Development of an End-State Vision for Incorporating Digital Controls and Operator Interface Design into Control Room Modernization

IAEA Plant Life Maintenance Conference

15 May 2012
Salt Lake City

Ronald L. Boring, PhD
Vivek Agarwal, PhD
J. J. Persensky, PhD
Jeffrey C. Joe, MS
LWRS Charter

- Assist utilities with safely extending the life of currently operating plants

Our Framework

- Work with utilities to help them upgrade main control rooms

The State of Control Room Upgrades at Plants

- None of 104 current reactors in US has upgraded main control room yet
- Obsolete analog-only technology with some digital islands
- Regulations make upgrades challenging
- Vendors providing mainly like-for-like replacements
- Piecemeal replacements instead of systematic upgrades
- Limited current human factors experience to leverage for upgrade process
modernization ≠ new control room
different control room upgrade paths

INL conducted a survey of 11 US utilities and 10 nuclear institutions in March 2012.
Help Utilities Develop End-State Vision

- Vision should realistically address constraints but also move forward
- Bridge utilities, researchers, regulator, and vendors

Pilot Project on Main Control Room Upgrades

- Focus on HSI
- Provide stepping stones to achieve vision
 - Human factors engineering program plan
 - Digital style guide
 - Operator-in-the-loop testing of candidate digital HSIs
- Champion research where needed
 - Provide proof-of-concept prototypes for eventual implementation by utilities and vendors
- Disseminate results to industry and regulator
San Onofre Nuclear Generating Station (SONGS)

- 2-unit Combustion Engineering plant (2,350MWe combined output)
- Engaged in multi-year main control room modernization effort
- Provided plant simulator to allow us to help with control room modernization
 - We are not deploying upgrades, only helping them create a viable end-state vision
 - Prototyping and validating interface modernizations beyond like-for-like replacements
 - Assisting plant develop a systematic upgrade path
 - Providing appropriate guidance and specifications to allow SONGS to work with vendors on implementation
Step 1
- Translate analog control room to digital representation
- Marry plant control room to INL simulator

Step 2
- Upgrade select non-safety systems in control room
- Develop style guides for replacement HSI
- Provide human factors support to SONGS

Step 3
- Create innovative controls and displays that improve human performance
 - Develop intelligent alarm system replacement
 - Develop operator support systems including overview displays
Orchid® Touch Interface
Classroom Simulation
3 2/20/2012 © 2012 L-3 Communications MAPPS Inc. All rights reserved.

- simulator environment
- Offload full scope simulator by using a device that fits the need of young learners
full scope
full scale
fully glass panel
a systematic human factors design process for replacing analog panels with digital I&C
creating future HMIs: research for advanced controls and displays
step 3

Hybrid Control Systems:
- Merge of PLC and DCS attributes
- Windows Explorer
- Miniaturizing footprint
- Open Networks
- Windows-based Operating Interfaces

Other Migrations:
- PLCs Taking on Analog Control Attributes
- Interconnection of IT and control systems
- Migration from proprietary networks
- Migration from UNIX and VMS interfaces

Distributed Control Systems:
- Multiple Analog Control Loops for Plants
- Supervisory Control and Data Acquisition Systems (SCADA):
 - Wide Area Monitoring

Enterprise-wide Control Systems:
- Digital Fieldbus
- OPC
- Web-based Interfaces
- Asset Management Systems
- Condition Based Maintenance

Resilient Control Systems:
- Integrated Cyber Security
- Information Quality Analytics
- Tailored Automation
- Global Control/Effciency

Decentralization

Open Systems

Centralized Control

Programmable Logic Controllers (PLC):
- Relay Replacement

Era
1970s 1980s 1990s 2000s
Current Alarm Systems in Nuclear Power Plants

- Analog systems beyond service lifetimes
 - Fundamental alarm technology developed in the 1960s
 - Replacement parts difficult to obtain
 - Alarm systems very complex to maintain
- Overabundance of binary state alarm annunciator tiles
- Typical plant features over 1000 individual alarm tiles in main control room
- Ineffective filtering of alarms leads to nuisance alarms that can overload operators

example: need for improved alarm systems
digital replacement systems have tended to be like-for-like

New Technologies: Digital Alarm Displays
- Beyond alarm tiles
- Prioritized alarm lists
- Single-screen displays for all alarms
- State dependent alarms

New Technologies: Alarm Intelligence
- Automation of key plant functions to prevent nuisance alarms
- Filtering alarms to most important information for operator
- Functional grouping of alarms into single alarm
 - More important to know that pump failed than that 25 different flow indications are abnormal
 - Identify root cause rather than cascade of effects

example: need for improved alarm systems
New Research on Smarter Operator-Alarm Interaction

- Humans have finite ability to perceive and make sense of information and take appropriate action.

Typical Current Systems: Alarms provide operator bottlenecks by overloading operators.

Improved Systems: Alarms match what the operator is doing, from monitoring to planning.

example: need for improved alarm systems
bridging human factors process expertise and cutting-edge research to meet practical plant needs for modernization
I/C TESTING IN PROGRESS