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ABSTRACT

This paper deals with an online identification of the Gen-
eralized Maxwell Slip (GMS) friction model for both pres-
liding and sliding regime at the same time. This identifica-
tion is based on robust adaptive observer without friction
force measurement. To apply the observer, a new approach
of calculating the filtered friction force from the measur-
able signals is introduced. Moreover, two approximations
are proposed to get the friction model linear over the un-
known parameters and an approach of suitable filtering is
introduced to guarantee the continuity of the model. Sim-
ulation results are presented to prove the efficiency of the
approach of identification.

Index Terms— GMS Friction, robust adaptive observer,
filtering, identification

1. INTRODUCTION

Friction is a physical phenomenon that occurs in mechan-
ical systems which contains surfaces in contact. The fric-
tion phenomenon can be desired in many applications such
as brakes and it can be undesired in large class of control
systems in which friction can deteriorate control perfor-
mances by introducing tracking errors or limit cycles and
shattering.
In order to compensate the friction undesired phenomena,
many models were introduced in literature [1]. The first
models introduced were the static models which are simple
but they don’t represent the entire behavior of this friction.
For this raison, other dynamic models [2, 3], which were
based on bristle models were introduced but they don’t
render, in presliding regime, both stiction and presliding.
That’s why, more recent models are introduced [4, 5] to
illustrate the friction microscopic behavior. This models
was based on experimental results and the hysteresis be-
havior was approximated.
More recently, a new model known as GMS model (Gen-
eralized Maxwell Slip friction model) was introduced [6].
This model is the most realistic because it illustrates the
majority of the friction behaviors. Moreover, they have in-
troduced a reduced friction model which is appropriate for
simulation and control purposes [7, 8].

In the control systems, modeling is very important but pa-
rameter identification is necessary for the compensation
of friction. Many works were done in this field. For ex-
ample, Coulomb friction model was done [9, 10, 11], and
since Coulomb friction represent only a part of friction be-
havior, other works were done for more complicated fric-
tion model like Coulomb and viscous friction [12] and the
coulomb and viscous friction with Stribeck effect [13, 14].
Identification of the GMS model is not yet well investi-
gated. In fact, only pre-sliding regime was used for iden-
tification [15]. Moreover, this identification was based on
off line methods like linear regression , dynamic linear re-
gression and nonlinear regression.
In this work, the identification of the GMS friction model
is introduced based on both pre-sliding and sliding regime
at the same time. Moreover, the proposed identification
approach is on line which is very important in control pur-
pose. This identification is based on a robust adaptive ob-
server which is used to estimate the friction force and the
unknown parameters.
This paper is organized as follows : in the second sec-
tion, the GMS friction model is described and some as-
sumptions are given. An adequate formulation of the fric-
tion model to be used with a robust observer is presented.
In the third section, numerical results and simulations are
presented. The final section is about the conclusion.

2. PROBLEM STATEMENT

Consider a single mass subject to an external force as shown
in figure 1. Using the Newton’s second law, the dynamic

Figure 1. Mass system schema

of the system can be described by the following equation:

Mv̇ = u− F (1)
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where M is the mass of the system, v is the velocity, u
is the external force and F is the frictional force. The
frictional force is described by Generalized Maxwell Slip
model, known as GMS model [7]. The GMS model is de-
scribed by N elasto-slip elements excited by the same in-
put witch is the velocity. The frictional force is then the
sum of all elementary forces ([7]).
The GMS model is characterized by two regimes: the first
regime is called presliding regime and is defined by the
following equation:

dFi

dt
= kiv (2)

The model continue to stick until Fi = αisi(v).
The second regime is called sliding regime and is charac-
terized by the following equation:

dFi

dt
= sign(v)αiC

(
1− Fi

αisi(v)

)
(3)

and the model is slipping until the velocity crosses zero.
To switch between the two regimes of the GMS model
there is two conditions. In fact, to switch from the pres-
liding regime to the sliding regime, the friction force has
to be equal to the quantity αisi(v) and to switch from the
sliding regime to the presliding regime, the velocity must
cross the value zero.
The total frictional force is then given by

F (t) =

N∑
i=1

Fi(t) + Fv(v) (4)

where Fv(v) is the viscous friction.
In a previous work [16], it was supposed that the friction
force was known and a new approach for identification of
all model parameters based on a robust observer was in-
troduced. In this paper, an other new approach which is
based on the same observer but the friction force is con-
sidered unknown will be introduced.
It’s very difficult to identify the parameters of the GMS
model because of the number of the parameters and the
nonlinearities in the model. So, to simplify this model,
some assumptions are introduced [7] as follow:

Assumption 1 We suppose that si(v) is the same for all
elementary models and it will be noted by S(v). This func-
tion is the Stribeck function witch describes the static fric-
tional force and is given by

S(v) = σcsign(v) + (σs − σc)sign(v)e
−θsv

2

(5)

where σc and σs are respectively the Coulomb and the
static coefficient. The parameter θs is the Stribeck coef-
ficient.

Assumption 2 To identify the friction model, we have to
satisfy the following condition

N∑
i=1

αi = 1 (6)

For identification of the GMS unknown parameters, a ro-
bust observer is used, for this reason, other assumptions
are needed

Assumption 3 In this paper, we suppose that the model
friction is composed by one elementary model, i.e. N = 1
so we have α1 = 1.

Assumption 4 All model parameters, k, C, σc and σs are
unknown. However, it is assumed that they are constant
and bounded.

Assumption 5 The velocity v(t) is assumed bounded

Now based on the assumption 3 and in order to respect the
observer conditions, the friction model can be written as
follow [16]:
Presliding: In presliding regime , the dynamic of the fric-
tion force can be written as follows:

Ḟ = kv (7)

if we pose x = F and θst = k, the equation (7) can be
reformulated as follows:{

ẋ = Ψst(u, v)θst
y = Ccx

(8)

where Cc = 1 and Ψst(u, v) = v.
Sliding: Based on equations (5) and (3), the dynamic of
the friction force is characterized by the following equa-
tion:

Ḟ = sign(v)C

(
1− F

S(v)

)
=

sign(v)

S(v)
C

(
sign(v)σc + sign(v)(σs − σc)e

−θsv
2 − F

)
(9)

The challenge with the formulation in equation (9) is the
nonlinearity over the unknown parameters. However, in
order to satisfy the linearity condition of the observer pre-
sented in [17], two approximation are introduced:
[A1] the first approximation is to approximate the quantity
sign(v)

S(v)
by

1

gm
, where gm is a constant (gm ∈ [σc σs]).

This approximation is justified because the friction force
dynamic (equation (9)) is a first order differential equation

with a time constant τ(t) =
S(v)

sign(v)
where v �= 0. So the

time constant variation is too small when it verifies the fol-
lowing condition: τ(t) ∈ 1/C[σc σs] and σs − σc � σc.
The deviation error can be determined by calculating the
difference between the equation (9) and the same equation

in which the quantity
sign(v)

S(v)
is replaced by

1

gm
. This

deviation error is given by :

Fd1 = C

[
sign(v)− sign(v)

F

S(v)
− S(v)

gm
+

F

gm

]
(10)

[A2] The second approximation consists on the lineariza-
tion of the quantity e−θsv

2

over a nominal value of θs



which is θNs by using the Taylor series. This linearization
is given by

f(θs) = e−θsv
2

= f(θNs ) +
f

′
(θNs )

1!
(θs − θNs ) + Fd2

= h1(u, v)− h2(u, v)θs + Fd2

(11)
where h1(u, v) = e−θN

s v2

+ v2e−θN
s v2

θNs and h2(u, v) =
−v2e−θN

s v2

are two well known quantities and Fd2 is the
deviation error introduced by the linearization.

Property 1 The deviation error due to the first approxi-
mation A1 which is Fd1 is bounded because the friction
force is bounded and the Stribeck function S(v) is also
bounded. Moreover, the equation given by (10) is bounded
when F is bounded.

Property 2 The deviation error due to second approxima-
tion A2 which is Fd2 is bounded because the model param-
eters and the velocity are bounded.

The two approximations A1 and A2 are used to rewrite the
friction force dynamic in sliding regime to get the follow-
ing equation:

Ḟ =
1

gm
C

(
sign(v)σc + sign(v)(σs − σc)(h1(u, v)

+h2(u, v)θs + Fd2)− F

)
+ Fd1

= −F C

gm
+ sign(v)

Cσc
gm

+ sign(v)h1(u, v)
Cσ

gm

+sign(v)h2(u, v)
Cσθs
gm

+ FD

(12)

where σ = σs − σc and FD = Fd2
Cσ

gm
sign(v) + Fd1

is the total deviation error due to the two approximations
combined together (A1 and A2).
Based on equation (12) and because of the two approxima-
tions A1 and A2 applied to the friction dynamic in sliding
regime (equation (9)), the equation of the sliding regime is
now linear over the unknown parameters. However, due to
the two approximations, a bounded perturbation is intro-
duced to the equation of the sliding regime. That’s why a
robust observer [17] will be used to identify the unknown
parameters. In fact, based on the theorem in [17], if the
perturbation in the system is bounded and if the condition
of the persistence of excitation is verified, the observer will
be stable despite there is a bounded perturbation in the sys-
tem. However, the steady state estimation error will be dif-
ferent from zero because of the bounded perturbation.
Based on equation (12) and by noting

θsl =

[
C

gm

Cσc
gm

Cσ

gm

Cσθs
gm

]T
(13)

Ψsl(u, v) = sign(v)[−sign(v)F, 1, h1(u, v), h2(u, v)]
(14)

if we pose x = F , the friction model in the sliding regime
can be written as follow :{

ẋ = Ψsl(u, v)θsl + FD

y = Ccx
(15)

where Cc = 1
The two formulations described by the equation (8) and
(15) can be combined together using a switching function
Q(t) defined by{

Q(t) = 0 if the system is in sliding regime.
Q(t) = 1 if the system is in presliding regime.

(16)
So the formulation of the entire system with the two regimes
(sliding and presliding) can be written as follow{

ẋ = ψ(u, v)θ + ω(t)
y = Ccx

(17)

where θ = [θTsl, θ
T
st]

T ,
ψ(u, v) = S12(t) = (1−Q(t))S1(t) +Q(t)S2(t) and
ω(t) = (1 −Q(t))FD with S1(t) = [ψsl(u, v) 0] and
S2(t) = [0 ψst(u, v)].
Because of the switching function Q(t), the two friction
regimes can be combined together in one equation which
respects the general formulation of the robust observer in-
troduced by Marino and al. [17]. However, to be able to
use the observer, the formulation described by the equation
(17) should respect an other important condition which is
the continuity of the regressor vector ψ(u, v) and the con-
tinuity and the bound of the derivate of ψ(u, v). unfortu-
nately, because of the sign operator in the regressor vector
and the switching function Q(t), the condition is not re-
spected. Moreover, because of the two approximations A1
and A2, the formulation of the system is not continue so
the condition of continuity is not respected.
To solve the problem of continuity, a second order filter is
applied to the system. In fact, when this filter is applied
to both sides of the system equation, there is no effect on
the equation it self but all the discontinuity of signals are
eliminated. The filter is chosen of second order because
the condition concerns the continuity of regressor vector
and the continuity of its derivate.
So to guarantee the condition of continuity, two low pass
first order filters in cascade are used. their cut off frequen-
cies are defined by ωc1 and ωc2. The transfer function of
each filter is defined as follow:

Hi(s) =
ωci

s+ ωci
for i = 1, 2 (18)

When these filters are applied, the equation of the friction
model can be written as follow:

For the first stage of the filter{
ẋf = ψf (u, v)θ + ωf (t)
yf = Ccxf

(19)

For the second stage of the filter{
ẋF = ψF (u, v)θ + ωF (t)
yF = CcxF

(20)



where f and F indicate that the corresponding variable is
filtered respectively by the first stage and the second stage
of the filter.
In this work, the friction force is assumed unknown so an
other problem is added. In fact, the friction force is the first
element of regressor vector ψ(u, v) and based on equation
(20), the regressor vector is filtered to guarantee the conti-
nuity condition and since the friction force is unknown, it
is not possible to calculate the first element of the regres-
sor vector.
To solve this problem, a special filtering procedure is in-
troduced: the filtered friction force is calculated from a
known signals which are the velocity (v) and the input (u).
This procedure is detailed in the following lemma:

Lemma 1 For the system presented in figure 1, the filtered
friction force by the first stage of the filter H1(s) can be
obtained from well known signals v and u (see figure 3).

Proof 1 the dynamic equation of the system presented by
the figure 1 is given by

Mv̇ = u− F (21)

so the friction force is given by

−F =Mv̇ − u (22)

If the first order filter is applied (see figure 2), the filtered
friction force in the Laplace domain is given by

−Ff =
Mωc1

s+ ωc1
v̇ − ωc1

s+ ωc1
u

=
Mωc1sv

s+ ωc1
− ωc1

s+ ωc1
u

=Mωc1v − ωc1u+ ω2
c1Mv

s+ ωc1

(23)

if we pose R(s) the state variable in Laplace domain de-
fined by

R(s) =
−ωc1u(s)− ω2

c1Mv(s)

s+ ωc1
(24)

then, in time domain, we get

ṙ + ωc1r = −ωc1u− ω2
c1Mv (25)

and the time derivate of the state variable is given by

ṙ = −ωc1r − ωc1u− ω2
c1Mv (26)

and if y1 = −Ff is the output of the system, then the fil-
tered friction force can be given by

−Ff = y1 = r +Mωc1v (27)

So, the state equation of the filtered friction force is ob-
tained from the input of the system u and the velocity v
and it is given by{

ṙ = −ωc1r − ωc1u− ω2
c1Mv

y1 = −Ff = r +Mωc1v
(28)

Figure 2. Filtered friction force schema

Figure 3. Filtered friction force construction schema

Now, and based on lemma 1, it is possible to determine
respectively the first and second stage of the filtered fric-
tion force Ff and FF using known signals as the input u
and the velocity v. However, an other problem is raised
in the first filtering stage of the regressor vector. In fact,
due to the switching functionQ(t), there is a commutation
between the value of the friction force F and zero. This
commutation should be continuous but it’s not because the
friction force is unknown. Moreover, even if the filtered
friction force is build, the continuity condition will be still
not verified. The solution of this problem is given in the
following lemma:

Lemma 2 Using appropriate initial conditions, the signal
S12f (t) can be obtained either by the approach applied in
figure 4 or by the approach presented in figure 5.

Proof 2 the detailed proof is given in previous work [16]

Figure 4. The first filter application approach

Figure 5. The second filter application approach

Based on the lemma 2, to determine the filtered regres-
sor vector, the second approach (in figure 5) is used for



the first element of the vector which is the filtered friction
force by the first stage of the filter. The filtered friction
force is constructed using the two signals: the input u and
the velocity v (as shown in figure 3). For the other ele-
ments of the regressor vector, the first approach (in figure
4) is used.
With the approach of filtering, the robust observer intro-
duced by Marino and al. [17] can be applied because all
its conditions are verified. So, the observer can be build as
follows{

˙̂x = −KCcx̂+ ψF (u, v)θ̂ +KyF
˙̂
θ = ΓψF (u, v)

T (yF − Ccx̂)
(29)

where K and Γ are the observer Gains. The equation of
the estimation error dynamic is defined by :{

˙̃x = −KCcx̃+ ψF (u, y)θ̃ − ωF (t)
˙̃
θ = −ΓψF (u, y)

TCcx̃
(30)

where x̃ = x̂− xF and θ̃ = θ̂ − θ.

3. SIMULATION RESULTS

Table 1. Parameters values for the simulation
Parameter Value Unit

σc 10 N
σs 15 N
C 24 N/s
θs 104 s2/m2

M 1 Kg
k 5× 105 N/m
ωc1 10 rad/s
ωc2 100 rad/s

Table 2. Unknown parameters values
Parameter Real Value initial Value Unit

θ1 2.4 1.2 s−1

θ2 24 12 N/s
θ3 12 6 N/s
θ4 12× 104 9× 104 Ns/m2

θ5 5× 105 2.5× 105 N/m

In order to illustrate simulation results and validate the
proposed approach to identify the GMS friction model,
we have used the parameter simulation values shown in
table 1, the unknown parameters with the chosen initial
conditions given in table 2 and the input of the system
that give the following velocity v = 0.01sin(0.2πt +
0.025)sin(2πt). Note also, that the initial condition of the
state variables and the estimated state variables are taken
equal to zero.
For simplicity, the switching functions are assumed ideal.
That’s means that the instants of commutation from the

sliding regime to the presliding regime and vice versa are
assumed known. This assumption is not realistic because
the switching function is based on the unknown param-
eters but a deep study of this function will be published
promptly.
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Figure 6. Estimated and real values of the unknown pa-
rameters.
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Figure 7. (a): Estimated and real friction forces. (b): Fric-
tion error

As shown in Figure 6, the estimation values of the pa-
rameters converge to the real values but with some devi-
ation. This deviation is due to the perturbation FD intro-
duced by the two approximations A1 and A2. In fact, as
proved by Marino and al. [17], when the system has a
bounded perturbation, the estimation errors are attracted
in open balls centered in the origin and with a radii af-
fected by the amplitude of the perturbation. However, de-
spite of the deviation of the estimated parameters, the es-
timated friction force is too close to real force (see Figure
7 (a)) and, in term of estimation error (figure 7 (b)), the



amplitude is less then 0.2% (0.04N ) of the friction force
amplitude (15N ). Those results show that the proposed
identification approach is very efficient not only for the
identification of the unknown parameters of the friction
model but also for the friction force.

4. CONCLUSION

In this paper, an online identification approach of the GMS
friction model, for both pre-sliding and sliding regime,
based on a robust adaptive observer is presented. Two ap-
proximations are introduced to avoid nonlinearities in the
model over the unknown parameters. Furthermore, as the
friction force is assumed unknown, a new approach is in-
troduced to determine the filtered friction force from the
measurable signals. Finally, a filtering approach is intro-
duced to discard discontinuities in signals and to access
to unknown signals. Simulation results illustrates that the
observer is able to identify the unknown parameters and to
estimate the friction force even though it was based on an
approximated model.
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