Image-Guided Radiation Therapy (IGRT)

Robert Jeraj
Associate Professor of Medical Physics, Human Oncology, Radiology and Biomedical Engineering
Translational Imaging Research Program
University of Wisconsin Carbone Cancer Center
rjeraj@wisc.edu

Imaging in radiation oncology

<table>
<thead>
<tr>
<th>ANATOMICAL</th>
<th>IGRT</th>
<th>MOLECULAR</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>BEFORE</th>
<th>DURING</th>
<th>AFTER THERAPY</th>
</tr>
</thead>
</table>

DIAGNOSIS and STAGING
TARGET DEFINITION
EARLY TREATMENT ASSESSMENT
LATE
Tumor localization

- Multiple approaches for tumor or organ localization
 - Radiographic imaging
 - Fluoroscopic imaging
 - Tomographic imaging
 - Functional/molecular imaging
- Each method has its own strength and weakness
- Which one should be used?

Are radiographs enough?
Tumor in upper lobe can be seen on the radiograph

Courtesy of Vanderbilt-Ingram Cancer Center, Nashville, TN
Are radiographs enough?
Tumor in upper lobe hard to see on the radiograph

Courtesy of Vanderbilt-Ingram Cancer Center, Nashville, TN

Are radiographs enough?
Tumor in upper lobe hard to see on the EPID

Courtesy of Vanderbilt-Ingram Cancer Center, Nashville, TN
Image guidance for IMRT

- **Cone beam (non-rotational) IMRT**
 - Treating cone by cone (port by port)
 - Using dynamic MLC
 - Techniques:
 - Step-and-shoot (multiple static field) technique
 - Sliding window (dynamic MLC) technique
 - Modulated arc therapy (e.g., VMAT, RapidArc)

- **Image guidance** enabled by **cone beam CT** imaging systems
 - Varian – CBCT
 - Electa – CBCT
Image guidance for IMRT

- **Fan beam (rotational) IMRT**
 - Treating slice by slice
 - Using binary MLC
 - Techniques:
 - Serial tomotherapy
 - Helical tomotherapy
- **Image guidance** enabled by **spiral CT** imaging systems
 - Accuray (Tomotherapy) - MVCT

MVCT vs CBCT

- **Density Plugs**
- **Water**
- **+3% Contrast**
- **-6% Contrast**

UW Tomotherapy Unit vs **UW Trilogy Unit**
Dose of different techniques

- **Radiographic mode**
 - kV radiographs: 0.1 – 0.3 cGy
 - MV portal image: 3 cGy (or 6 cGy double exposure)

- **Fluoroscopic mode**
 - Depends on the time, but can be several 10 cGy

- **CT mode**
 - kV CBCT: 3 cGy (depends on the object size and settings)
 - MV CT: 3 cGy (depends on the object)

Imaging guidance and tumor coverage

Courtesy of Lei Dong, Scripps Proton Therapy Center, San Diego, CA
Types of image-guidance

<table>
<thead>
<tr>
<th>System Configuration</th>
<th>Floor Mounted System</th>
<th>Room Mounted Systems</th>
<th>Gantry Mounted Systems</th>
<th>Integrated Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manufacturers</td>
<td>Varian-GE Siemens</td>
<td>BrainLab Accuray</td>
<td>Elekta Varian</td>
<td>Accuray/TomoTherapy</td>
</tr>
<tr>
<td>Radiography</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Imaging Capabilities</td>
<td>Fluoroscopy</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Tomography</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Floor-mounted systems

GE/Varian system
Room-mounted systems

Accuray Cyberknife

BrainLab Novalis

Gantry-mounted systems

Trilogy™ (Courtesy Varian Medical Systems)
Integrated system

Inter-fraction motion
(A/P prostate motion – from lateral EPID)
Intra-fraction motion
(A/P prostate motion – from lateral EPID)

- Non-periodic:
 - Patient movement
 - Physiological factors
 - Peristalses
 - Bladder and rectal filling

- Periodic:
 - Respiration
 - Cardiac
Intra-fraction motion: non-periodic

Significant shifts of ~3 mm (1σ) over 20 minutes

Intra-fraction motion: periodic

Heterogeneity Motion Combined

Patient B

Patient A

Rosu et al, Med Phys 34(4), 2007, 1462
Intra-fraction motion: periodic

- **Main approaches:**
 - Breath-hold (not image-guided)
 - Gating
 - 4D

- **Management:**
 - Imaging
 - Planning
 - Delivery

Imaging: Gated CBCT

- CT
- CBCT Free breathing
- CBCT Breath hold
Imaging: 4D CT

Conventional vs. 4D CT imaging of a tumor.

Courtesy of Paul Keall, University of Sydney, AU

Imaging: 4D CT artifacts

Regular breathing vs. Irregular breathing artifacts.

Courtesy of Bill Loo, Stanford University, CA
Imaging: 4D CBCT

CBC T

CT

7.1 cGy, 125 kV, 50 mA, 20 ms, 2730 projections

5 cGy, 120 kV, 100 mA, 500 ms

Courtesy of Tinsu Pan, UT MD Anderson, TX

Inter-fraction motion

- Van Herk & Remeijer modeled population based setup margins requirement \(\approx 2.5 \Sigma + 0.7 \sigma \)

 - **Systematic error** (\(\Sigma\)): average displacement of a target position relative to its position at simulation.

 - **Random error** (\(\sigma\)): variation of target position about its mean value.

\[
\Sigma \to 0 \quad \sigma \to 0
\]
Ways to reduce geometric error

- Precise initial set up and immobilization σ
- Image the target and shift (adapt) σ
- Offline patient review after multiple fractions (trend analysis) Σ
- IGRT QA Σ

Residual errors for image-guidance

Zeidan et al., Int J Rad Oncol Biol Phys 67, 2007, 670
IGRT workflow

- **Prior to therapy:**
 - Patient is scanned in the treatment position defining a **reference CT**.

- **Every IGRT fraction:**
 - The patient is positioned on the treatment couch in the treatment room and aligned to the laser positions.
 - A **daily CT** (i.e., CBCT) is performed
 - Daily CT scan is registered to the reference CT to determine discrepancies.
 - The adjustments are sent to the treatment unit and the couch shifts automatically to compensate for the differences

Tumor shrinkage - replanning

![Graphs showing tumor shrinkage over time for different patients](Kupelian et al, Int J Rad Oncol Biol Phys 63, 2005, 1024)
Conclusions

- **Deviations from static anatomy:**
 - Intra-fractional (motion, physiological)
 - Inter-fractional (set-up errors, anatomical changes)

- IGRT aims at reducing this by employing imaging during the treatment process:
 - Radiography
 - Fluoroscopy
 - Tomography

- **Choice of appropriate IGRT technique** is very complex and non-trivial
Conclusions

- **Intra-fraction motion management:**
 - Gating: easier, less efficient, present
 - 4D: more complex, more efficient, future

- **Inter-fraction error management:**
 - Determination of individual institution statistical and systematic errors
 - Complex workflow
 - Several issues: inaccuracy, changed anatomy

- **Adaptive radiotherapy**