow modes of the Monte Carlo evolution. Preparing for the numerical

results (Sec. 4) we list the algorithms and observables that we study in Sec. 3.

2 Error estimation

We consider a Markov chain generated by a transition matrix

M(q′ ← q) (2.1)

giving the probability for the change from a state q to a state q′. For simplicity we assume

a discrete set of states q. The desired ensemble distribution, P (q), is an eigenvector of

the transition matrix,
∑

q M(q′ ← q)P (q) = P (q′). Ensemble averages of observables

Oα(q) are

〈Oα〉 =
∑
q

Oα(q)P (q) . (2.2)

In the numerical application, after a suitable thermalization, we take a finite number of

Monte Carlo steps N , yielding states q1, . . . , qN and estimate

〈Oα〉 = Oα ± δOα , Oα =
1

N

N∑
i=1

Oα(qi) . (2.3)

The uncertainties δOα = O(1/
√
N) and more generally those of functions F (〈O〉) are

given in terms of the auto-correlation function

Γαβ(t) = lim
K→∞

1

K

K∑
i=1

[Oα(qi+t)− 〈Oα〉] [Oβ(qi)− 〈Oβ〉] (2.4)

and have to be estimated from the generated finite sequence q1, . . . , qN itself. This is

done by evaluating the expression in eq. (2.4) for a finite but large K. For the estimate

of the error of Γ see App. A.
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The formulae

(δF )2 =
σ2
F

N
2τint(F ) , σ2

F = ΓF (0) , (2.5)

τint(F ) =
1

2
+
∞∑
t=1

ρF (t) , ρF (t) =
ΓF (t)

ΓF (0)
, (2.6)

ΓF (t) =
∑
α,β

FαΓαβ(t)Fβ , (2.7)

are derived by a Taylor expansion of F in terms of 〈Oα〉 [8–10]. For complicated func-

tions F , the occurring derivatives Fα = ∂F
∂〈Oα〉 can be evaluated numerically [10].

The integrated auto-correlation time, τint(F ), characterizes the dynamics of the

Monte Carlo process relevant for the observable F . It is difficult to determine, since the

errors of Γ(t) remain roughly constant as a function of t. Therefore the proposed esti-

mate of Madras and Sokal [9] and its generalization for functions of primary observables

by Wolff involve a window W ,

τint(F,W ) =
1

2
+
W−1∑
t=1

ρF (t) . (2.8)

The window is chosen to balance the systematic error due to truncation,

RF (W ) =
∞∑
t=0

ΓF (W + t) (2.9)

with the statistical error. In particular [10] advocates the value of W which minimizes

an estimate1

E(W ) = e−W/τW + 2
√
W/N where τW ≈ S τint(F,W ) (2.11)

for the sum of systematic and statistical relative error of τint. S is a parameter, which

by default is set to 1.5, and has to be adjusted by hand if other time scales, much larger

than τint are relevant. In other words, a proper choice of S requires an inspection of the

particular shape of the auto-correlation function.

We note that this criterion estimates the time scale for contributions to τint(F ) from

t ≥ W by τint(F,W ) itself. However, when the lattice spacing becomes small, the time

scale which is relevant for the tails of auto-correlation functions can become significantly

different from τint(F ) in lattice gauge theory simulations. We will see examples of this in

Sect. 4. Indeed, it can be shown that |ΓF (t)| ≤ const. e−t/τexp for any Markov chain [11].

An elegant proof is given in the cited reference.

1The exact formula applied in [10] is

τ−1
W = log

(
1 + 1/(2τint(F,W ))

1 − 1/(2τint(F,W ))

)/
S . (2.10)
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It is usually assumed that the above bound is realized at large t vs.

ΓF (t)
t→∞∼ AF e−t/τexp (2.12)

up to terms with a faster exponential decay. Indeed for algorithms which satisfy the

detailed balance condition,

M(q′ ← q)P (q) = M(q ← q′)P (q′) , (2.13)

amongst them most versions of the Hybrid Monte Carlo (HMC) algorithm [12], eq. (2.12)

can be proven. We turn to a brief discussion of auto-correlation functions in this more

restricted class.

2.1 Algorithms with detailed balance

When eq. (2.13) is satisfied, it is convenient to introduce the symmetric matrix

T (q, q′) = [P (q′)]−1/2M(q′ ← q) [P (q)]1/2 , (2.14)

which has real eigenvalues λn, n ≥ 0, with λ0 = 1 and |λn| < 1 for n ≥ 1, assuming an

ergodic algorithm. We order the eigenvalues as λn ≤ λn−1. There is a complete set of

eigenfunctions χn(q) with χ0(q) = [P (q)]1/2. Starting from the representation

Γαβ(t) = [Oβ(q′)− 〈Oβ〉]M t(q′ ← q) [Oα(q)− 〈Oα〉]P (q) (2.15)

with Mn+1(q′ ← q) =
∑

q′′M(q′ ← q′′)Mn(q′′ ← q), we then have

ΓF (t) =
∑
α,β

FαFβ
∑
q,q′

[Oα(q)− 〈Oα〉] [P (q)]1/2 T t(q, q′) [P (q′)]1/2 [Oβ(q′)− 〈Oβ〉]

=
∑
n≥1

(λn)t [ηn(F )]2 (2.16)

in terms of the “matrix elements”

ηn(F ) =
∑
α

Fα
∑
q

χn(q)[P (q)]1/2 [Oα(q)− 〈Oα〉] . (2.17)

We recognize eq. (2.12) with AF = [η1(F )]2 and τexp = −1/ log(λ1) provided λ1 > 0. In

general all eigenmodes of the matrix T contribute to the above sum over n.

However, exact symmetries may entail selection rules with ηn(F ) vanishing for some

n. As an example let us consider a parity symmetry q → q′ = S(q) with P (S(q)) = P (q)

and S(S(q)) = q. It is a symmetry of the algorithm if

T (S(q′), S(q)) = T (q′, q) . (2.18)

With respect to the action of S, the eigenfunctions χn(q) of T can then be divided into

even ones, χn+(S(q)) = χn+(q) and odd ones, χn−(S(q)) = −χn−(q). Observables are
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then also split into even (s = 1) and odd (s = −1), Fs(O(S(q))) = s Fs(O(q)) and have

an auto-correlation function

ΓFs(t) =
∑
ns≥1

(λns)
t [ηns(Fs)]

2 (2.19)

with only even or odd contributions. Since the ensemble average of odd observables

vanishes, one can restrict the attention to s = +1.

Most versions of the HMC algorithm for QCD are invariant under ordinary parity,

which means that it suffices to look at parity invariant observables to search for the

relevant slowest mode. For our QCD studies we therefore consider Q2 instead of the

parity odd topological charge Q.

We are now in the position to discuss improved error estimates, namely estimates

which aim at giving a realistic and/or conservative estimate of the tail contribution

eq. (2.9) to the error of F also in the situation when τexp is significantly larger than

τint(F ).

2.2 Improved error estimates

Remaining with algorithms which satisfy detailed balance, we can start from eq. (2.16).

For n ≥ 1 we then have |λn| < 1 and
∑∞

t=0 (λn)t = 1/(1 − λn) > 0 and furthermore

1/(1− λn) ≤ 1/(1− λ1). This yields bounds

RF (W ) ≤ 1

1− λ1

∑
n≥1

(λn)W [ηn(F )]2 =
1

1− λ1
ΓF (W ) = τexpΓF (W ) (1 + O(1/τexp)) ,

(2.20)

RF (W ) ≥ 1

1− λ1
(λ1)W [η1(F )]2 = τexp e−W/τexp (1 + O(1/τexp)) (2.21)

for even W . They translate into bounds on τint(F ).

As long as the configuration space is large, we expect these bounds to hold quite

generically, also for algorithms which do not satisfy detailed balance. Certainly Monte

Carlo (MC) experiments that we have seen so far are in agreement with such a behaviour.

Let us now assume that we are in a situation where the following is true

1. There is some knowledge about τexp from previous MC runs or an extrapolation

from other parameters of the simulated theory.

2. The considered MC run is still long compared to τexp itself,

N � τexp , (2.22)

but not so long that one can just sum up the auto-correlation function with a

window W ∼ τexp.

3. We are interested in an error estimate which safely includes the contribution rep-

resented by the slow mode corresponding to τexp or slow modes n with λn ≈ λ1.
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We propose to choose a window Wl, according to the criterion of eq. (2.11) and explained

in [10], with the parameter S set to its default value of 1.5 and the associated

τ l
int(F ) = τint(F,Wl) (2.23)

as well as a second window Wu where the auto-correlation function is still significant

by, e.g., three standard deviations and add an estimate of the tail giving

τu
int(F ) = τint(F,Wu) + τexpρF (Wu) . (2.24)

In cases where ρF falls very quickly and is compatible with zero at short time t = W0,

e.g. W0 = 5, we replace this estimate by

τu
int(F ) = τint(F,W0) + 2τexpδ[ρF (W0)] for δ[ρF (W0)] > ρF (W0) , (2.25)

where δ[ρ] is the estimated error of ρ. When one is interested in τint(F ) itself, e.g.

for the investigation of algorithms, one should choose an interval covering τ l
int(F ) and

τu
int(F ) together with their statistical errors. If on the other hand one just wants a safe

estimate of the error of the observable we propose to choose τu
int(F ).

An additional issue is that in the presumed situation, it is also of interest to estimate

how severely an observable F is affected by the slow mode(s). The ratio τu
int(F )/τexp is

a possible measure, but to quantify this more precisely, it is better to try to isolate the

contribution of the slowest mode. The corresponding normalized amplitude is

CF =
AF

ΓF (0)
= lim

t→∞
ρF (t)et/τexp . (2.26)

One may object immediately that it is very difficult, if not impossible, to estimate τexp,

which is needed in the above formulae. In Fig. 1 we therefore just show one numerical

result already at this point: the “effective mass plot” from auto-correlation functions

of a few observables. Details of the numerical simulation are described only later in

Sect. 4.1, however, it is clear from the figure that considering several observables can help

for getting a handle on the slow modes. Of course the statistics has to be large enough,

but as an empirical observation, an early onset of the plateau in log(ρ(t)/ρ(t + τ)) is

beneficial when τexp is large. Furthermore, the whole proposal relies on the fact the

slowest mode, and with it τexp, can actually be identified. Absolute certainty on this

is virtually impossible to achieve, however, by looking at a large number of operators,

at least a significant portion of the relevant space can be covered. Also in case there

is an even slower mode than the one identified, the proposed method does provide a

more conservative estimate of the contributions up to this threshold, and can therefore

improve the analysis.

2.3 Decoupling and dynamical correlation coefficient

Since τexp enters in the exponent in eq. (2.26), this representation is useful if τexp

is already known rather precisely – a rare luxury. A more practical representation
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Figure 1: Effective mass plot 1
τ log(ρF (t)/ρF (t+ τ)) for two observables F in run C3d.

Here τ = 6.75 is the spacing between consecutive measurements.

replaces τexp by an effective one. To this end, we take observables Oβ which couple

relatively strongly to the slow MC mode. For QCD possible choices are the square of

the topological charge Oβ = Q2
α or the smeared plaquette Oβ = Pα with α labelling

different smearing levels, see Sect. 3.2 for details. 2 We can use

τ eff
exp(t) =

t

2 log
{

Maxβ
ρβ(t/2)
ρβ(t)

} , (2.27)

but clearly other choices are possible. The effective coefficient

Ceff
F (t) = ρF (t)et/τ

eff
exp(t) . (2.28)

then suggests itself. When detailed balance is guaranteed, a further effective estimator

is

C̃eff
F (t) =

[ΓFG(t)]2

ΓF (0)ΓG(t)
et/τ

eff
exp(t) (2.29)

where ΓFG(t) =
∑

α,β FαΓαβ(t)Gβ and we have assumed that G is an observable with a

strong coupling to the slow mode. In other words CG is large. This representation will

be valid (at large t) if λ1 is an isolated eigenvalue and in practice if indeed the critical

slowing down is dominated by the single mode n = 1. It simply follows from the mode

decomposition ΓFG(t) =
∑

n≥1(λn)t ηn(F )ηn(G).

2We remind the reader that in QCD with parity conserved, the whole discussion is to be restricted

to parity even observables.
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Clearly eq. (2.28) is more generic and even expected to be useful when detailed

balance is not satisfied, but the advantage of eq. (2.29) is that it can possibly be used

at much larger t, showing smaller statistical errors in that region.

We can now define what we mean by decoupling of an observable from the slow

mode n = 1: in practice it means CF � 1 while in terms of critical slowing down, it

should be defined as a significant decrease of CF as the correlation length and τexp grow,

e.g. CF ∼ (correlation length)−γ with some positive γ. In MC runs this decoupling is

expected to be visible in the behaviour of C̃eff
F (t) at moderate time t. Given the inherent

problems in seeing asymptotic behaviour in numerical simulations, it is useful to go

further and define a time scale τ∗ through

τ eff
exp(r τ∗) = τ∗ (2.30)

and

C∗F (r) = Ceff
F (rτ∗) . (2.31)

In the same way, Ceff
F may be replaced by C̃eff

F . Using τ∗ is similar in spirit to the original

Sokal proposal for fixing the window of summation for the τint by the point at which the

summation window W exceeds a multiple of τint(W ). A choice of r significantly smaller

than one is necessary when the overall statistics is moderate. We emphasize again our

condition eq. (2.22), however. The advantage of eq. (2.31) is that we do not have to

consider asymptotically large t with their associated systematics. Decoupling can be

studied at a fixed (not unreasonably small) value of r. If C∗F (r) shows decoupling it will

usually also be the case in CF .

2.3.1 Relation to static correlations

In the language used here, the square of the standard correlation coefficient of observ-

ables F and G is3

Cstatic
FG =

[ΓFG(0)]2

ΓF (0) ΓG(0)
. (2.32)

It is a static property, independent of the algorithm as only t = 0 appears. We now

notice that if G “is” approximately the slow mode, which precisely means

|η1(G)| � |ηn(G)| ∀ n > 1 , (2.33)

then we have ΓFG(t) ≈ λt1 η1(F )η1(G) and ΓG(t) ≈ λt1 [η1(G)]2 and therefore also

CF ≈ Cstatic
FG . (2.34)

We may therefore consider CF to be the dynamical correlation coefficient between F and

G. Generically it will be very different from the static one, emphasizing that the static

3Normally one will just consider primary observables, but the correlation coefficient of arbitrary

functions F,G is a straightforward generalization.
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correlation of the observable F to a slow one (e.g. the topological charge in QCD) is not

the proper way to discuss the error of F . Rather the dynamical correlation coefficient

CF has to be used.

3 Algorithms and observables under study

For the numerical investigation of the HMC and DD-HMC, we now first give the basic

definition of the algorithms and then of the observables which we choose to investigate.

3.1 Algorithms

In hybrid Monte Carlo [12] and related algorithms, the gauge fields are updated by

solving the classical equations of motion associated with the Hamiltonian

H =
1

2
(Π,Π) + S(U) , (3.1)

where the antihermitian Πx,µ are the momenta conjugate to the gauge fields Ux,µ. Their

scalar product is defined as (Π,Π) = −2
∑

x,µ trΠ2
x,µ. With the Monte Carlo time τ ,

the equations of motion then read

d

dτ
Πx,µ = −Fx,µ and

d

dτ
Ux,µ = Πx,µUx,µ , (3.2)

where the force F fulfills (ω,F) = δωS(U) for infinitesimal variations of the gauge field

δωUx,µ = ωx,µUx,µ. In these definitions, we follow the ones used in the context of the

DD-HMC [13]. We give them, because they fix the normalization of the trajectory

length τ , which is not unique in the literature. The conventions of Ref. [14] used, e.g.,

in the MILC code result in a different normalization: a trajectory of length
√

2 in the

conventions above corresponds to a unit length trajectory in those of Ref. [14].

The difference between HMC and DD-HMC is that the latter introduces a decom-

position of the lattice into blocks of size B0×B1×B2×B3. During each trajectory, only

the links are updated, which have at least one endpoint in the interior. The fraction of

these “active” links is given by

R =

∏3
i=0(Bi − 2) + 1

4

∑3
i=0

∏
j 6=i(Bj − 2)∏3

i=0Bi
. (3.3)

Since the active links are treated in exactly the same way as in HMC, naively, auto-

correlation times will be proportional to the inverse of R. Therefore, we scale them

in the following by this ratio, noting that in pure gauge theory also the cost of the

simulation scales accordingly.

At the end of each trajectory, the HMC algorithm has a global Metropolis accep-

tance step to correct for the errors in the numerical integration of the equations of

motion. For the DD-HMC in pure gauge theory with the Wilson gauge action, however,
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the molecular dynamics evolution of the active links on each block is independent of

the other blocks. We can therefore perform the Metropolis step for each block individ-

ually.4 Compared to the conventional global acceptance step, a given acceptance rate

can be achieved with a significantly larger step size. All our runs are done at accep-

tance rates above 90%, and in this case, the block-wise acceptance does not influence

the auto-correlation times of the pure gauge observables within errors.

In order to be ergodic, all links of the lattice have to become active within some

(composite) series of update steps. This is achieved by translating the domain decom-

position relative to the lattice between trajectories. The scheme is described in detail

in Ref. [13] and alternates random shifts with directed ones, the latter to increase the

efficiency of this step. Because of the directed shifts, however, the full algorithm does

not obey detailed balance. Even if eq. (2.20) can then not be shown mathematically, we

still expect it to be valid at not too small t. In any case eq. (2.24) represents a useful

estimate of the integrated auto-correlation time. The same reasoning holds true for the

factorization behind eq. (2.29).

3.2 Observables

We want to study the effect of the critical slowing down of the (DD)-HMC algorithm

on observables of interest for physics. We consider meson two-point functions, Wilson

loops and the topological charge, which we will now define. In order to be more sensitive

to the slow modes, we also computed some observables on smoothed gauge fields. For

this purpose we apply up to five levels of HYP smearing [15] to the link variables.

The slow evolution is very prominent in the topological charge, for which we use

the naive gauge definition

Qα =
1

16π2
a4
∑
x,µ,ν

tr
[
F (α)
µν (x)F̃ (α)

µν (x)
]
, (3.4)

where the lattice field strength tensor F
(α)
µν (x) is constructed from the clover leaf repre-

sentation (see e.g. [16] for a definition) but from α times HYP smeared links, where we

consider α ≤ 5. We find little difference beyond the first iteration of smearing.

As physics oriented observables, we compute W1(l1, l2), the Wilson loops of size

l1 × l2 after one level of HYP smearing, and the ones without smearing W (l1, l2). Only

the plaquette Pα = Wα(a, a) is also considered with higher levels of smearing, α ≤ 5.

In order to study the effects of the slow modes on hadronic observables, we take as

an example the correlators used in the quenched study of the Ds meson at parameters

of Ref. [17]. We compute

CPP(t) = a3
∑
~x

〈P rs(t, ~x)P sr(0, 0)〉

CAP(t) = a3
∑
~x

〈Ars0 (t, ~x)P sr(0, 0)〉
(3.5)

4We thank M. Lüscher for this suggestion.
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with the pseudo-scalar density P rs = r̄γ5s and the time component of the axial-vector

current Ars0 = r̄γ0γ5s. These are estimated on each configuration using the one-end

method [18,19] with 5 stochastic U(1) sources per configuration. Interesting observables

are the effective meson mass meff , which is defined through

CPP(t+ a)

CPP(t− a)
=

cosh((t+ a− T/2)meff(t))

cosh((t− a− T/2)meff(t))
(3.6)

and the PCAC quark mass (∂tf(t) = 1
a(f(t+ a)− f(t)) , ∂∗t f(t) = 1

a(f(t)− f(t− a)))

m =
1
2(∂t + ∂∗t )CAP(t) + a cA ∂

∗
t ∂tCPP(t)

2CPP(t)
.

For both masses, as well as for the decay constant,

fPS(t) =
CAP(t)

[CPP(t)meff(t)]1/2
et meff(t)/2 , (3.7)

we average over a suitably chosen plateau in t.

4 Results

We have performed a considerable number of long simulations allowing for a study of

the dependence of auto-correlations on several parameters. Table 1 presents an overview

of the pure gauge theory simulations; on C1 and C4 also quenched measurements were

carried out. Most ensembles are lattices generated with the Wilson gauge action of

constant volume L4 with L = 2.2 fm, where the physical scale comes from r0/a of

[20] with a nominal value of r0 = 0.5 fm [21]. We complement this in Sect. 4.5 by a

comparison to dynamical Nf = 2 QCD runs.

4.1 Pure gauge theory

Let us start the discussion of the results with the pure gauge ensembles of the Wilson

gauge action at constant physical volume, with main interest on the dynamical critical

slowing down of the topological charge and how it is reflected in other observables. Since

we are in pure gauge theory, the Wilson loops will serve as prime reference.

4.1.1 Lattice spacing dependence

The critical slowing down in the square of the topological charge is rather dramatic as

demonstrated in Fig. 2, where we show the normalized auto-correlation function for our

four lattice spacings, all with trajectory length τ = 4. The Monte Carlo time t is given

in molecular dynamics units (MDU) multiplied by R. This unit is applied throughout

this paper.

From our data we also determine the integrated auto-correlation times by using the

criterion given in Eq. (2.11), where we used the default value S = 1.5 unless specified
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TAG β L/a T/a a[fm] block R τ ∆τ A stat

A1a 5.789 16 16 0.140 84 0.369 0.5 0.01 0.961 105280

A1b 5.789 16 16 0.140 84 0.369 1 0.01 0.971 70080

A1d 5.789 16 16 0.140 84 0.369 4 0.01 0.968 141120

B0a 6 24 24 0.093 HMC 1 0.5 0.0077 0.931 199600

B0b 6 24 24 0.093 HMC 1 1 0.0077 0.954 110000

B0c 6 24 24 0.093 HMC 1 2 0.0077 0.943 210000

B0d 6 24 24 0.093 HMC 1 4 0.0077 0.946 130000

B0e 6 24 24 0.093 HMC 1 8 0.0077 0.945 116000

B1a 6 24 24 0.093 124 0.53 0.5 0.0077 0.932 52640

B1b 6 24 24 0.093 124 0.53 1 0.0077 0.951 55520

B1c 6 24 24 0.093 124 0.53 2 0.0077 0.945 61280

B1d 6 24 24 0.093 124 0.53 4 0.0077 0.945 65440

B2a 6 24 24 0.093 122 × 62 0.363 0.5 0.0077 0.945 113800

B2b 6 24 24 0.093 122 × 62 0.363 1 0.0077 0.958 116400

B2c 6 24 24 0.093 122 × 62 0.363 2 0.0077 0.956 119200

B2d 6 24 24 0.093 122 × 62 0.363 4 0.0077 0.954 110400

B3a 6 24 24 0.093 64 0.247 0.5 0.0077 0.956 61000

B3b 6 24 24 0.093 64 0.247 1 0.0077 0.966 128000

B3c 6 24 24 0.093 64 0.247 2 0.0077 0.963 138000

B3d 6 24 24 0.093 64 0.247 4 0.0077 0.962 147000

B4a 6 24 24 0.093 12× 63 0.3 0.5 0.019∗ 0.97 1008000

B4b 6 24 24 0.093 12× 63 0.3 1 0.02∗ 0.97 1584000

B4c 6 24 24 0.093 12× 63 0.3 2 0.02∗ 0.98 780000

C1d 6.136 32 64 0.075 16× 83 0.422 4 0.02∗ 0.946 175360

C2b 6.179 32 32 0.070 84 0.369 1 0.0059 0.956 393000

C2d 6.179 32 32 0.070 84 0.369 4 0.0222∗ 0.956 1568160

C3d 6.179 48 48 0.070 124 0.53 4 0.0182∗ 0.919 486560

C4d 6.2 32 64 0.068 16× 83 0.422 4 0.0229∗ 0.928 684000

D1d 6.475 48 48 0.047 124 0.53 4 0.0167∗ 0.927 707680

Table 1: Parameters of our runs. We give the bare coupling, the size of the lattice,

the lattice spacing from r0 = 0.5 fm, the block decompostion in the DD-HMC, the

corresponding fraction of active links R, the trajectory length τ and the step size of the

integration ∆τ along with the acceptance rate A and the total statistics in molecular

dynamics units. Runs with blockwise acceptance step are marked with an asterisk on

the step size.
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Figure 2: Normalized auto-correlation function of Q2
1 at various lattice spacings. The

Monte Carlo time is given in molecular dynamics units multiplied by R.

differently. Results for the plaquette, charge and the square of the charge as well as

auto-correlation times are shown in Table 2. Note that the average of the charge is

compatible with zero in our long runs, which is an indication that the determination

of uncertainties and auto-correlations is under control. We also observe a considerable

difference between τint(Q) and τint(Q
2), in line with the arguments given at the end of

section 2.1.

The main result of this section is shown in Fig. 4, where we give the auto-correlation

times of Q2
5 and of W1(0.5 fm, 0.5 fm) as a function of the lattice spacing. This Wilson

loop is chosen since it is roughly at this size that we find the longest auto-correlation

times, see Fig. 3; Creutz ratios behave very similarly. The observed maximum of τint is

surprising at first sight, but large Wilson loops are dominated by strong ultraviolet (UV)

fluctuations and therefore have a large variance Γ(0) compared to their expectation

value. In Sect. 4.3 we will consider other long distance observables with a smaller

variance.

We compare two ansätze to describe the behaviour of the auto-correlation times,

τint(F ) = k1 (a/r0)z and τint(F ) = k2 exp(α/a) (4.1)

where the first is the standard behavior in the vicinity of a continuous phase transition,

whereas the exponential form was advocated in the context of the CP (N−1) model in

Ref. [22]; we use it only for the topological charge. Even our high statistics data is not

precise enough to accurately determine an effective critical exponent. However, with

the power law, we get z ≈ 5 for Q2
5, a very severe critical slowing down. The data

is also not good enough to distinguish it from the exponential form, for which we find
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TAG 〈P 〉 τint(P5) 〈Q5〉 τint(Q5) 〈Q2
5〉 τint(Q

2
5) τ∗

A1a 1.697388(57) 63(15) -0.05(17) 32( 6) 16.8(8) 18( 3) 59( 7)

A1b 1.697473(56) 32( 7) 0.19(15) 19( 3) 16.0(5) 8( 1) 34( 3)

A1d 1.697509(55) 30( 5) 0.11(9) 13( 1) 16.8(4) 5.9(5) 25( 2)

B0a 1.781044( 6) 104(16) -0.68(22) 278( 62) 18.3(9) 128(21) 145(12)

B0b 1.781033( 7) 56( 8) -0.23(20) 118( 24) 19.4(1.0) 71(12) 62( 4)

B0c 1.781050( 6) 38( 4) -0.07(14) 107( 16) 19.3(6) 51( 5) 49( 3)

B0d 1.781049( 9) 32( 3) -0.14(16) 87( 14) 18.7(6) 33( 4) 44( 2)

B0e 1.781053(14) 27( 3) 0.02(15) 74( 12) 18.7(7) 38( 5) 41( 3)

B1a 1.781053(13) 109(36) 0.83(52) 214( 88) 18.5(1.8) 84(25) 104(18)

B1b 1.781045(13) 42(10) 0.52(43) 148( 53) 19.1(1.6) 49(12) 68(10)

B1c 1.781055(16) 44(10) 0.22(33) 100( 30) 18.3(1.4) 43( 9) 53( 7)

B1d 1.781064(21) 46(10) -0.12(33) 110( 33) 17.7(1.3) 43( 9) 50( 7)

B2a 1.781032(13) 120(35) -0.41(44) 212( 76) 18.6(1.6) 78(19) 107(17)

B2b 1.781066(10) 63(14) -0.53(41) 186( 63) 19.0(1.3) 51(11) 75(10)

B2c 1.781067(13) 44( 9) 0.13(32) 111( 31) 20.2(1.4) 51(11) 61( 8)

B2d 1.781049(17) 30( 5) -0.15(27) 80( 21) 18.2(1.0) 34( 6) 41( 4)

B3a 1.781072(18) 79(29) 0.88(72) 233(118) 17.5(2.1) 58(19) 84(17)

B3b 1.781057(12) 48(11) -0.10(39) 132( 44) 17.8(1.5) 61(15) 71(11)

B3c 1.781039(17) 54(13) 0.05(41) 156( 54) 18.2(1.3) 45(10) 57( 9)

B3d 1.781033(21) 57(13) -0.04(32) 105( 31) 17.7(1.3) 48(11) 51( 6)

B4a 1.781052( 5) 97(12) -0.30(18) 243( 43) 19.2(7) 114(15) 135( 9)

B4b 1.781049( 4) 62( 5) -0.09(10) 131( 15) 18.2(4) 56( 4) 70( 3)

B4c 1.781055( 6) 37( 3) -0.24(11) 77( 10) 19.5(6) 52( 5) 53( 2)

C1d 1.822828( 4) 42( 7) 0.69(61) 281( 91) 49.6(4.1) 149(38) 140(18)

C2b 1.835106( 2) 80(12) -0.47(38) 574(189) 18.1(1.6) 248(60) 376(50)

C2d 1.835106( 7) 42( 7) -1.16(49) 428(176) 17.2(1.8) 178(54) 159(23)

C4d 1.840897( 2) 40( 3) -0.03(34) 503(122) 32.9(1.8) 217(38) 249(20)

D1d 1.909347( 2) 55( 5) 0.90(65) 4430(2079) 18.8(2.7) 2453(959) 2625(563)

Table 2: The average plaquette, the topological charge and its square along with auto-

correlation times (computed with S = 3) of the smeared plaquette and the (squared)

charge for our ensembles described in Table 1. The last column gives the exponential

auto-correlation time as defined in Eq. (2.30).
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α ≈ 0.4fm. The Wilson loop, on the other hand, follows a power law with z ≈ 0.6 within

our range of data, which is a surprisingly mild behavior. This already demonstrates the

decoupling discussed in Sect. 2. The Wilson loops decouple from the slow modes which

couple strongly to the square of the charge. We will come back to this subject below.

The exponent for the Wilson loops is compatible with the z = 1 for HMC in free field

theory [23].
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Figure 5: Auto-correlation time of Q2
5 in units of molecular dynamics time scaled by R

as a function of the trajectory length for the 244 lattices at β = 6.0. We show the data

for two block decompositions in the DD-HMC as well as data for HMC simulations.

The curve is a fit through all points to the functional form c1/
√
τ + τ/2.

4.1.2 Dependence on trajectory length and block size

This brings us to the discussion of the various parameters, on which this picture might

depend: the trajectory length, the block decomposition and the physical volume. The

dependence of τint(Q
2
5) on the trajectory length is visualized in Fig. 5 for the a ≈ 0.1fm

lattices. It demonstrates that longer trajectories can lead to shorter auto-correlation

times in units of molecular dynamics time, which takes into account the additional effort

needed for the longer trajectories. That longer trajectories can improve the performance

of the algorithm has been part of the original motivation for the Hybrid Molecular

Dynamics [14], and has since been demonstrated, e.g., in Ref. [24]. In free field theory

it is known that the optimal trajectory length depends on the observable and typically

increases when the correlation length increases [23]. As long as the system is in a regime

with τint � τ , one can argue that the momentum refreshment at the beginning of each

trajectory initiates a random change of direction in the otherwise directed walk. One
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then expects longer trajectories to decrease τint proportional to 1/
√
τ , but at most down

to the smallest possible value of τint = τ/2, which means τint = 1/2 in units of complete

updates. This simple model describes the gross features of our data reasonably well.

Also on the finer C lattices, given in Table 2, the corresponding improvement can be

observed.

The data of the figure are also collected in Table 2 together with those from different

block decompositions and also from the HMC algorithm. We observe that the blocks

do not have a measureable impact on the auto-correlation times beyond the simple

rescaling with the active link ratio R. Of course, the blocks have to have a reasonable

minimal size. Our smallest blocks are still at least 0.5fm across, which is around the

pure gauge theory correlation length defined from the string tension.

4.1.3 Dependence on volume and discretization

Most of our ensembles have a constant physical volume with L = 2.2fm, for which finite

size effects of typical equilibrium expectation values are known to be small in the pure

gauge theory. In order to check for a potential L-dependence of auto-correlations, we

also generated an L = 3.3 fm ensemble at β = 6.18. Figure 6 demonstrates that no

significant volume dependence is present – neither for the smeared plaquette P1 nor for

the squared charge Q2
1.
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Figure 6: Auto-correlation time of Q2
1 and the smeared plaquette P1 at β = 6.18 on a

324 and a 484 lattice.

The emerging picture might also depend on the particular discretization used. So

far, all results were for the Wilson gauge action. Therefore, we also generated an

ensemble with the Iwasaki action with a = 0.09fm, with the same volume and simulation
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parameters, using the HMC algorithm in both cases. We observe a drastically larger

auto-correlation time for the topological charge,

τint(Q
2
5) = 34( 4) for Wilson gauge action, (4.2)

τint(Q
2
5) = 220(50) for Iwasaki gauge action (4.3)

However, this is not replicated in other observables, both the plaquette and the smeared

plaquette having roughly the same auto-correlation times for the two actions.

4.2 The charge in subvolumes

Ultimately one needs to find an algorithm with smaller auto-correlations. For this

purpose it is important to understand more about how the HMC moves the gauge

fields through configuration space. Of course this is a difficult problem, as we need to

reformulate it in terms of specific (gauge invariant) observables.

An interesting such question is whether topological charge is being moved from

some space-time volume to another one more quickly than the total charge is changing.

This can be looked at by restricting the sum in eq. (3.4) to a region R, computing the

charge inside that region

QRα =
1

16π2
a4
∑
x∈R

∑
µ,ν

tr
[
F (α)
µν (x)F̃ (α)

µν (x)
]
. (4.4)

Its MC history will show whether charge has flown in or out of the region. More

quantitatively we can directly look at the auto-correlation function of QRα as shown

in Fig. 7. The subvolume charge does decorrelate significantly faster than the total

charge, but there is still a quite significant coupling to the slow mode remaining. The

decoupling coefficient C∗ is around 0.7 for the 16× 32 sublattice and about C∗ = 0.15

for the 164 subvolume. The latter is a significant suppression.

4.3 Quenched approximation

Considering phenomenological applications and access to different QCD observables,

hadron correlation functions are more interesting observables than Wilson loops. In

order to have very good statistics and observables which do not suffer from an intrinsi-

cally large variance, we study pseudo-scalar correlation functions. For cost reasons this

is done just on 64×323 lattices. As an example we perform a study similar to the one in

Ref. [17], where the mass and decay constant of the Ds as well as the charm quark mass

were investigated in the quenched approximation. Neglecting sea quark effects allows

us to generate an ensemble with the high statistics necessary for detecting even small

influences of the slow modes. However, it comes at the price that small quark masses

are not possible without running into the problem of exceptional configurations [25].

Even at the mass of the strange quark which we take over from Ref. [17], we observed at
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(cut in one dimension) and a 16th of the lattice, cut in half in all dimensions. We used

a sequence of 320000 MDU of the C2d run.
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Figure 8: Auto-correlation function of the mass of the c c̄′ pseudo-scalar meson with

mc = mc′ = mcharm. The meson mass is obtained from a plateau average. The two

dashed lines show the upper/lower bound region of the tail contribution to the normal-

ized auto-correlation function, given by C∗F e
−t/τ∗ .

least one clearly exceptional strange quark propagator in 40000 measurements. We dis-

card suspicious configurations using the criterion that the fourth moment of the strange
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pseudo-scalar correlator M4 with Mn = a
∑T/2−a

t=−T/2+a t
nCPP (t) is at least ten standard

deviations away from the average value.

We used the Wilson gauge action at β = 6.2 on a 64× 323 lattice, see also Table 1,

simulation C4d. The Wilson fermion action is non-perturbatively O(a) improved [26]

and we chose hopping parameters [17] κstrange = 0.134959 and κcharm = 0.124637. The

quark fields are anti-periodic in time.

The large statistics allows us to accurately measure the auto-correlation function.

In Figure 8 we show the example of the meson mass with the longest auto-correlation

among those considered in this study: the pseudo-scalar cc̄′ meson with mc′ = mc =

mcharm. The normalized auto-correlation function quickly falls to ρ(6) ≈ 0.2, but then

exhibits a long tail for which we get non-zero values up to t ≈ 200. As will be discussed

further in Sect. 4.4, the contribution of the slow mode to τint is CF τexp ≈ 50%.

Observable τ l
int(S = 1.5) τ l

int(S = 3) τu
int

mss′
PS 6.9(2) 8.5(4) 11(1)

fss
′

PS 3.9(1) 4.0(1) 7(1)

mss′ 3.7(1) 3.7(1) 7(1)

mcc′
PS 11.0(4) 13.3(7) 15(2)

f cc
′

PS 4.3(1) 5.0(2) 8(1)

mcc′ 5.6(1) 6.6(3) 9.4(1)

Q2
1 183(21) 191(31) 196(14)

P1 12.0(4) 13.5(7) 15(2)

W1(0.5fm, 0.5fm) 27(3) 30(5) 34(5)

Table 3: Auto-correlation times for the quenched strange and charm quark observables

along with pure gauge observables on the C4 lattice and Wilson loop on the C2 lattice.

The window Wl has been obtained by setting the S parameter in eq. (2.10) equal to 1.5

and 3. Larger values of S correspond to larger windows.

Other results are shown in Table 3. The important observation on this table is

that the auto-correlation times for all observables F that we looked at are τint(F ) . 20

except for the squared topological charge, for which we find τint(Q
2
1) ≈ τint(Q

2
5) ≈ 200.

Thus there is very good evidence that the effect of the slow mode, which is clearly

visible in the charge, is strongly supressed in other observables. Still this supression

should be verified for each new observable and the effect of the slow mode should be

estimated. The different numbers for the τint-estimates in the table illustrate that

significant contributions by slow modes are present. We now turn to this issue of good

error estimates.
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of size 0.5fm×0.5fm. Four different lattice spacings are shown in the pure gauge theory,
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4.4 Improved error estimates

Our results of the previous two subsections call for improved error estimates (Sect. 2.2)

where the contribution of a long tail of the auto-correlation functions is included. We

discuss numerical results from both the pure gauge theory runs and the quenched run.

Also the decoupling of Sect. 2.3 is demonstrated for these cases.

In the pure gauge theory data we clearly see decoupling of the Wilson loops. Re-

call from Fig. 3 that the maximum auto-correlation is present for the once-smeared

0.5fm×0.5fm Wilson loop. In Fig. 9 we thus show C∗W1
(r) introduced in Eq. (2.31) for

that size. The dependence on r (not to be confused with the size of the loop) is rather

insignificant, while the plot shows how the amplitude C∗W1
(r) decreases at smaller lattice

spacings, independent of any small residual variation with r.

The contribution of the slowest mode to τint is given by the product τexpCW1 . In

order to analyse the critical behavior of this quantity we fix r = 0.5 and plot τ∗, our

estimator for τexp, the coefficient C∗W1
(0.5) as well as the combination τ∗C

∗
W1

against

the lattice spacing in Fig. 10. We see the strong critical slowing down as an increase of

τ∗ by orders of magnitude, which is, however, basically compensated by the decoupling

characterized by the critical behavior of C∗W1
(0.5). As a result, the contribution of the

slow mode to the auto-correlation time of the Wilson loop stays small and no severe

critical slowing down is observed in this quantity.

We now turn again to pseudo-scalar correlation functions on the C4d lattice. We

saw earlier that the largest auto-correlation is seen for the correlator of two distinct
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Figure 10: The slow mode contribution τexpC
∗
F (r), eq. (2.31), for F the squared, once

smeared Wilson loop of size 0.5fm×0.5fm as a function of the lattice spacing.

flavor but mass-degenerate quarks with the mass of the charm quark. Therefore we

illustrate the statements made in Sect. 2.2 for this example as well as for the squared

topological charge. The estimate of τexp to be inserted into eq. (2.24) and eq. (2.25)

was already discussed in Sect. 2.2. Here we show eq. (2.24) in comparison to eq. (2.23)

as a function of the window size Wu,Wl. They are plotted together in Fig. 11. We

see that τu
int(P5) represents a much safer estimate of τint than τ l

int, also at a somewhat

small value of Wu, which one might be forced to choose if the statistics is small. In the

case of the topological charge squared, the auto-correlation function follows closely a

single exponential decay already at rather small times. Hence the determination of τint

including the tail from eq. (2.24) is precise at values of Wu which are much smaller than

the one that is chosen by our criterion in Sect. 2.2.

The safer error estimate described in Sect. 2.2 is convincing in the case of a large

statistics – on the C4d lattice the total statistics is around 1000× τexp. For significantly

smaller sample sizes the error estimate will of course be less reliable. We tested the

stability by dividing the total run into pieces of about 2500 (MDU · R) each, which is

about 10τexp. The histograms in Fig. 12 show the distribution of both standard and

the improved error estimate following exactly Sect. 2.2. The observable is again the cc̄′

pseudo-scalar mass. These distributions teach the following lesson. The improved error

estimate of eq. (2.24) and eq. (2.25) is always safely close to the true error or somewhat

above it, while eq. (2.23) with the standard window size typically underestimates the

error – not so rarely by a factor two. An error estimate using τu
int is recommended. The

histograms also remind us of an obvious fact: typically the error of the statistical error

is not that small in QCD simulations.
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4.5 Full QCD

As part of the CLS5 effort, we have carried out two rather long Nf = 2 QCD runs

with about 16000 MDU each, and with R = 0.37. The ensemble E5f is generated with

τ = 1/2 and E5g has τ = 4. Both simulations describe the same physics, using the

non-perturbatively O(a) improved action [27] at β = 5.3 , κ = 0.13625 on 64 × 323

lattices. The lattice spacing is read off from r0/a ≈ 7 [28] and we are close to mπr0 = 1,

which means a pion mass of around 400 MeV. We will compare directly to the C1 lattice

whose lattice spacing is matched to this value of r0/a. But first we illustrate the quality

of the runs by some time histories in Fig. 13: the runs contain many sign-flips of the

topological charge. As expected the frequency of topology changes is better for the

lower, τ = 4, run than for the upper, τ = 1/2, case.

A one-to-one comparison of the auto-correlation functions, quenched vs. Nf = 2,

is presented in Fig. 14. One observes a very similar decorrelation of all observables

quenched and in full QCD, except for the squared topological charge which decorrelates

much faster with dynamical fermions. Unfortunately we cannot offer a real theoretical

understanding of this rather striking observation. However, note that the change of the

gauge action (in the pure gauge theory) from Wilson plaquette action to Iwasaki action

has a similar effect, namely the auto-correlations of Q2 were strongly affected while

auto-correlations of other observables are essentially unchanged. Among the effects of

the introduction of the fermion determinant is a change of the effective gauge action in

5https://twiki.cern.ch/twiki/bin/view/CLS/
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Figure 13: Histories of the charge Q5 in simulations E5f with τ = 0.5 (top) and E5g

with τ = 4 (bottom). The Monte Carlo time t is given in molecular dynamics time

units.

the ultraviolet. Beyond the leading β-shift there are also dimension six terms and this

“part” of the fermion determinant is the same as a change of the lattice gauge action.

As we did for the pure gauge theory, we now come to the extraction of the expo-

nential auto-correlation time, see Fig. 15. The estimator τ eff
exp(t, F ) = t

2 log
{
ρF (t/2)

ρF (t)

} is

shown for those observables with the slowest decorrelation out of our set. Clearly the

determination of τ eff
exp is difficult, but it seems possible. The location of τ∗, which we

remind the reader is our estimate eq. (2.30) for τexp, is indicated in the figure.

The numbers for τint and τ∗ are listed in Table 4. We see again that auto-correlation

times for long trajectories with length τ = 4 are around a factor two smaller than those

for τ = 1/2. In the table we list numbers for τ∗ determined just from the indicated

observable for illustration. In our estimate of τu
int the maximum one is then taken into

account as defined in eq. (2.27). The more observables one considers, the better (larger)

the estimate of τexp will get. Even if this is still below the true value of τexp, it will

provide us with a more realistic estimate of τint.

4.5.1 Proposal for error estimates

The numbers in Table 4 come from a rather long simulation. Such data is not always

available. Here we propose how one may proceed in this situation, using a reasonable

estimate of the contribution of the tail of the auto-correlation function. Eq. (2.24) should

be used when an onset of a tail is visible in the data and we suggest to choose Wu such

that δ[ρF (Wu)] ≈ ρF (Wu)/3. On the other hand for auto-correlations which quickly fall
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Figure 14: Comparison of the normalized auto-correlation function ρ(t) between

quenched and dynamical simulations at the same value of r0/a ∼ 7 for different ob-

servables. The data is from the C1d and E5g runs, respectively. Top: Comparison for

topological charge squared and plaquette. Center: Pseudo-scalar meson masses with

mass-degenerate quarks of the charm quark mass on the left (c̄γ5c
′) and strange quark

mass on the right (s̄γ5s
′), extracted from plateau averages over x0 ∈ [23a, 27a]. Bottom:

Auto-correlation functions of PCAC quark masses at x0 = 24a.
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Figure 15: Estimators for the exponential auto-correlation time from smeared plaquette

and topological charge in pure gauge (C1d) and dynamical (E5g) simulations.

off, eq. (2.25) is recommended. With low statistics an estimate of τexp, needed for these

formulae, is impossible to obtain. We therefore suggest to use a value for a not-so-small

a with good statistics together with the scaling observed in the pure gauge theory. For

our O(a)-improved action at Nf = 2 we hence suggest an a−5 ∼ exp(7β) scaling (see

eq.(4.5) of [29]). Together with τexp ≈ 40 at β = 5.3, this leads for the action of [27] to6

Rτexp ≈ 200 exp(7 (β − 5.5)) MDU . (4.5)

For safety reasons, one may attach an error of a factor 2 to this estimate and should

of course be aware of the assumptions made above. The best situation is an observable

with a strong decoupling, i.e. a small auto-correlation function ρF (Wu) or ρF (W0), for

which the intrinsic uncertainties of the model eq. (4.5) are not that relevant.

5 Summary and conclusions

In this paper we have established a very severe critical slowing down of the topological

charge in pure Yang-Mills theory when using the (DD)-HMC algorithm. A dynamical

critical exponent of z = 5 means that, at constant volume, the full simulation scales

with a−10 at least, since an HMC type algorithm is expected to scale with a−4 from

the increasing number of lattice points and typically an additional factor of a−1 from

the decreasing step size. However, we also investigated Wilson loops, which are more

commonly in the focus of interest. They are not affected in the same way, exhibiting

6To exclude any confusion, we here put the units explicitly which we have been using throughout.
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Q2
5 P5

TAG 〈Q2
5〉 a4χt τ lint τuint τ∗ τ lint τuint τ∗

C1d 50(4) 2.4(2) ×10−5 137(25) 134(15) 140(18) 38(4) 43(5) 74(11)

E5f 17.3(1.8) 0.82(9) ×10−5 16(4) 23(5) 21(5) 84(31) 66(13) 66(19)

E5g 18.9(1.5) 0.90(7) ×10−5 10(2) 14(3) 15(4) 29(8) 29(5) 39(12)

Table 4: Comparison between the integrated auto-correlation times for the topological

charge and the smeared plaquette between the dynamical and the corresponding pure

gauge ensemble. The dynamical runs E5f and E5g have trajectory length τ = 0.5 and

τ = 4, respectively. The pure gauge run C1d has τ = 4. Also the value of the topological

susceptibility, χt, is given.

a much milder slowing down while approaching the continuum limit (z ≈ 0.5 . . . 1).

Martin Lüscher investigated observables after integrating the Wilson flow [30] for some

distance which removes UV fluctuations. These observables effectively show z ≈ 2 [31],

a critical slowing down in between Q2 and the Wilson loops.

We have also considered observables formed from pseudoscalar correlation func-

tions, both in a quenched setting and for Nf = 2. These quantities are of immediate

interest and at the same time not plagued by large UV fluctuations. At a lattice spacing

of a ≈ 0.07fm their autocorrelation functions are much better behaved than the one of

Q2
5 but a weak coupling to the slow mode is seen in Fig. 14. Unfortunately, a systematic

study as a function of the lattice spacing and quark mass is prohibitively expensive, but

we expect that these observables continue to couple only weakly to the slow mode and

their slowing down is significantly less severe than for the topological charge.

On the one hand, this is encouraging. In practical simulations, unless we are

interested in the slow observables themselves, we do not need to gather enough statistics

to accurately determine their auto-correlation time. It is sufficient to have a decent

sampling in the slow modes to assure practical ergodicity, i.e. a few times their auto-

correlation times is needed. On the other hand, the danger remains that there are

even slower modes which are so slow that the corresponding fluctuations do not show

in the full runtime. The only way to study this is to start simulations in parameter

space, which can be considered safe and then move in small steps towards the critical

points, monitoring a large number of observables and relying on the continuity of auto-

correlations in terms of the system’s parameters.

Even if the coupling to the slow modes may be small it is important for a correct

error analysis. We described a practical method to take these effects into account.

It relies on the fact that information about τexp can be obtained through observables

which couple strongly to the corresponding mode. Under these circumstances, the error

analysis can be made significantly safer.

Still, a true solution to the critical slowing down has to be an algorithmic one which

at least solves the problem regarding the topological charge. The dramatic progress in
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the fermion algorithms which the field has witnessed during the last decade gives us

hope that this can actually be achieved.
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A Error of the Error

An introduction to the error analysis of correlated data from a Markov chain with

references can be found in [8] while the case of functions of the primary observables is

treated in [10]. Here we review the main formulae for estimating the error of the error

from these references and make those explicit which are not given there.

Our estimator for the mean, eq. (2.2), and the auto-correlation function, eq. (2.4),

are

Oα =
1

N

N∑
t=1

Oα(qt) , OF = F (Oα) (A.1)

ΓFF ′(t) =
1

N − |t|

N−|t|∑
u=1

dF (qu)dF ′(qu+t) +
1

N2

N∑
u=1

dF (qu)dF ′(qu) , (A.2)

where

dF (q) =
∑
α

Fα(Oα(q)−Oα) (A.3)

which for ΓFF ′ contains a bias correction discussed in [10]. In the computation of our

auto-correlation times, e.g. eq. (2.24), we replace Γ by its estimator Γ.

In Sect. 2 we introduced various quantities which are functions G({ΓF (t)}). Their

error is computed from simple error propagation

(δG)2 =
1

N

∑
A,B

∂G

∂ΓA
ΣAB

∂G

∂ΓB
(A.4)

where A = (F, u) and B = (F ′, v) collect the observable and time variable and run over

all components of the auto-correlation functions. The covariance matrix ΣAB is given

by

ΣAB =
1

N2

N∑
s=1

N∑
t=1

dF (qs)dF (qs+u)dF ′(qt)dF
′(qt+v)− ΓF (u)ΓF ′(v) . (A.5)
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Neglecting the completely connected part of the fourth moment in eq. (A.5), we have

the approximation

ΣAB ≈
1

N

∞∑
m=−∞

ΓFF ′(m+ v)ΓFF ′(m+ u) + ΓFF ′(m+ v)ΓFF ′(m− u) , (A.6)

which in practice we evaluate with the cut eq. (A.10) to be discussed below.

In some simple cases, approximations can be applied to eq. (A.4) to derive more

compact error formulae, for example [9, 13]

(δτint(W ))2 ≈ 2(2W + 1)

N
τ2

int(W ) , (A.7)

(δρ(t))2 ≈ 1

N

∞∑
m=1

(ρ(m+ t) + ρ(m− t)− 2ρ(m)ρ(t))2 . (A.8)

Furthermore we used the approximation

(δτu
int)

2 ≈ (δτint(Wu))2 + τ2
exp(δρ(Wu))2 + ρ2(Wu)(δτexp)2 , (A.9)

for the error of eq. (2.24) after checking that the left out cross terms are negligible.

Also in the case of eq. (2.29) a similar approximation has been applied. For all other

quantities we remained directly with eq. (A.4).

As mentioned, the evaluation of the sum in eq. (A.6) and also the one in eq. (A.8)

require the introduction of a cutoff on the sum over m. This can be done with the

function

Γ̃(x) =

{
Γ(x) |x| ≤WΣ

0 |x| > WΣ .
(A.10)

(and ρ̃) where we omit the subscripts to keep notation light. The computation of Σ(u, v)

is then carried out as the sum of terms
∑

m Γ̃(m)Γ̃(m+t) at times t = u+v and t = u−v:

Σ(u, v) ≈ 1

N

∑
m

(
Γ̃(m)Γ̃(m+ u+ v) + Γ̃(m)Γ̃(m+ u− v)

)
(A.11)

that can be done in at most O(W 2
Σ) operations. The size of WΣ can be discussed in

similar manner as we have done about window sizes for the auto-correlation function.

In our analysis we take WΣ = W , with W given by prescription eq. (2.11), however,

using WΣ = 2W gives similar results.

In principle one could think about adding a tail contribution to eq. (A.10), but this

goes too far, even with the statistics we had at hand.
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