The kinetic of α-Zr(O) layer in Zr1Nb alloy

Martin NÉGYESI

Supervisor: Ing. Věra VRTÍLKOVÁ (UJP PRAHA a.s.)
Consultant: Ing. Jan ADÁMEK (KMAT FJFI ČVUT)
Introduction (1)

- Zr1Nb is used as a material for fabrication of fuel claddings

- operating conditions (VVER: 320 °C/16 Mpa) – claddings oxidation, oxygen and hydrogen absorption, etc. – influence on the mechanical properties

- LOCA (Loss of Coolant Accident) – additional claddings oxidation and oxygen and hydrogen absorption (even inside the cladding) upon the temperature ~ 1000 °C => phase transformation α-Zr → β-Zr – cooling down => lost of mechanical properties

- the reactor core integrity and cooling possibility, claddings’ thermal shock resistance and the consequential materials handling during transport from the reactor have to be maintained even after the LOCA

- many criteria have been set up so far – conventional oxidation criteria do not work for high hydrogen uptake

- an effort to create a universal criterion - it is necessary to know the oxygen distribution (microstructure evolution) inside the cladding’s wall during the transient – oxygen diffusion model
Introduction (2)

- The wall microstructure after the transient (high temperature oxidation) consists of three layers: oxide layer, oxygen stabilized α-Zr(O) layer and prior β-Zr layer.

- One has to known pseudobinary Zr1Nb-Oxygen phase diagram.
Introduction (3)

- The microstructure (α-Zr(O) morphology) depends on the chemical composition:
 - Zircaloys - alloy containing Sn (α-stabilizer) => the phase boundary between α-Zr(O) layer and prior β-Zr layer is quite uniform
 - Zr1Nb alloy - an additional mixture of α-Zr(O) and prior β-Zr, because of the β-stabilizing effect of niobium
Major goals

- α-Zr(O) layer thickness determination
- determination of the nanohardness and oxygen concentration at $\alpha/\alpha+\beta$ phase boundary depending on the temperature
- determination of the ceiling oxygen concentration in β-Zr depending on the temperature
- try to use the oxygen distribution in the cladding wall to pseudobinary Zr1Nb-Oxygen phase diagram construction
Experimental material

- Zr1Nb alloy

- Corrosion during operating conditions was simulated in autoclaves in water steam at 425 °C and 10.7 Mpa (~2 atm ~10 μm)

- High temperature oxidation: 800 - 1200 °C in water steam, atmospheric pressure

- Cooling down - quench in water with ice or slow cool down in the furnace

Sample 6212008 (1200 °C/9 min, 0μm)
Experimental methods

- layers measurement - LM NEOPHOT 21, image analyzer LUCIA G (UJP PRAGUE a.s.)
- micro-hardness measurement - micro-hardness tester OPL (KMAT FJFI ČVUT)
- nano-hardness measurement - nano-hardness tester XP (NTC ZČU)
- X-ray microanalyses - WD spectrometer INCA Wave 700 (ÚJV)
- SIMS - quadrupole SIMS Atomika 3000 (UJEP)
- TEA - LECO TC500C (UNIPETROL)
Layers' thickness measurement

- measurement on cross sections in 6 areas (after 60 min) at external and internal cladding's edge
The kinetic of the layer α-Zr(O)

Results of the layer α-Zr(O) have to satisfy the parabolic and Arrhenius laws:

$$L_\alpha^2 = K \times t$$

or

$$L_\alpha = k \times \sqrt{t}$$

$$K = A \times \exp\left(-\frac{Q}{RT}\right)$$

$$\ln K = \ln A - \frac{Q}{RT}$$
The kinetics

\[L_\alpha = k \cdot \sqrt{t} \]

- \(\alpha \)-Zr(O) thickness: \(l_\alpha^2 = 0.231e^{-184928/RT}t \) for \(T = 800 - 1200 \) C

\(y = -22243x + 21.053 \)
\(R^2 = 0.966 \)

(\(\alpha + \beta \))-Zr area
Determination of nano-hardness and oxygen concentration at $\alpha/\alpha+\beta$ phase boundary

\[y = -0.0378x + 12.739 \]

\[y = -0.0612x + 5.1729 \]
Determination of nano-hardness and oxygen concentration at $\alpha/\alpha+\beta$ phase boundary

- Oxygen concentration and nano-hardness at $\alpha/\alpha+\beta$ phase boundary in the cladding of Zr1Nb are close to oxygen concentration and nano-hardness at $\alpha/\alpha+\beta$ phase boundary in the cladding of Zry-4 with ~2000 wppm hydrogen content.
Relation between nano-hardness and oxygen concentration at $\alpha/\alpha+\beta$ phase boundary

- The relation between the nano-hardness and oxygen concentration at $\alpha/\alpha+\beta$ phase boundary was specified.
- This relation is identical for both alloy.
- The oxygen concentration can now be estimated from the nano-hardness at $\alpha/\alpha+\beta$ phase boundary.

![Graph showing the relation between nano-hardness and oxygen concentration. The equation is $y = 0.9015x + 6.1876$ with $R^2 = 0.9893$.](image-url)
Oxygen saturation in β-Zr phase

- No α-Zr grains in middle of prior β-Zr
- α-Zr grains precipitation in β-Zr
Oxygen saturation in β-Zr phase

- very good agreement between both SIMS and TEA results
- the oxygen concentration in the prior β-Zr rises with rising exposure temperature and time
- the experimental scatter is mainly caused by various hydrogen content and various cooling rate
Oxygen saturation in β-Zr phase

- ceiling oxygen concentrations in β-Zr are close to ceiling oxygen concentrations in β-Zr at Zry-4 alloy.
Pseudo-binary Zr1Nb-O phase diagram

\[\beta = 777.89e^{0.7208x} \]
\[R^2 = 0.9569 \]

\[\gamma = 722.49e^{0.1210x} \]
\[R^2 = 0.9766 \]

other authors’ results (M5TM) [4]
Conclusions

- α-Zr(O) layer kinetic was set up in the cladding of Zr1Nb alloy – the kinetic is parabolic and slower in comparison with Zry-4.

- The oxygen concentration and the nano-hardness at $\alpha/\alpha+\beta$ phase boundary in the cladding of Zr1Nb are close to the oxygen concentration and the nano-hardness at $\alpha/\alpha+\beta$ phase boundary in the cladding of Zry-4 with ~ 2000 wppm hydrogen content.

- The relation between nano-hardness and oxygen concentration at $\alpha/\alpha+\beta$ phase boundary in the area of α-Zr(O) was specified.

- Ceiling oxygen concentrations in β-Zr are close to ceiling oxygen concentrations in β-Zr at the Zry-4.

- The procedure of the pseudobinary phase diagram assessment was set up.

- On the base of results of nano-hardness measurement, WDS, micro-hardness measurements, SIMS and TEA analyses the Zr1Nb-O phase diagram was estimated in the 950-1200 °C temperature range and the 0.1 až 4.0 wt.% concentration range: $T_{\beta/\alpha+\beta} = 777.8e^{0.72C}$ a $T_{\alpha+\beta/\alpha} = 722.4e^{0.121C}$.
Thank you for your attention!
Acknowledgments

Authors wish to thank to doc. Ing. O. Bláhové, PhD (NTC ZČU) for nanoindentation measurements, Ing. J. Burdovi (ÚJV) for X-ray microanalyses, RNDr. J. Lörinčíkovi, CSc. (UJEP) for SIMS analyses, Ing. V. Kloučkovi (UNIPETROL) for TEA analyses, employers of UJP Praha a.s. for supply their results, Ing. V. Vrtílkové (UJP) for the leadership and Ing. J. Adámkovi (KMAT FJFI ČVUT) for fractography measurements and the assistance in the solving problem.
References

